

SCIENTIFIC
PROGRAMMING

with

TRUE BASIC

SUBJECT OUTLINE
© 2000-2010

by

D. W. McClure
Professor Emeritus

Chemistry Department
Portland State University

1 SCIENTIFIC PROGRAMMING
© 2000-2005

Professor D.W. McClure, Chemistry Department
Portland State University

ASSUMED BACKGROUND FOR CH 443
It is assumed that you know your way around a computer and in particular, MS Windows 2K or XP. You
should know how to use MS Word, MS Excel, Windows Explorer and Internet Explorer as well as know
how to copy programs to and from the computer, how to delete files, save files and so on. In short, we are
not going to teach computer basics. On the other hand, it is NOT assumed that you have ever done any
programming so this course starts at the beginning. It is also assumed that you have a copy of True Basic
(any version) available on your computer.

GETTING STARTED
Start the True Basic program by double clicking on the True Basic icon. You should now see a typical
‘Open File’ dialog box as well as a Command Window. Double click on TB Demos, scroll through the list
of programs available and select the File ‘Hilbert’. Either double click the file name or click Open. Note
that the main window containing code now opens. This main window is called the Source or Code
Window. In addition, note the menu bar across the top. This menu bar contains all of the commands you
will need to edit, run and save programs. The screen should look like:

Now click on Run and watch what happens. You should see a new window (called the Output Window)
containing something that looks like (only much larger and in color):

Congratulations, you have just run your first TB program. You can dismiss the Output Window by first
clicking on Menu, Stop and then clicking anywhere on the Window. When you close the program, you will
get the non-standard Window’s dialog box that looks like:

2 Now click on Discard since you don’t want to Save the Hilbert program. In general, you want to be very
careful at this stage when writing programs because inadvertently clicking Discard when you meant to
Save can cost you a lot of work and time because there is no going back if you made a mistake!

Now that you have loaded and run a True Basic (TB) program, let’s take a look at how code works.

AN EXAMPLE PROGRAM
Probably the easiest way to get a feel for a program is to see and analyze one. The following short
program calculates the pressure of one mole of CO2 gas at 313.15 K as a function of volume using the
ideal gas and the van der Waals equations of state. The van der Waals’ equation reads
P= RT/(V-b)-a/V2. A screen shot of the program listing is given below (Code Window) as well as typical
output (Output Window) when run.

This code listing illustrates a couple of important points that all programs have in common,

1) Serial Execution: i.e., one line at a time starting at the top and progressing line by line through the code
until a branch point is encountered where some kind of decision is made. Depending on the decision, the
program flow may jump to another portion of the program, execute new code and then return to the
branch point. If there is no branch point (and there is not one in the Gas Law Program), each line will be
executed until eventually the END statement is reached.

2) Key Words: all program languages use a set of ‘key’ words that characterize that language and are the
statements that make things happen. For example, the words REM (remark), LET, PRINT, INPUT, ABS
(absolute value) and END are but a few of the key words that characterize the True Basic language. Each
one has a specific meaning and must be used, not only in the correct problem solving context, but also
must be absolutely correct in spelling and construction. Computer programs are insanely single minded in
insisting that the code structure be absolutely correct or the program will not run in which case you will get
what is called a ‘syntax error’. Expect to become very familiar with syntax errors. Syntax errors are
delineated in an Error Window in True Basic as in the following example of a ‘division by zero’ error.

3

These errors are the best kind to have because their existence is obvious since the compiler will complain,
the program will not run and usually the problem is simple to fix. Far more pernicious are errors of a
logical nature because these errors lead to wrong results even though the program runs fine. In other
words, the fact the program runs does NOT mean the output is correct! More about this in a moment.

Begin by entering the GasLaw code, exactly as written, into the code window (remembering to press
return at the end of each line). Once you have finished typing in the code and before you try and run the
program, save it to your disk (call it GasLaw or something else that will help you remember the nature of
the program). Why? Because it is more than a little possible that you have made such an egregious error
in inputting the code that you will crash True Basic and then guess what – you have to start over. Next
obtain a listing of the code by clicking on Print in the File Menu. Now you are ready to run the program.

To do so, click on RUN in the tool bar. The program will respond by opening the Output Window (don’t run
it full screen as it will hide the Error Window) and displaying the prompt ‘What is your volume in liters’ with
the cursor patiently waiting after the question mark for a reply. You then type, for example, 50 and press
return. The computer then prints the phrases in quotes after the PRINT statement (code line 320) followed
by the computed results. Now click on the File Menu in the tool bar of the Output Window. The menu has
three choices, Print, Copy and Stop. Print sends the output to the printer for a hardcopy, Copy copies
the output to the clipboard and Stop halts program execution. You will need to click on Stop in order to
end the program; otherwise it will continue to prompt you for new ‘volumes’. To get a hardcopy of the
program code itself, use the PRINT command in the File Menu of the Code Window.

Now try running the program and enter 0 after the volume prompt. The program crashes (does not run)
and gives you a ‘Division by zero’ error. An error of this type is always ‘fatal’ – not to you, but to the
program. You might think a little about the logic you would use to stop such an error from ever occurring in
terms of program code. Note: if you don’t see the Error Window, it’s under the Code Window.

4 Wrong input data will behave the same way - the program runs but the results are meaningless. Hence
the phrase, garbage in = garbage out. These non-fatal errors are pernicious because they rarely
announce themselves in an obvious way thus requiring you to ferret them out. The rule that must be
paramount for any programmer is that:

ALL NUMERIC OUTPUT MUST BE VERIFIED

How? - By the simple expedient of doing an independent hand calculation of at least one value. If loops
are involved where a number of values are computed then there should be an independent verification
using at least three values -- the least computed value, the largest computed value, and some value in the
middle. Only then can you feel reasonably assured that your output is valid.

Finally, after all logical and input errors have been eliminated and the program runs and gives ‘correct’
results there still remains a potential for additional computational errors due to propagated computer
round off and/or truncation errors. These errors, which are more subtle in origin are outside the scope of
this manual.

Verification of the Gas Law Program is simple enough. Pick a couple of volumes that represent the range
of possible values of interest, and compute, by hand, the corresponding pressures and their ratios. Do
not, however, use the program code for the definitions of the equations, rather, re-solve for the variables
of interest after verifying the correctness of the equation from an independent source. Why? - because
you will never know if you have coded the ‘equation of state’ in the program incorrectly if you use the
program definitions.

3) You will notice that the Gas Law Program consists of basically three parts, a part where you input the
data (the volume in this case), a part where you output the results (print the pressures and ratio) and the
‘stuff in between’ where the ‘stuff in between’ usually determines the complexity of the code since input
and output is usually pretty straight forward.

We now begin a detailed study of the True Basic language. Before doing so however, let’s take a quick
look at the PC screen because its characteristics determine how our output looks.

Long Code Lines
It is quite likely that you will occasionally write a line of code (usually an arithmetic statement) that will
exceed the length of the screen. This does not present a problem since moving the cursor to the right on
that line will scroll the line so that you can see it. However, when the code is listed, you will not see that
part of the line that exceeds the screen width. A useful solution is to split a long line into two or more lines
so scrolling is unnecessary. This is done by typing a “&” at the point where the line is split and at the
beginning of the next line. This will obviate the need to scroll and a program listing will show exactly what
you see on the screen

THE TRUE BASIC LANGUAGE

Numeric and String Constants
True Basic implements two kinds of constants - numeric constants and string constants. A numeric
constant is just a number and consists of combinations of the digits 0,1,...,9, a decimal point and a +
(implied) or - sign. Thus 5 and 6.022e23 are numeric constants.

The ‘E’ or ‘e’ notation in the last case stands for 6.022 x 1023. The number -1e-123 is valid but e-123 is
not (a number must precede e) and neither is -1x10-123, i.e., you must use the e notation for powers of 10.

A string constant is any combinations of characters, i.e., letters and/or numbers enclosed between
quotation marks, such as: “Computer”, “6.022e23” or this paragraph, if enclosed by quotation marks. The
quotation marks serve only to identify the string as a string and are not part of the string itself. Note that
“6.022e23” is a string, that is, a sequence of characters, and must not be interpreted as a number. As we
shall see, numeric constants and string constants are stored and manipulated quite differently by the
language.

5
Numeric and String Variables
Just as there are two kinds of constants in True Basic, there are also two kinds of variables, numeric and
string. A numeric constant can only be assigned to a numeric variable and a string constant can
only be assigned to a string variable.

Let’s now look at the mechanics of how assignments are made, beginning with numeric variables.

THE ASSIGNMENT STATEMENT

A) Numeric Variables and Numeric Constants
Returning to the Gas Law program and the expression R = 0.08205, we see that every assignment
consists of the following four parts.

1) The Assignment Operator -- LET
The optional key word LET is a True Basic anachronism used to assign values to variables, both numeric
and string. It is not required, but to ignore it requires the NOLET option which you type into the textbox in
the Command Window – and remember to press Return. True Basic is the only language still using
this key word. In this manual, we will NOT, for the most part use LET as it is unnecessary, annoying and
specific to True Basic only. Here is what the Command Window looks like with ‘nolet’ in the text box.

2) The Variable Name
In this case, and in keeping with the usual notation, we have used R to represent the constant 0.08205.
However, variable names can be up to 31 characters in length, can contain numbers (but not as the first
character) as well as letters and the underscore ‘_’. No other symbols are acceptable including spaces.

Case Sensitivity
True Basic is case insensitive, that is, code written in lower case, upper case or a mix of the two is
identical from the compilers point of view. Thus the variable name SumOfSquares, sumofsquares or
SUMOFSQUARES is the same in all three cases. Languages like C or C++ would treat these as three
different variables.

The construction of a variable name is a personal choice but they really should reflect what the variable
does or represents. For example, if we had a variable to represent the time of day in some piece of code,
we might write Time_of_Day, or TimeOfDay for the variable name. Likewise, if we were doing a statistical
calculation where we needed the sum of the squares of the residuals we might use SSResiduals,
SS_of_Residuals etc. What we would not do is use a name like x for this variable because, by itself, x
conveys nothing about the variable. On the other hand, a name like Sum_Of_Square_Of_The_ Residuals
is just too masochistic if one has to type the name of the variable very often.

3) The Right Hand Side of the Assignment Statement
The right hand side of the expression can be a number (e.g. 0.08205, i.e., a numeric constant) or an
expression containing other variables (more about that in a moment). Numeric constants, as we have
seen consist of the usual 10 (0,1,2...9) digits, a decimal point if needed, possibly a sign as in + or - and,
when needed, notation to denote powers of 10. Commas, spaces, dollar signs etc. are not permitted.

Thus the choices:

 X = -2.3,
 NumberOfTextLines = 0
TestDigits = +1.23456789
Avogadros_Number = 6.022E+23

6 are all valid assignments. Note that you cannot have spaces in the variable name – hence the use of the
underscore in Avogadros_Number. Note again that in order that we can ignore the LET statement, we
have to use the NOLET option in the Command Window.

4) The Equality Sign and the Meaning of the Assignment Statement
The ‘=‘ sign is not to be interpreted as an equals sign but rather as an assignment operator.

To help clarify this concept, consider the line of code from the Gas Law Program; R=0.08205

Here we are assigning the numeric constant 0.08205, the gas constant, to the numeric variable R. If one
did not know better this might look like a simple algebraic statement, but from the view point of the
computer, this statement sets up a location or address in computer memory that symbolically represents
both the variable name, R and its value, 0.08205. Every one of the six assignments made in the gas law
program corresponds to a different memory location where each location represents both the name of the
numeric variable and its current value.

Another analogy is to think of the memory location for R as a mail box with the name R and the contents
of the mail box as the value R has at the moment, i.e., 0.08205. In this sense then, the ‘=‘ sign does not
denote ‘equality’, but rather should be viewed as an ‘assignment’ operator which says ‘assign the value on
the right hand side of the expression to the memory location representing R.

Because ‘=‘ is not to be interpreted as an equality sign, statements like

 Count = Count+1
 New Value = Current Value + 1

make sense. This statement says ‘go to the mailbox (location) in memory with the address representing
the variable ‘Count’, open the box, select the current content which is a number, add 1 to it and then store
the new value in the Count mailbox so that Count(new value) = Count(old value)+1.

For example, suppose Count is initially 5. The assignment operation says, go to the memory location
representing Count, add 1 to the current value, which is 5, delete the old value of 5 from memory and
finally replace it by the new value 6. Because it is the same memory location representing Count, the
value of Count now has the value 6, i.e., same mailbox, new contents. This example should also illustrate
that numeric variables really are variables in the sense that they can take on new values any time the
program requires them to do so.

Statements like Count = Count + 1 are called counters because they literally count how often a section of
code executes and are used routinely in programming. This statement is also an example of an arithmetic
statement or expression.

Arithmetic Statements or Expressions
If all one could do in a program is assign numbers or constants to a variable name, computer programs
would be of little value. However, assignments like:

 Area = PI*R^2 ! PI is 3.14...
 V = n*R*T/P
 Root1 = (-b + SQR(b^2-4*a*c))/2*a ! SQR is the square root
 WordCount = WordCount + N

are acceptable code statements, and make sense if we remember that each variable in these expressions
is just a memory location to which is assigned a numerical constant. The Gas Law Program used two
assignments of this type, namely,

 IdealGasPress = R*T/V
 VdwGasPress = R*T/(V-b)-a/V^2

Obviously, an arithmetic expression cannot be evaluated unless there actually is a number representing
each variable stored in memory. For that reason, it was essential that these two expressions go after the
assignment of a, b, R, T and V in the program. In fact, a, b, etc. do have values before they are assigned

7 values in the program, namely, 0, and this is because True Basic automatically initializes all variables to 0
when the program is run. You can verify this by running the following program.

 y = 1/x
 x = 5
 PRINT “y = “;y
 END

You will get a ‘division by zero’ error because x has been initialized to 0 at runtime. The remedy is simple,
just move x = 5 to the line above y = 1/x and re-run the program. This may seem all pretty obvious, but
errors due to the placement of arithmetic statements relative to their variable assignments are a common
problem, especially when one is just learning to program. Remember, compliers do not ‘look ahead’ to see
what’s missing.

Let’s now look at the machinery for constructing arithmetic expressions.

Operators for Constructing Arithmetic Statements
The following arithmetic operators are available to link variables when building equations.

ARITHMETIC OPERATORS

Operator

Meaning

+ addition
- subtraction

* multiplication
/ division
^ exponentiation

In addition to the five arithmetic operators, there is the parenthesis () which is used to separate operators,
define blocks of expressions and determine the order in which operations are carried out. Parentheses
can be nested as deeply as needed.

In an expression containing multiple operators, the order in which these operators are executed is
important. Ignoring this fact is the cause of a lot of grief when the program runs but gives incorrect
results. The following table illustrates the order in which the arithmetic operators are evaluated.

OPERATOR PRECEDENCE

Order

Operation

1st expressions in a parentheses
2nd exponentiation
3rd multiplication/division
4th addition/subtraction

Operations like multiplication and division or addition and subtraction have equal priority and are executed
left to right in the order they are read by the compiler. Thus x/y* z is evaluated as (x/y) * z, not as x/(y* z).

The following table shows how the order of execution can affect results

ORDER OF EVALUATION IN NUMERIC STATEMENTS

Arithmetic Expression

Compiler Evaluation

Result

3+5*6 3+(5*6) 33
(3+5)*6 (3+5) *6 48
2+3/4+2 2+(3/4)+2 19/4
(2+3)/4+2 ((2+3)/4)+2 9/4
(2+3)/(4+2) (2+3)/(4+2) 5/6
2-3^2*-2+4 2-((3^2)*(-2))+4 24

8 In the last case, the True Basic compiler won’t even accept the arithmetic statement because it has no
idea what you really mean when you write * - . Contiguous arithmetic operators must be separated by
parenthesis.

B) String Variables and String Constants
String constants are defined as any list of characters enclosed in quotation marks. Thus the phrases:
“Beam me up Scotty” or “The velocity of the projectile was 2.78 km/sec” are strings.

We remarked earlier that True Basic was case insensitive to all types of variable names, keywords, but
string constants are an exception. The phrases: “Now is the time” and “NOW is the time” are two different
strings. This makes sense when one realizes that every character, i.e., letter, number or symbol, on the
keyboard is assigned a numerical value in the ASCII (see the appendix of your text) table. For example,
the return key is given the value 13, the ESC key is 27, ‘A’ is 65 while ‘a’ is 97, ‘B’ is 66 and ‘b’ is 98 and
so on. When strings are compared for tests of equality, it is the ASCII value of each character that is used
for that comparison. Unless the corresponding ASCII codes match exactly, the strings will not be equal.

Assigning a string constant to a string variable is identical to the procedure for assigning a numeric
constant to a numeric variable with the exception that the name of the string variable must end in a
dollar sign, $. For example:

 String Variable → Time$ = “12 O’Clock” ← String Constant
 ErrorMessage$ = “Function has a singularity at X = 0”
 X$ = “”
 DataString$ = “-1.2452”

In the case of X$ = “”, the quotation marks without a space between them is defined as the ‘null string’.
Note that X$ = “ “ is not a null string but rather a string consisting of a single blank character. String
variables are all initialized to the null string at runtime just as numeric variables are initialized to 0. Also
notice in the last case that DataString$ is defined as a string consisting of digits, which without the
quotation marks, would be an ordinary number. As we shall see, the language is rich with operators that
can manipulate strings including extracting from strings like DataString$, their equivalent numerical value.
The importance of strings and string operations cannot be overstated. Word processors, databases,
indeed, most professional programs consist largely of string manipulation routines. Even most programs
that do numerical computations on input from the keyboard do so by accepting numbers as string
constants and not as numbers.

Finally, everything we have said about numeric variables and their values being associated with a location
in computer memory apply equally to string variables and their values.

COMMENTS ON THE STORAGE OF NUMBERS AND STRINGS
Floating point or real numbers are numbers with decimals. Real numbers, integers and strings are all
stored differently in memory. For example, real numbers are stored using 64 bits (also called double
precision storage) or 8 bytes, in accordance with the IEEE format provided the computer has a math
coprocessor. Otherwise a special internal format is used. On the other hand, integers are automatically
stored using 16 bits. Strings use 8 bits (1 byte) per character.

The range of numeric input in True Basic is approximately -2e-308 to 2e+308 while the range of accuracy
of any computation is 14 to 16 digits (10 to 16 for transcendental functions like log, sin etc.).

PROGRAMMING ERRORS (or Exceptions)
In the course of writing a program you will make many errors or, as they are often called, exceptions.
Some of these errors are ‘fatal’ in that they result in an immediate halt of the program, either during the
compilation process (‘compile-time’ errors) or at some point after the program finishes compilation
(‘runtime’ errors). For ‘compile-time’ errors, the compiler will stop compilation immediately upon finding
errors like misspellings or illegal statements or structures. These errors, which are relatively easy to fix,
will result in an error message in the error window with a corresponding indication in the source window as
to where the error occurred. Be warned however that the error the compiler tells you about may not be the
problem at all, but rather the problem is to be found in earlier lines of code. It is just that the compiler
accepted as correct an earlier statement and then found the incompatible code statement later. So when
you look at the indicated error and you see nothing wrong, look at the earlier code for the problem. This
problem is characteristic of all compilers irrespective of the computer language.

9
‘Run-time’ errors are usually accompanied by an error statement like: ‘Division by Zero’ or ‘Channel isn’t
open’. Correction usually means re-writing the code to fix the problem. These problems are also
trappable with an error handler to avoid a program crash. We will discuss the use of error handlers later.

ALGORITHMS
An algorithm is simply a program or program structure that solves a specific problem. For example, a
recipe for making a chocolate cake is an algorithm as is the following code that sums up the integers from
1 to 10, the result of which is 55.

How would you alter the code to sum the first 1000 integers? Better yet, how about n integers where the
user input the value of n?

This algorithm is a simple example of code that accomplishes exactly one thing, the computation of the
sum of the first 10 integers. The Gas Law program is an example of a less well-defined algorithm. Most
computer programs consist of many individual algorithms, and in the case of large programs, many
thousands.

It is also worth noting that not all algorithms designed to compute the same quantity are created equal.
For many algorithms, the issue of efficiency is not important, but for some, especially those involving data
structures, it is crucial.

We now begin a systematic discussion of the set of statements, operators and structures that define the
True Basic language. Examples will be used to illustrate programming concepts as they are needed. You
should type in the code fragments, run them and then alter them to see what happens.

10

THE LANGUAGE
The following table contains a few of the most important statement that we will need along with some
comments about their use.

STATEMENT COMMENT
CLEAR Clears the Output Window
REM or ! Remark statement – use the ! as it is more flexible
STOP Stop program execution
END Denotes the end of the program – this is a required statement
PRINT See below
TAB Useful for making column data
PRINT USING Used to format output
INPUT See below
INPUT PROMPT See below
LINE INPUT See below
READ/DATA Useful method for entering encoded data into memory

COMMENTS:

REM
REM is a non-executable (i.e., the compiler ignores it) statement that allows you to write explanatory
comments to yourself and your fellow program users that will hopefully give you, and them, some idea as
to why you wrote a section of code the way you did. The REM statement can only be used at the
beginning of a line. A more useful alternative to the REM statement is the ! mark which can be used at
the beginning of a line or at the end of a line of code to make comments or remarks. Another advantage
of the ! mark is that if your comments extend over several lines you can ignore the ! mark until you are
finished with your comments, then highlight the remarked section, press the key combination SHIFT ! and
the entire section will be remarked out. This trick is also useful to temporarily remove sections of code,
without having to delete them, so that they will not execute when you run the program.

Including comments in a program may seem a pretty obvious issue, but the importance of proper
commenting cannot be over estimated. The fact is, most programmers, including professionals, do an
entirely inadequate job of commenting their code and the reason is understandable. Commenting is
boring, tedious and seemingly non-productive compared with actually writing code. The importance of
carefully documenting your program becomes painfully obvious however when you try to understand the
code a few months or even a few weeks later. And pity your poor colleague who, a year or more after you
have moved on, is given the task of modifying your code. Without decent commenting, any hope of
understanding what you did is all but impossible for a program of even modest size.

STOP
STOP does just that, it halts execution.

END
END is always the mandatory last statement in a program without external subroutines. It functions to halt
program execution and gives a sense of closure to the code.

REM, !, END and CLEAR where all used in the Gas Law Program.

PRINT ZONES: True Basic, by default, divides the screen into columns of width16 characters each.

PRINT STATEMENT
The PRINT statement is used to direct output to the screen, or through the use of a directed channel, to a
printer or to a file on a floppy or hard disk. The default option is to the screen and we will limit our
discussion to this choice for the time being.

The PRINT statement can be followed by a TAB statement, any constant (string or numeric), any variable
(string or numeric), any arithmetic statement or any combination of these. Multiple items to be printed are
separated by commas or semi-colons, often called ‘delimiters’, and work as follows:

11
Commas: Commas indicate that each item to be printed should begin in a new print zone. In other

words, the comma functions as a tab key on a typewriter where, in True Basic, by default, the tab stops
are set at the beginning of each 16 character width column.

 Semi - Colons: A semi-colon acts to eliminate spaces between printed items. In a sense, if we view
the printing of characters on a screen like typing characters on a typewriter where a new line is generated
by a carriage return, then the semi-colon acts to suppress that carriage return so the next character
follows the last character on the same line. A PRINT statement by itself causes a blank line to be printed
and for that reason is useful when one wants to separate lines of printed data.

EXERCISE 1 - Use of Delimiters: the comma and semicolon
The following short program illustrates the use of the comma and semi-colon when printing integers. In
order to conveniently illustrate how the delimiters work we will briefly introduce a simple FOR/NEXT
structure. The purpose of following code fragment is to again print the integers 1,2,3...,10. How the output
looks will depend on what delimiter you use after the i in the PRINT i statement.

 Sum=0
 For i=1 to 10
 Sum = Sum+i
 PRINT "Sum= "; sum;
 Next i
 END

First, how does the program work? We begin by initializing Sum to 0 which is unnecessary (Why?) but it
serves to remind you what the initial value is and I recommend you always initialize each variable. The
FOR/NEXT structure functions to repeat whatever is between the FOR and the NEXT ten times; which, in
this case, is the summing statement followed by the PRINT SUM statement. Thus our loop functions to
print the first 10 integers.

Now type in the program, save it and then run it under the following conditions:

1) Without any delimiter after the PRINT i
2) With a comma after the PRINT i
3) With a semi-colon after the PRINT i
4) Replace PRINT i with the statement PRINT STR$(i).The statement STR$() functions to convert a
numeric variable to a string so each of the integers, which were numbers, now become strings. Now re-
run the program using commas after the PRINT i statement. This time there should be no spaces
between the printed characters like there was between numbers. This is because strings are printed
exactly as they are and not as formatted numbers.
6) Type in a PRINT statement just before the NEXT i. This illustrates the function of the PRINT
statement as a spacer.

How Numbers are Formatted: We have just seen that numbers seem to be printed in a specific format.
Like all computer languages, True Basic has specific conventions for printing numbers. These are,
1) all numbers end with a space and are confined to a single print zone
2) if a number is an integer, and can be expressed with 12 or fewer digits, it will be printed that way,
otherwise it will be expressed using scientific notation where the largest number of characters is 15
including the - sign, the decimal point and any exponential notation if required. The number will be
rounded to a maximum of 8 digits. This is consistent with a 16 character print zone. The same
convention is used for floating point numbers. Thus the number -12345678901234567890e100 would be
expressed as -1.2345679e+119 that is, to a total of 15 characters and rounded to 8 digits.

12 The following examples should help clarify these rules.

NUMBER OUTPUT COMMENTS
123456789012 123456789012 12 digit pos. integer, 14 characters.
1234567890123 1.2345679e+12 13 digit pos. integer, 15 characters
1234567.8 1234567.8 8 digit floating point no.
12345678.9 12345679. 9 digits rounded to 8
0.1234567890123 0.12345679 13 digits rounded to 8
-123456789.9 -1.2345679e+8 rounded + scientific notation
-12345678.9e-110 -1.2345679e-103 maximum of 15 characters

The purpose in limiting the numbers of digits displayed is to provide a convenient default format for
tabulating data. Much greater flexibility in printing is obtained through the use of the PRINT USING
statement which we will discuss shortly.

Printing Multiple Items on a Line
1) Constants and Numeric/String Variables: Statements like PRINT 2.2,-4,”1000”
will be printed as specified, i.e., 2.2,-4 and 1000 where the item “1000” is a string, because of the quotes.
The 2.2 will be printed in zone 1, -4 in zone 2 and the 1000 in zone 3. However, had semi-colons been
used instead of commas, then each item would have been printed with a single space between them.

Printing strings differs from printing numbers as print zones are ignored for strings and there is no
formatting as the following sceen shot shows:

THIS PROGRAM ILLUSTRATES HOW TB PRINTS STRINGS VS NUMBERS

OUTPUT

Note that the only difference between the two Print statements is that the first is a string (quotation marks)
and the second is a number. Numbers are formatted and print in zones depending on the delimiter
whereas strings print exactly as written.

Returning to the Gas Law Program we have the statements:

 PRINT “Vol=“;V

Here the string “Vol=“ is printed first followed by the value of the numeric variable V, the two being
separated by a semi-colon which ensures that the value of V will be printed immediately following the
string “Vol=“, as in, for example, Vol=50. This is a typical format for printing where one wishes to identify
the variable name as well as its value. In the same way, multiple items may be printed on a single line as
in,

 PRINT “Pressure= “;P;”Temperature= “;T;”MolarVolume= ”;V

 2) Arithmetic Statements: As we have just seen, if a PRINT statement contains a numeric variable, then
the current value of that variable will be printed when the PRINT statement is executed. As an alternative,
we can also include as part of the PRINT statement the arithmetic statement that defines a particular
numeric variable. After printing the string, the arithmetic statement will be executed and the result will be
printed following the string. For example, in the next-to-last statement in the Gas Law Program, we have:

PRINT “Ratio of VDW to IDEAL Pressure=“;ABS(VdwGasPress/IdealGasPress)

13 Here, following the string “Ratio of VDW to IDEAL Pressure=“ we have an arithmetic statement that calls
for the absolute value of the ratio of the two gas pressures to be computed. Alternatively, we could have
defined a new numeric variable called Ratio defined as

 Ratio= ABS(VdwGasPress/IdealGasPress)

and then written:

 PRINT “Ratio of VDW to IDEAL Pressure=“;Ratio

to accomplish the same end. From the view point of readable code, extensive use of arithmetic
statements tied to PRINT statements is not advised.

TAB
TAB, when used in conjunction with PRINT, functions like it does on a typewriter. The snytax is:

 TAB(col); moves the cursor to the column col on the line the cursor is
 already on, or

 TAB(row,col); moves the cursor to the column col and the line row

NOTE: Tab cannot be used on its own but must be part of a print statement as in PRINT TAB (3,4).

For example,
 V=125
 PRINT TAB(10);”Vol = “;V

will move the cursor to column 10 on the present line and then print the statement Vol = 125.

Multiple TAB statements can be used to override fixed zone widths. For example:

 PRINT tab(10); x; tab(20); y; tab(30); z

will print the current values of the variables x,y and z beginning in columns 10, 20 and 30 respectively.

We can illustrate the TAB statement by modifying the previous program to read:

14

As you can see, the output lines up nicely beneath the different columns. Still, the output can be awkward
when using the TAB function – in fact, if the output is negative, or the magnitude of i is negative then
output will not look good. The PRINT USING statement will allow us greater flexibility in controlling how
things look.

PRINT USING
Print Using (for numbers) is a very useful means of formatting output to the screen or printer. The syntax
is:

PRINT USING “A$ Descriptor”: constant, numeric variable or arithmetic statement

where:

1) the string A$ is optional. If included, it will be printed exactly as is.
2) the descriptor is a symbol that functions to define the output format. A table of descriptors is listed
below. The quotes and colon are required.

PRINT USING DESCRIPTORS

DESCRIPTOR

MEANING

COMMENTS

Print leading zeros as spaces Usual formatting of numerical output
% Print leading zeros as zeros
* Print leading zeros as asterisks
+ Print numbers with leading + or -
- Print numbers with either leading

space or -.
Used for aligning decimal points when
printing financial quantities

$ Print leading $ sign
. Fixes decimal point
, Prints commas
^ Scientific notation as in 2.34e-105
< Left justify string strings only
> Right justify string strings only

EXAMPLES of Print Using for Numeric Variables

Example 1: Consider the following program

1) PRINT USING “Pi to 20 significant figures is #.###################”:Pi
2) PRINT USING “#.##############”:Pi
3) OutputFormat$=“#.##############”
4) PRINT USING OutputFormat$:Pi

15 (Line 1)
This line corresponds to the previous syntax where:
A$= “Pi to 20 significant figures is
Descriptor = #.###################”
and Pi is the True Basic function that returns the value of 

The output from this line of code is:

 Pi to 20 significant figures is 3.1415926535897925000

Here the # symbols act as place holders for the digits thereby ensuring that 20 digits will be printed with
the decimal fixed after the first digit. We note however that while 20 full digits are printed, only the first 15
are correct (the last 5 should read 32384 not 25000). This is because the value of Pi, like any floating
point number, is stored in memory, using just 64 bits (which is called double precision). Since Pi has an
infinite number of digits, then too accurately accomodate the number to its maximum precision would
require infinite computer memory. This uncertainty beyond the 15 digit, which is a fact of life for all floating
point number storage, is often call ‘computer roundoff error’. Roundoff error is not an issue of concern at
this point, but it is an interesting topic that we will need to deal with later.

(Line 2)
This statement omits the string A$ and limits the output to 15 digits since the last five are meaningless.

(Lines 3 and 4)
These lines illustrate an alternative method of using the descriptor part of PRINT USING. It produces the
same output as line 2 except that it allows the user to define the descriptor on a separate line so it could
be used by multiple PRINT USING statements if desired - in short, it adds flexibility.

Example 2:
The following table illustrates the effect of various descriptors.

 EXAMPLES OF PRINT/USING DESCRIPTORS (PU = Print Using)

DESCRIPTOR OUTPUT COMMENTS
PU “#.####”:1.234567890 1.2346 # acting as a place holder
PU “#.#########”:1.234567890 1.234567890
PU “+#.####”:1.234567890 +1.2346 + forces leading + or -
PU “%%%%.####”:1.234567890 0001.2346 % forces leading zeros
PU “#####.#^^^^^”:1.23456 12345.6e-04 scientific notation
PU “#####.#####”:12345.67890 12345.67890
PU “#####.#####”:123456.7890 *********** string incompatible with format
PU “#####.#####”:1.234567890 1.23457 note rounding
PU “##,###,###,###”:12345678901 12,345,678,901

Print Using is an extremely useful statement for formatting output. The most common descriptor for
scientific output is the # along with the ^ for scientific notation. Business applications are more likely to
use the $, comma, % etc.

You can also use the TAB function with PRINT USING but remember, they cannot appear on the same
line. A modification of the Tab Alignment Program illustrates the use of PRINT USING.

16

This modification produces nicely aligned output. Note the following:
 1) the use of the Repeat$ function - see your text
 2) that Print Tab and Print Using are on different lines – essential!
 3) the way the do/loop is offset from the rest of the program and the code between the do and loop are
further offset by another 3 (arbitrary) spaces. In addition, there is a blank line between the do/loop and the
code above and below this structure. This is called white space. By indenting the code for
spectific structures like the DO/LOOP and others that we will routinely use together with the liberal use of
white space helps code readability and is strongly recommended.

You should copy the above modification, verify that it produces aligned output and then play with it. Try
the other descriptors and see what happens.

INPUT STATEMENTS
This is the basic statement that transfers information from the keyboard to computer memory. In the Gas
Law program the code:

 PRINT “What is your volume in liters”; !this is your prompt and what you see on the screen
 INPUT V !this pauses the program and waits your response

initiated the prompt for the volume from the user through the use of the PRINT statement. The INPUT
statement is then executed resulting in a question mark being displayed on screen. The program then
waits for a user repsonse. Typing a number and pressing return then transfers the data typed to the
memory location associated with the variable indicated - e.g., V in the Gas Law program.

The input variables can be numeric or string or any combination of them, as in:

INPUT Pressure ! single numeric variable
INPUT X,Y,Z ! 3 numeric variables
INPUT ParagraphLength$! single string variable
INPUT x,y,z,x$,y$,z$,DataString$! mix of string and numeric types

Note that multiple variables are always separated by commas. When a multiple variable INPUT command
is executed the program still responds with a single ”?”. In this case, the keyboard input must agree with
both the number and type of variables called for and each datum must be separated by a comma. In the
last case for example, the input: 1,2,3,4,5,6,7 would be perfectly alright because the number 1,2 and 3
would be assigned to the numeric variables x,y and z and the variables 4,5,6 and 7 would be treated as
strings and assigned to x$,y$,z$ and DataString$. On the other, the statement INPUT X,Y,Z calls for
three numeric variables so the input: 1, Klingon, 3 would result in an error message and the request for
you to reenter the data because Klingon is a string variable, not a numeric variable.

17
Comment: Errors made when responding to the INPUT statement are not fatal in that they do not crash
the program. Instead, an error message appears and waits for you to respond correctly. An alternative
and much preferred way to input data is to not use the INPUT statement at all, but instead use the GET
KEY statement in combination with the CASE SELECT structure. With this code combination, one can
trap errors of the wrong data type before they are even seen on screen. We shall use this technique later
after we have introduced Decision Structures.

INPUT PROMPT
This is a useful alternative to the two line combination of PRINT and INPUT used above. Here the prompt
is part of the input statement as in:

 INPUT PROMPT “some message”:var1,var2,...

where “some message” is the prompt and var1, var2 etc. are the variables to be assigned the input
constants. Thus the previous PRINT/INPUT combination would read:

 INPUT PROMPT “Enter your volume in liters”: V

One advantage of this structure is that it does not result in a ‘?’ being printed as it does everytime an
INPUT statement is executed.

LINE INPUT
LINE INPUT is used for string variables. The syntax is :

 LINE INPUT var1$, var2$
or
 LINE INPUT PROMPT prompt$: var1$, var2$

READ/DATA
The READ/DATA statement is used to input data to memory from within a program rather than from the
keyboard. The syntax is:

 READ var1,var2,.....
 code block
 DATA
 RESTORE (optional)

The READ statement simply lists the variables to which you wish to assign the constants, both numeric
and string, specified in the DATA statement. The RESTORE statement is optional.

EXAMPLE:
Here is a short program to compute the pay packet for some part-time workers.

18
Here’s the ouput:

The Way Read /Data Works
The READ statement lists the variables, one string and three numeric, needed to compute the current
value of the Pay variable. During the first do/loop pass, the string constant “John L.” is assigned to the
string variable Name$, and the next three numeric constants to the numeric variables PayRate,
HoursWorked and WithHolding. Execution then drops to the Pay=.. statement and then to the PRINT
statement. Program flow then loops back when LOOP is executed and the next four items in the DATA
statement are assigned. This is done (in this case four times) until the the number of items in the DATA
statement has been exhausted.

Clearly then, the number of items in the DATA statement must be a multiple of the number of variables to
be assigned. In addition, the items in the DATA statement must agree in kind with the variables to which
they are assigned - in short, if the third variable to be assigned is a string variable then the third item in the
DATA statement must be a string constant and not a number. Otherwise you will have a fatal error (Data
item isn’t a number or Reading past end of data)!

Now re-run it with the WHILE MORE DATA part of the do/loop commented out (use the !). Now you
should get the error message ‘Reading past end of data’. That is the function of the WHILE MORE DATA
(or alternatively, UNTIL END DATA) is to halt the looping process when the data has run out thus
avoiding the error message.

As the data is read, an imaginary pointer moves from data item to data item until the last constant is read
and assigned (in this case 52.50). The pointer then moves to the next item which is non-existent. It is this
final positioning of the pointer that causes two problems: i) the “Reading past end of data” error and ii) no
way to re-run the program and use the same data without having to stop the program and re-run from
scratch. The solution to the first problem is to use the DO WHILE MORE DATA statement and the
solution to the second is to include, after the LOOP statement, a RESTORE statement which has the
affect of moving the pointer back to the first data item, namely, “John L.”

On the next page is a program that summarizes the various Input/Output methods as well how to format
output. The output from the program follows.

19

20 LIBRARY FUNCTIONS
Our programming examples so far have used only a very limited number of possible True Basic
statements. In order to expand our choices we now introduce a few of the more important True Basic
library functions. Most of these are for numeric functions since we are leaving string operations until later.
See the True Basic Reference manual for a complete listing. We will detail the built in functions for strings
later. Each of the listed functions is called with the statement

 Numeric or String variable = Library Function(Variable Name)

as in, Y=SQR(X) where X is some positive number already in computer in memory.

PARTIAL LIST OF TRUE BASIC LIBRARY FUNCTIONS
FUNCTION NAME COMMENTS
ABS (x) Absolute Value
SQR(x) Square Root x>=0
EXP(x) Exponential exception 1003 - overflow
LOG(x) Log base e x>0, exception 3004 - LOG of number <0
LOG2(x) Log base 2 ditto
LOG10(x) Log base 10 ditto
SIN(x) Sine of x x in radians by default
COS(x) Cos of x ditto
TAN(x) Tan of x ditto
INT(x) Integer - see below
CEIL(x) Ceiling - see below Defined as -INT(-x)
RND Random number returns a psuedo random x where 0<=x<1
ROUND(x,n) x rounded to n places see reference manual
MOD(x,y) Modulus - see below exception 3006, y cannot be 0
VAL(x$) Value of string x$ exceptions 1004,4001 -see ref. manual
STR$(x) String operator converts x to a string truncated to 8 digits
CHR$(x) Character string 0<=x<=255 where x is an ASCII code
ORD(a$) returns ASCII code of a$

COMMENTS and EXAMPLES
Most of these functions are pretty obvious. Some need additional explanation however, including:

INT(x): This function returns the greatest integer <= to x. Thus INT(2.99)=2 , INT(-2.01) = -3 and INT(25)
= 25. INT is sometimes called the FLOOR function.

CEIL(x): Returns the least integer that is >=x and can be defined as -INT(-x)

RND: The statement, x = RND will generate a single random number such that 0<=x<1. Note that x <>1.
If a sequence of random x are generated using a DO/LOOP for example, the sequence will be found to be
repeatable from run to run. This makes debugging possible. To remove this repeatability, include the
RANDOMIZE statement. To generate random numbers in the range between some upper bound U and
some lower bound L, use either:

 N = INT[(U-L+1) * RND+L] for random integers between U and L

 N = ROUND[((U-L) * RND+L),J] for random ‘real’ numbers between U and L

where J is the number of significant figures wanted.

For example, suppose we want to generate the random integers 0 and 1 in order to represent a head or
tail when a coin is flipped. We take U=1 and L=0 so the statement: N = INT(2*RND) will simulate a coin
flip quite nicely since values of RND from 0 to 0.4999... produce a 0 while values of RND from 0.5 to
.999... produce a 1, where both ranges are equally probable.

21 Excercise: Write a program to simulate the rolling of a die. Keep track of the number of times each face
comes up for say, 10,000 rolls. Are your results reasonable?

MOD: MOD(x,y) returns x modulo y provided y<>0. It is formally defined as:

 MOD(x,y) = x - y * INT(x/y)

and, provided that x and y have the same signs, computes the remainder when x is divided by y. Thus:

MOD(5,3) = 2
MOD(5,-3) = -1 i.e., 5 - (-3) * INT(5/-3) = 5 - (-3) * INT(-1.666...) = 5+3* (-2) = -1
MOD(-5,-3) = -2
MOD(5.3,7.9) = 5.3 since 5.3/7.9 = 0 with remainder = 5.3
MOD(7.9,5.3) = 2.6

Mod is very useful at times. For example:

1) INTEGER TEST: MOD(x,1) = 0 if x is a positive integer, and equals the fractional part of a positive x if
x in not an integer. This is a good way to extract the fractional part of a positive number. Try a negative
number like MOD(-1.23,1) to discover the rule for extracting the fractional part when x<0).

2) TEST FOR INTEGER PARITY: MOD(x,2) =0 if x is an even integer and non-zero if x is odd. This test
is equivalent to the comparison: IF x/2 = INT(x/2) THEN etc. Do you see why?

VAL(x$): If x$ is a string capable of being converted to a number then VAL will return the numerical
equivalent of x$ as in:

VAL(“105.345”) = 105.345 where the result is a numeric constant, not a string. VAL(“1,111,111”) will
cause an exception (commas are not allowed for numbers). VAL(“I love programming”) will also cause an
exception because VAL cannot extract a value.

The VAL function is very useful because properly written programs will input data as strings and not
numbers. However, at some point one needs to use these strings as real numbers and that is where the
VAL function is used - it extracts the number without altering the string.

STR$(x): Here we convert a numeric variable to a string, as in STR$(123.456), and return the string
equivalent, “123.456”. This is another extremely useful function.

In addition to the above table of functions, there are a number of other important and useful commands
that we will have occasion to use. These will be usually introduced in code examples, and will be
discussed at that time.

DECISION STRUCTURES
As we have seen, computer programs are executed serially, that is, one line after the other until there is a
statement that shifts program flow to another part of the program. There has to be some method to
logically re-direct the flow when needed and that method makes use of decision structures like
IF/THEN/ELSE and CASE SELECT. However, in order to take advantage of these structures we need to
first know something about both relational operators and logical operators.

RELATIONAL OPERATORS
The relational operators are the following,

RELATIONAL OPERATORS
Operator Meaning
= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

22
Here, the = sign actually functions as an equals sign and not as a replacement or substitution operator as
has been the case until now.

LOGICAL EXPRESSIONS
Logical expressions result from the use of the relational operators to compare numeric or string variables,
constants or expressions. The result of the comparision is either ‘true’ or ‘false’. Thus, if x=6, then the
statement x>4 is ‘true’ while the statement x<=4 is false. String comparisons are based on the numerical
values of each string character in the ASCII table so a statement like “I”>“i” is equivalent to asking of the
respective ASCII values if 73>105 (obviously false). More complex logical expressions can include
multiple tests using the relational operators in conjunction with one or more logical operators.

LOGICAL OPERATORS
There are three logical operators (also called Boolean operators) used in True Basic: OR, AND, and NOT.
These operators are then used together with the relational operators to form more complicated logical
expressions.

Examples of logical expressions include,

 
 
 
 
 

x>0 AND y<>x

IF x^2 + y^2 < r^2 THEN do something

A$ <> B$ OR (A$ & B$ <> ""AND Ans$ = "Y")

When evaluated, these expressions are either ‘true’ or ‘false’. In the first expression, for example, only if x
really is greater than zero and only if x and y are not equal will the expression be found ‘true’, otherwise
the expression is ‘false’. The second example is a case of a logical expression without a Boolean
operator. In the last expression, the ‘&’ is called a concatenation operator and functions like a + sign for
strings. Thus if A$ = “abc” and B$ = “def” then A$ & B$ = “abcdef”. The successive quotes “” is defined
as the null string so the statement A$ & B$ <> “” will be ‘true’, if at least one of the concatenated strings,
A$ and B$, is not null.

This last example illustrates that the interpretation of a logical expression can get complicated.

The following truth table shows how the logical operators work in complex logical expressions like A$ <>
B$ OR (A$ & B$ <> “”AND Ans$ = “Y”). LE1 is logical expression 1 (like A$ <> B$) and LE2 is logical
expression 2 (like A$ & B$ <> “”AND Ans$ = “Y”).

TRUTH TABLE FOR THE LOGICAL OPERATORS OR, AND, NOT
LE1 LE2 LE1 OR LE2 LE1 AND LE2 NOT LE1
true true true true false
true false true false false
false true true false true
false false false false true

Thus, for example, if LE1 is true and LE2 is false, then when connected by an OR, the result is still true,
but if the operator is AND, the result will be false. In other words, the OR operator requires that only one
of the two logical expressions be ‘true’ for the combined expression to be ‘true’ whereas the AND operator
requires that both be ‘true’. The NOT operator simply reverses the state of the expression from ‘true’ to
‘false’ and conversely.

Parantheses should be used in complicated logical expressions to control the intended logic. For
example, the statement

 (A>0 AND B>0) OR (C>0 AND D>0)

is ‘true’ when A and B are both >0, or C and D are both >0, or when all four are >0. However

 A>0 AND (B>0 OR C>0) AND D>0

23 is true when A and D are both >0, and either B or C are >0.

The logical expression,

 A$ <> B$ OR (A$ & B$ <> “”AND Ans$ = “Y”)

is ‘true’ if the two strings A$ and B$ are not equal, or if the expession in parentheses is true, which
requires that the concantenated strings A$ and B$ not equal the null string “”, and in addition, that the
string Ans$ equal “Y”.

We have not said much about the NOT operator and that is because we don’t recommend its use. NOT
usually just obfuscates the code and you are usually better off changing the logic to avoid it.

Operator Hierarchy
We have already seen that there is a execution hierarchy for arithmetic operators, and the same holds
true for the relational operators and the logical operators. The following table shows the precedence of
execution for all three types of operators.

ARITHMETIC, RELATIONAL AND LOGICAL OPERATOR PRECEDENCE
OPERATOR TYPE OPERATOR PRECEDENCE
ARITHMETIC ^

* , /
+ , -

Executed first

RELATIONAL = , <> , < , <= , => , >
LOGICAL NOT

AND
OR

Executed last

It should be remembered that expressions contained in parentheses are always evaluated first.

We are now ready to explore the two decision structures available in True Basic.

a) IF/THEN/ELSE
This structure is one of the most important general branching tools available. There are two flavors
available, single line and multiple lines. Note: here le denotes logical expression, and tb denotes True
Basic)

1) single line syntax: IF le THEN tb statement ELSE tb statement Here the THEN part executes only if
le is true otherwise, the ELSE executes.

The ELSE tb statement part is optional. If used, it functions as a catch all for what is not covered by the le.
For a complete listing of acceptable tb statements, see the True Basic Reference manual. Most
statements that are part of the True Basic language will work, but if in doubt, try it and see. The compiler
will happily let you know if you have guessed wrong.

The following code fragment illustrates how the single line structure works:

 PRINT “Input two numbers and press return”
 INPUT x,y
 IF x>y THEN PRINT “x is > than y” ELSE PRINT “x is not > than y”

After the program assigns the two typed in numbers to x and y, execution passes to the IF expression
where the truth of the statement x>y is tested. If x is greater than y, then the logical expression x>y is true
so the PRINT statement following the THEN is executed. If x>y is false because x is actually less than y,
then control passes to the ELSE statement and its PRINT statement is executed. Execution then passes
to the next line of code. If the ELSE statement is omitted, then, if x>y is false, execution passes directly to
the line after the IF/THEN. It is important to remember that the ELSE statement will always be executed if
the IF expression is false because it covers all other contingencies.

24 Question: What happens if x = y ? The ELSE is executed which gives the ambigous answer that “x is not
> than y” and illustrates that the single line construct is inadequate if there are more than two possibilites.

2) multiple line syntax:

 IF le THEN
 code block 1
 ELSE IF le THEN
 code block 2
 
 ELSE
 final code block
 END IF

The  denotes that the structure can have any number of ELSE IF statements. Each code block can
contain anywhere from a single statement to many statements. Again, the ELSE is not required, but note
that the END IF statement is because it tells the compiler that the structure is closed or finished.

The way the multi-line structure works is similar to the single line case. Each IF or ELSE IF is tested
sequentially until one is found to be ‘true’. The TB statements contained within that particular block are
then executed after which program flow drops to the line of code following the END IF. If none of the tests
are ‘true’, control passes to the ELSE and its block of code is executed. Finally, control passes to the line
following the END IF. Remember, ELSE is always executed if the prior logical expression is not. The
multi-line option is the following modification of the previous example to take into account the possibility
that x and y are equal.

 PRINT “Input two numbers and press return”
 INPUT x,y

 IF x<y THEN
 PRINT “x is less than y”
 ELSE IF x>y THEN
 PRINT “x is greater than y”
 ELSE
 PRINT “x equals y”
 END IF

Note that we could have used an additional ELSE IF for the x = y case and then either included or omitted
the ELSE. If included, it would have been immediately followed by the END IF and therefore been non-
functional.

Also observe how the use of indenting has improved readability.

The IF/THEN/ELSE structure can be nested many layers deep but if you find yourself using more than a
couple of layers, re-write the code. For example, here is a program to determine the largest of three
integers, x, y or z.

 PRINT “Enter 3 integers”
 INPUT x,y,z

 IF x>y THEN ! executed only if x>y

 IF x>z THEN ! x largest
 Largest = x
 ELSE ! z must be largest as x<z and x>y
 Largest = z
 END IF

 ELSE IF z>y THEN ! y>x and z>y
 Largest = z
 ELSE ! x<y and z<y

25 Largest = y
 END IF

 PRINT “The largest integer is “;Largest
 END

You should type the program in, run it and make sure you understand how it works. You will find that as
simple as it is, it does force you to think your way through the logic. This is certainly not the best way to
find the maximum of three numbers but it does illustrate the logical difficulties of deeply nested decision
structures. They become opaque very quickly. It also illustrates the importance of indenting to improve
readability.

b) SELECT/CASE
Like IF/THEN, SELECT/CASE allows multi-way branching depending on the value of a parameter. The
syntax is:

 SELECT CASE (numeric or string variable or expression)
 CASE test 1
 Code Block 1

 CASE test 2
 Code Block 2

 CASE ELSE
 Final Code Block
 END SELECT

The SELECT CASE statement may be followed by a string or numeric variable or expression like S$, x,
GasPressure or x^2 * cos(x). The ‘test’ that follows the CASE statement must be a numeric or string
constant and not a variable. For example, the following are acceptable choices,

 CASE 5
 CASE 1,2,3
 CASE -1000 to 0, 1 to 1000
 CASE “Dream on, Klingon”
 CASE “A” to “Z”
 CASE IS <> 6 !won’t work
 CASE IS < 0 !won’t work

where in the last two cases, we have use the relational operators. The ‘IS’ modifier is required whenever
a relational operator is used, whereas the statement,
CASE x >0 is not acceptable syntax because the test must be a numeric or string constant and not a
variable. The logical operators AND, NOT and OR are also not allowed. Here is an example.

 DO

 PRINT “Input an integer between 0 and 10”
 INPUT x
 SELECT CASE x

 CASE 0
 PRINT “x = 0 and is not prime”
 CASE 1
 PRINT “x = 1 and is not prime”
 CASE 2
 PRINT “x = 2 and is the only even prime”
 CASE 3,5,7
 PRINT “x is prime”
 CASE 4,6,8 to 10
 PRINT “x is composite”
 CASE ELSE
 PRINT “x is either non-integer or not between 0 and 10”

26 END SELECT
 LOOP

This program asks for you to enter an integer between 0 and 10 which is inputted to memory with the
INPUT statement. SELECT CASE then takes x and tests it via the CASE statements until a ‘true’
statement is found in which case that code block is executed. Note the CASE ELSE catch all. The
similarity between this structure and the IF/THEN/ELSE structure should be obvious.

The CASE ELSE is not required but an exception or error (Exception: 10004 No CASE selected, but no
CASE ELSE) will occur if your CASE statements do not include every conceivable contigency and you do
not have a CASE ELSE statement. Execution is then left high and dry with no place to go. To be on the
safe side, always include the CASE ELSE statement.

SELECT/CASE is especially useful when constructing menus in a program as in the following example.

EXAMPLE: A Fail Safe Menu
Suppose you were writing a program that would have some basic file handling capability, that is, the ability
to either open an existing file or create a new one. You would need a menu to prompt the user for these
two options, and, in addition, give the user the choice of leaving the menu if they changed their mind.

In addition to providing the menu choices to the user, it is imperative that the menu be ‘fail-safe’ in the
sense that the routine won’t crash if the wrong key is pressed and that is where the CASE/SELECT
construct becomes important. We have choosen to use the ASCII code to represent each choice
including the function key F1 in case HELP is needed. There is no code following CASE statements
because we are interested only in the construction of the menu here.

If you run the program, you will get a beep any time you press a wrong key (i.e., any key other than h, H,
O, o, C, c, or Esc) and the cursor will stay fixed in one position until you get it right. You could have
converted the ASCII code into a string using the CHR$ together with the UCASE$ (or LCASE$)
commands so your CASE statements would then be written in terms of the ters ‘O’ and ‘C’ etc. However,
ESC and the function key F1 do not have simple character representations so you would still have to deal
with these keys in terms of their ASCII codes, so it makes sense to keep it simple.

There are two other points that deal more with esthetics than functionality. These are the CURSOR ON
and OFF statements and the positioning of the DO statement below the menu itself. In professional
programs you do not see the cursor off in some corner flashing away like some adventitious voyeur when
it is not needed (in fact, in Windows programs, you rarely see the cursor except when numerical input or a
pathname is required). So we turn it ‘on’ only to act as a prompt for the menu statement “Selection ?”,
otherwise it is ‘off’.

Call GetDataMenu !call statement
End

Sub GetDataMenu
DO ! the DO goes here NOT above the menu
 SET Cursor "on" ! cursor should be ‘off’ when not needed - but it is here
 GET Key k ! fetches the ASCII code of the key pressed
 SET Cursor "off"
 SELECT CASE k ! k = ASCII code of pressed key
 CASE 72,104,315 ! H,h,F1 - use any of them for help
 !code that calls a ‘help’ file
 CASE 27 ! Esc
 EXIT SUB ! exits to call routine above
 CASE 79,111 ! CASE O,o - Open a file
 lots of code the last
 statement of which is EXIT SUB
 CASE 67,99 ! CASE C,c - Ccreate data file
 another whole bunch of code
 with an EXIT SUB
 CASE ELSE ! any other key pressed
 Sound 1000,0.1 ! beeps

27 SET CURSOR LastRow,LastCol ! reset cursor following ? mark
 END SELECT
 LOOP ! loop back without re-printing menu
END SUB

You can run the code frag Menu.tru to see how this works.

The first few lines are just the ‘call’ routine. While we have not covered subroutines at this point, it should
be pretty obvious how the code works. The CALL GetDataMenu statement simply passes execution to
the subroutine of the same name. When Esc is pressed, the subroutine is exited to the line following the
line after the CALL GetDataMenu statement.

We also have some new commands which are shadowed in the code below. Let’s look at the new
commands first.

GET KEY x
This statement (where x is any numeric variable), serves to pause execution of a running program.
Execution resumes as soon as any (almost ‘any’ that is, ALT and CTRL are exceptions) key is pressed.
Once a key (not keys - GET KEY responds to a single key stroke), is pressed, the ASCII value of that key
is then assigned to x, and furthermore, this happens instantly (or at least it seems like it) without the need
for pressing the ENTER or RETURN key. For example, if the key Y is pressed, then the value 89 (the
ASCII value of cap Y) is assigned to x. This value could then be tested for as part of an IF/THEN or a
CASE/SELECT structure. This makes the GET KEY and CASE/SELECT expecially useful as part of a
message prompt in a menu system.

SET CURSOR s$/ASK CURSOR s$
Here, s$ has two values, “on” and “off”. With SET CURSOR “off” (or “on”) you can toggle the cursor off or
on so it does not interfere with how the screen looks when, for example printing a graphic. If there is
uncertainity about the state of the cursor when running a portion of a program, one can have the program
interrogate the state of the cursor and return s$ as either “on” or “off”. s$ can then be tested with an
IF/THEN and the cursor state changed if necessary. There are a whole series of ASK statements
available in True Basic. See your text.

SET CURSOR(row,col)/ASK CURSOR(row,col)
Here SET CURSOR does just that, it moves the cursor to the requested location and waits for the next
command. ASK CURSOR functions to find out the present position of the cursor so that you can have the
code change it if you need to.

SOUND (freq,duration)
This key word produces a sound of frequency freq (in Hertz) for the time period duration (in seconds).
Program execution continues while the sound is produced.

LOOP STRUCTURES
True Basic supports two kind of loop structures, the FOR/NEXT construct and the DO/LOOP that we have
already used. Loop structures cause a program to execute a code block repeatedly. The distinction in the
use of the FOR/NEXT and the DO/LOOP is that the FOR/NEXT requires that you know in advance how
many times you want to repeat the loop, while the DO/LOOP is open ended.

a) FOR/NEXT
The syntax is:

 FOR numeric variable = initial index TO final index STEP increment
 Code to be executed…
 NEXT numeric variable

where the numeric variable can be any valid name for a numeric variable (i,j and k are typically used, but a
more meaningful name is recommended), but not an expression, whereas initial index, final index and
increment can be either a number or expression. The increment is optional with a default value of 1.

Here’s an example:

28 FOR i = 1 to 10
 PRINT i,i^2
 NEXT i

Running this fragment produces two vertical columns (print zones 1 and 2) of numbers, the first is the set
of integers from 1 to 10 and the second, the squares of those integers. On the first time through, i is set
equal to 1, the PRINT statement is executed and then the NEXT i increments i to i+1 = 2 and the PRINT
again executed etc. The loop is executed until i = 11, that is, until i takes on the first value inconsistent
with the final index. It is important to remember that i will always be one more than the last value
executed. One can also exit the loop with a EXIT FOR statement as in:

 x = 100

 FOR i = x TO 2*x^2 STEP x
 IF i > 10000 THEN EXIT FOR
 PRINT i;
 NEXT i

 END

This program prints the numbers from 100 to 10000 in increments of 100. Without the EXIT FOR, the
program would print numbers through 20000 since when x=100, the final index 2*x^2 is 20000. Note that
the EXIT FOR drops execution to the line following the NEXT i, which in this case happens to be an END
statement.

Finally, note that neither the indices nor the increment absolutely have to be integers but the difference
between the indices should be divisible by the increment if you want to end the loop with the loop variable
taking on the value of the final index. Non-integer indices are avoided in general.

Our next program computes the sum and factorial of an arbitrary number of integers. Unlike a calculator,
computer languages typically do not include the factorial as a library function so you have to write your
own. The program listing follows together with a typical run for N=50.

29
ANALYSIS:
The summation part is very straight forward. i ranges from 1 to the input value of N. When i=1, Sum will
equal 1, when i=2, Sum will equal 1+1 or 2, when i=3, Sum=2+1 or 3, ie, Sum is a running total whose
final value will be 1+2+...+N.

The factorial part is similiar. We start with Factorial initialized to 1 and note that the FOR/NEXT loop is
decrementing N, that is, we start with N, then N-1, N-2,... until we reach 1. On the first pass,
Factorial=1*I=1*N, on the next pass, Factorial=1*N*(N-1) because I has been decremented by 1, until
eventually we have Factorial = 1*N*(N-1)*(N-2)*....*1 which is of course, N!.

The print statement is straight forward except for the use of the STR$ statement to make N print as a
string rather than a number. It serves to remove a space between N and ! which looks better. Delete the
STR$ and verify this.

One may also nest FOR/NEXT loops as in:

 FOR i = 1 TO 10
 FOR j = 1 to 5

 NEXT j
 NEXT i

This is a common structure, for example, when defining a two dimensional array like a matrix. One must
be careful to pair the FOR and the NEXT statements together as shown. If i and j where interchanged in
the above NEXT statements a fatal error would occur. Here is a program that uses a nested loop and the
random number generator to simulate the flipping of a fair coin along with the output.

30

The line Coin=INT(2*RND) is the key to how the program works. RND produces a fraction between 0 and
1, that is, 0  RND<1, so 2*RND will have the range 0  2*RND < 2. The integer part of this range, i.e.,
INT(2*RND) will then have only two values, 0 (for 0  2*RND <.5) and 1 (for .5 2*RND <1) where we
define Coin = 1 as a “H” and a 0 as a “T”. Since a 0 or 1 will appear with equal probability (for a given
flip), then the statement INT(2*RND) is the mathematical equivalent of actually flipping a coin. The
second FOR/NEXT loop just repeats the entire flipping process 10 times.

When run, the program produces a string of T’s and H’s with a print out of the number of heads and their
percentage. This program illustrates how the random number generator can be used to simulate a
physical process. In fact, computer simulation is often a useful and sometimes essential alternative to
experimental measurements in the laboratory or field. We will discuss simulation in more detail later.

PROBLEM: Add the code (3 lines) necessary to keep track of the total number of heads for all flips and
then calculate the overall percentage heads.

b) DO/LOOP
As we have seen, the DO/LOOP structure acts to repeat the code block between the DO and the LOOP
indefinitely. For example, the loop

 DO
 PRINT “Live long and prosper!”;
 LOOP

will continuously fill the screen with Spock’s famous statement until either you stop the program by clicking
STOP (File Menu), shut the computer off or the computer dies a natual death.

There are however, three non-invasive methods of exiting from the DO/LOOP construct. One of these is
the EXIT DO statement which can appear anywhere between the DO and the LOOP and redirects
execution to the line of code following the LOOP statement. In addition, one can append the conditional
statements WHILE and UNTIL to both the DO and the LOOP statements as in,

31 DO WHILE condition
 DO UNTIL condition
 LOOP WHILE condition
 LOOP UNTIL condition

where the condition is any logical statement. The distinction between appending WHILE or UNTIL to the
DO or to the LOOP is that the DO condition is checked before the loop is executed and if the logical
expression is false the loop will not be executed at all, in which case execution drops to the line after the
LOOP. The DO/LOOP code block will always be executed once if the condition statement is tied to the
LOOP.

Examples of the condition statements to be used with the DO WHILE or LOOP UNTIL statements include:

 x<=3
 S$ <> “NO”
 ABS(Y-X) = 0
 X<3 AND (Y>0 OR Z<> 2)
 (x^2+y^2+z^2) > r^2
 (A$ & B$) <> C$
 MORE DATA
 END DATA

that is, any logical statement involving the relational and logical operators is ok. The last two statements
are logical clauses and are usually used in conjunction with a READ/DATA statement. These examples
should make it clear that the condition statement is very flexible which makes the DO/LOOP structure
together with WHILE and UNTIL very powerful.

When do we use the DO/LOOP structure? The most obvious case is when we want to repeat a block of
code but we don’t know how many times. If we did, we would probably use the FOR/NEXT structure
(which is also faster). In addition to repetition of a code block, the DO/LOOP construct is often used,
together with an EXIT DO and usually a decision structure like IF/THEN, as a means of providing an early
exit from the code block. Here are some examples of the DO/LOOP structure.

Our previous calculation of the sum and factorial of N integers used a FOR/NEXT loop because once N
was defined; the final loop index was also fixed. Here is the same program using a DO/LOOP together
with some new statements. Note the importance of indenting the code for readability. This program also
illustrates the use of multiple DO/LOOPS for repetition of code blocks as well as the entire program.

32

One lesson here is that one can frequently use a DO/LOOP in place of a FOR/NEXT even if they don’t
know exactly how many repetitions are needed provided there is some other exit criterion that can be
attached to the UNTIL or WHILE statement. However, the FOR/NEXT is often more efficient since there
are often fewer statements needed to perform the same computation.

We now discuss the new statements introduced in this program as well as a few others.

UCASE$/LCASE$
These two commands change the case of letters, that is:

 PRINT LCASE$(“XYZ”) produces the string xyz
 PRINT UCASE$(“xyz”) produces the string XYZ

LCASE$ has no affect on lower case characters as does UCASE$ on upper case characters.

33 You might ask why, in the above program, is it necessary to use the UCASE$ command as part of the
Ans$=... statement. It is because “n” and “N” are not the same string (different ASCII codes) and this
could cause a problem if the user pressed ‘n’ instead of ‘N’ as asked for. UCASE$ simply forces ‘n’ to be
‘N’. If Ans$ is then a ‘N’, execution passes to the line following the LOOP UNTIL etc. Furthermore, you
don’t have to worry about a NO or YES response because A$[1:1] extracts only the first character you type
since A$[i:j] functions to identify the substring contained within A$ starting with the ith character and ending
with the jth. There is even a better way to do this using the GET KEY statement, which as we have already
seen, checks the keyboard buffer for each key stroke and captures the corresponding ASCII code for that
character. All you then have to do is test to see if the right ASCII code has been entered and go from
there.

CHR$/ORD
These functions were listed in the previous function table. CHR$(n), where n is the ASCII value of a
keyboard character with the value 0  n  255, returns the character that n defines. For example, if n =
60, then CHR$(n) = “<“, i.e., the ‘less than’ symbol. Conversly, the ORD(s$) returns the ASCII value of the
string character represented by s$ so, for example, ORD(“<“) will return the value 60 and ORD(“m”) = 109.

Here is a short program that uses GET KEY along with the CHR$ function to discover what the ASCII
code is for any character pressed on the keyboard. This program also illustrates the use of the EXIT DO
to exit before the loop has finished. To exit at any time press the ESC key whose ASCII value is 27.

CODE FOR ONE CHARACTER AT A TIME ALL 256 CHARACTERS AT ONCE
 PRINT “Press any key sequentially” FOR x=0 to 255
 DO PRINT Chr$(x)
 GET KEY x !any variable will do, i.e., x, Q etc. NEXT x
 IF x = 27 THEN EXIT DO !esc is ASCII 27 END
 PRINT Chr$(x),x
 LOOP
 PRINT “done”
 END

Alternatively, you could use a FOR i = 0 to 255 construct instead of the DO/LOOP and GET KEY to print
the table in one go. Incidentally, the IBM number pad will cause an exception because it uses an
‘extended’ character set. The result is that pressing Home, End etc will cause an exception which crashes
the program.

NESTING STRUTURES
FOR/NEXT, DO/LOOP, IF/THEN and SELECT/CASE structures can be nested as needed within a given
subroutine without a problem provided the end or closure of each structure is given its proper order of
priority in the sense of no overlap as in:

DO
 CASE SELECT
 CASE.....
 DO
 FOR
 IF THEN

 ELSE IF

 END IF
 NEXT
 LOOP

 CASE

 END SELECT
LOOP

34
ARRAYS
We already know that defining a numeric or string variable is tantamount to defining a memory location
that symbolizes both the variable name and its current value. True Basic, like most computer languages
allows one to define and manipulate a block of memory locations where each memory location shares a
common name plus a number to identify it. These blocks can be one dimensional like X(1), X(2), ..., X(n)
etc. in which case they are called vectors or lists, or two dimensional like X (1,1), X(1,2),,X(n,m) where
they are called matrices. Here X(1) and X(1,1) etc. are the computer representation of subscripted
variables like X1, and X11, and in fact, the names subscripted variables and arrays are often used
interchangeably. The letter or string part of the name, that is, the X part, can be any valid numeric or
string variable name. If the array is a string array, then the ‘$’ must be appended to the array name as in
CustName$(1) etc.

The following example illustrates why arrays are useful.

Suppose a teacher wants to average five grades for a class. Without the use of arrays, the teacher might
write:

 PRINT “Input the 5 grades”
 INPUT G1,G2,G3,G4,G5
 Sum = G1+G2+G3+G4+G5
 Average = Sum/5

Works OK but it’s not very flexible, especially if the class has 250 students in it.

Alternatively, if one knew, for example, that the class would never have more than 20 students, then we
could use the simple list array called Grade, and instead write,

 ! Average Grade Program
 CLEAR
 DIM Grade(20)
 FOR i = 1 to 20
 PRINT “Grade(“;i;”)= “;
 INPUT Grade(i)
 Sum = Sum+Grade(i)
 NEXT i
 Average = Sum/n
 PRINT “Class Average = “;Average
 END

where now, any number of grades from 1 to 20 can be entered. You should type in the program and run it
using some arbitrary percentage scores.

One Dimensional Arrays, Vectors or Lists
The following discussion is limited, for the moment, to one dimensional arrays (or vectors or lists - they are
all the same thing) like the one used in the Average Grade program. Understanding that program requires
that we first examine the DIM statement.

The Dimension Statement
The DIM or Dimension statement is required whenever one uses an array, and serves to define in
computer memory, the name of the array, its dimensions (i.e., one dimensional, two dimensional etc.), its
size (subscript range) and the initial value of each member of the array. If the array is numeric, each
value of the array will be initialized to 0, and if a string variable, to the null string. The DIM statement must
appear before any reference to the array otherwise an exception will occur. The syntax is:

 DIM array name1(array size), array name2(array size), ...

For example, one might write:

 DIM Xcoord(100), Ycoord(100), Z$(5)

35 Here Xcoord and Ycoord are the names of two different subscripted variables, each of which has 100
memory locations allocated to it, Z$ is a string variable with 5 locations allocated. Thus you pick the array
name but the DIM statement assigns the subscripts (sequentially) and the initial array values. In addition
to assignments like DIM Y(5) where the default least subscript is 1, True Basic also permits you to define
the lower bound for the subscript with the notation,

 DIM X(lower bound:upperbound)

where the lower and upper bounds can be any signed (that is, negative or positive) integer.

For example, DIM X(-5:10) where now the least subscript is X-5 and the largest is X10. Attempts to
access any X with a subscript less than -5 or greater than 10 will result in a ‘subscript out of bounds’ error.
The ‘:’ in the above DIM statement can be replaced by the word ‘TO’. As a less attractive alternative to
defining a lower bound with the preceeding syntax, one can use the OPTION BASE statement. For
example,

 OPTION BASE 0
 DIM X(10)

will define the range of the list as X0, X1, , X9. The equivalent DIM statement would be DIM X(0:9) or
DIM X(0 to 9). Like the bounds, the argument of the OPTION BASE statement can be any signed integer.
That said, we do not recommend changing the default option base, but rather use the DIM x[i:j] syntax.

Redimensioning a Matrix
In the Average Grade program, DIM Grade(20) tells the computer to set aside in memory enough room for
a one dimensional list consisting of 20 variables, Grade(1),...Grade(20). In general however, using a fixed
size allocation is often wasteful of memory (each number allocated takes 8 bytes or 64 bits in memory) if
you don’t always need the whole allocation, and in any case you lose flexibility when you lock the program
into an array of fixed size. It often makes more sense to define the array for a single entry as in DIM
Grade(1) and then redefine the size of the list once you know what your needs will be while the program
executes. The procedure for changing the array size ’on the fly’ is to use the MAT REDIM statement
which allows one to change the size of the array during program execution (but not the dimensions - that
is, you cannot change a one dimensional array into a two dimensional array during execution). The syntax
is:

 MAT REDIM array name(new array size)

For example, in the Average Grade Program, we fixed the array size at 20. Instead, suppose we replace
the DIM Grade(20) with the three statements:

 DIM Grade(1)
 INPUT PROMPT “How many grades ?”:n
 MAT REDIM Grade(n)

where now we begin by defining the list to be of size 1, that is, a single memory location. We then ask the
user how many grades they want to input and store this result as n. The MAT REDIM Grade(n) now
increases the number of memory locations by a factor of n. For example, if there are 250 students then n
= 250 and MAT REDIM Grade(n) defines an additional 249 locations, Grade(1), Grade(2),, Grade(250).
Each of these 250 different numeric variables will then hold a single student grade when inputed from the
keyboard. You should add the above statements to the Average Grade program and confirm that you can
now add any number of grades up to n.

Finally, the indicies must be integers, in other words, you cannot define a subscripted variable to be X(0.2)
or X(1.9) any more than you would write X0.2 or X1.9 mathematically. Non-integer subscripts will be
rounded.

36

Here are some useful list operations.

BASIC LIST OPERATIONS
Defining a List:
 1) READ/DATA STATEMENT
 DIM P(4)
 FOR i=1 TO 4
 READ P(i)
 NEXT i
 DATA 1,2,3,4

Alternatively, MAT READ P as in:
 DIM P(4)
 MAT READ P
 DATA 1,2,3,4
accomplishes the same task even more simply.

 2) INPUT STATEMENT
 DIM P(4)
 FOR i=1 TO 4
 INPUT P(i) !each pass puts a new ? on the screen
 NEXT i

Again, a more efficient way to input data is with the MAT INPUT statement, e.g.,
 DIM P(4)
 MAT INPUT P
will cause the program to pause for the user to enter 4 items, separated by commas, from the keyboard.
Note that this method does require that the user be prompted for the value of n.

 3) ARITHMETIC EXPRESSION
 DIM P(100)
 FOR k=1 TO 100
 P(k)=100*k^2 !note that the expression must involve k
 NEXT k

Examples 1 and 2 work for strings as well - note that the items in the DATA statement do not have to be
enclosed in quotes, as in,

 4) DIM DayOfWeek$(7)
 FOR j=1 TO 7
 READ DayOfWeek$(j)
 NEXT j
 DATA Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

The DO/LOOP can also be used when the number of input items is not known, e.g.,

DIM P(1)
 i=1
 DO WHILE MORE DATA
 READ P(i)
 i=i+1
 MAT REDIM P(i)
 LOOP
DATA 1,2,3,4
MAT PRINT P !prints the array
END

but if you run this program you will get 1,2,3,4,0 on screen where the 0 comes from the fact that i = 5 when
the loop is executed for the final time (4th data value) so that when MAT REDIM P(5) is executed we will

37 get its initialized value of 0. These potential problems illustrate that you must always verify your output
values and never simply assume that what looks ok is ok. In fact, loops like this can get tricky because
the loop index is often one more or one less than programmer’s impeccable logic would suggest. The key
to the problem is to note that the index i in Read P(i) is always one less than the i in the Mat Redim P(i)
statement.

The solution to the problem is to make sure that the READ and the MAT REDIM statements march in lock
step as to the value of the index i. To do this, rewrite the above code to read,

DIM P(1)
 i=0
 DO WHILE MORE DATA
 i=i+1
 MAT REDIM P(i)
 READ P(i)
 LOOP
DATA 1,2,3,4
MAT PRINT P
END

This time the offending 0 will be gone.

Now try moving the READ P(i) to the line above the MAT REDIM P(i) statement. You will get a fatal error
(‘subscript out of bounds’). Why ? The reason is that you must redimension P(i) before you assign it a
value in the READ statement, not afterwards -- i.e., you can’t store an array or list element in memory
before you make room for it.

What happens in the following two code fragments, i.e., do they work and if not, why not ?

DO FOR I=1 TO 4
 READ X(I) READ X
LOOP NEXT I
DATA 1,2,3,4 DATA 1,2,3,4

Printing a List:
A list may be printed with a simple FOR/NEXT loop as in,

FOR I=1 TO 4
 PRINT X(I)
NEXT I

or alternatively, using the MAT PRINT X statement (note - not X(I)). There is also a MAT PRINT USING
statement, as in.

DIM x(5)
MAT INPUT x
MAT PRINT x
END

MAT statements are extremely compact and strongly recommended when possible.

Relocating Items in a List:
Suppose we have a list where P(1)=4 and P(2)=2 and want to exchange these values. The code is
simple,

 z = P(1)
 P(1) = P(2)
 P(2) = z

This swap routine forms the basis of the ‘bubble sort’ which we will discuss shortly.

38 OTHER USEFUL LIST OPERATIONS
Accumulating a Sum:
Summing a list is just a variant on the usual statement sum = sum+x. For example, suppose we wish to
sum the first 10 integers. The following code does just that.

DIM D(10)
 SUM = 0
 FOR i=1 TO 10
 READ D(i)
 SUM = SUM + D(i)
 NEXT i
DATA 1,2,3,4,5,6,7,8,9,10

Note that since we are dealing with consecutive integers, the READ/DATA statements could be replaced
by the statement D(i) = i.

Counting Members of a List:
There are times, like reading elements of a file or a long DATA statement, that one needs to know how
many members there are in the list. Here is the procedure.

DO WHILE MORE DATA
 READ x !x is not a subscripted variable so its value changes after each loop
 Count = Count +1
LOOP
DATA etc.

Count is then the number of items in the file or DATA statement. This number could then be used later in
the program, as in, for example, a FOR/NEXT loop.

Finding the Maximum (or Minimum) Member of a List:
The following code fragment will find the least and greatest number in a list of numbers.

 S = X(1)
 FOR i = 2 TO N !N assumed known - see previous algorithm
 IF X(i) > S THEN S = X(i)
 NEXT i

The final value of S will be the maximum value in the list. How do we get the least value ?

Count Frequency of Integer Elements in a List
Suppose we have a DATA statement consisting of a set of repeating integers, e.g.,
DATA 0,2,1,3,0,2,4,.. The following algorithm counts the number of times, or frequency, that each integer
appears.

DO WHILE MORE DATA
 READ i !note that it is the integer index that is being read and its the frequency that is counted
 Freq(i) = Freq(i) + 1
LOOP
DATA etc.

Before this can be run, Frequency must be dimensioned to the maximum of unique integers in the list, that
is, suppose the DATA statement read, 0,2,6,3,6,6,3. Then Frequency would have to be dimensioned to 4
corresponding to 0,2,3 and 6. Furthermore, it would be necessary to use OPTION BASE 0 to
accommodate the 0 value. In this example, we would find that Freq(0)=1, Freq(2)=1, Freq(3)=2, and
Freq(6)=3. Here is a program that illustrates how this code frag works. The code also illustrates why one
should use meaningful variable names instead of single letter names like T to represent the number of
families with i TV sets.

39

Creating a New List f rom an Old One.
Here we generate a new list consisting of selected elements from a previous list. Assume the new list is
to contain only those values of the old list greater than 10.
 k = 1
 FOR i = 1 TO N
 IF A(i) > 10 THEN
 B(k) = A(i) !A is the old list, B the new one composed of values > 10
 k = k + 1 !B index
 END IF
NEXT i

40 APPLICATIONS
PRIME NUMBER PROGRAM
Here is a program that computes prime numbers and stores them as an array. As prime number
algorithms go, this program is pretty slow and inefficient, but it makes up for that with understandability
and for our purposes, that’s a fair trade off.

The algorithm is straight forward. We test each value of j from 3 (2 is prime) to 1000 for a factor by
dividing j by i from 2 to the square root of j. The test is the MOD statement which is 0 if a factor is found.
If no factor is found for any value of i then j is prime and we make a list, called Prime, of those values.
Notice also that the EXIT FOR takes you out of the first loop, not the second.

Note that the EXIT FOR moves execution to the NEXT J and skips the NEXT I

41 BUBBLE SORT PROGRAM
This program uses the swap routine to sort a set of numbers in ascending rank. This sort method is
called a ‘Bubble Sort’ and is probably the least efficient sorting method available, but for small set of
numbers it works fine and is fairly easy to understand.

The program starts by comparing the first element (I=1) with the second element (J=2) where the IF
statement is found ‘true’ because 6 is greater than -50 so we swap elements, i.e., L(1) becomes -50 and
L(2) becomes 6. L(1) is again compared with L(3) and again, elements are swapped so now L(1) is -200
and L(3) is -50. Only after the least value is found is I incremented to 2 and the comparisons begin all
over. Obvious inefficiencies abound due to a large number of redundant comparisons. In fact, the Bubble
Sort is an N2 routine, i.e., time to sort is proportional to the number of items (N2). Whether or not a bubble
sort suits your purpose obviously depends on the speed of your computer and the number of elements to
be sorted, but in general sorting routines like the Heapsort, Quicksort, Mergesort, Shellsort etc., would be
preferable for anything other than small N (100 or less).

42 Two Dimensional Arrays (Matrices or Tables)
A two dimensinal array, or matrix, is used when we have data that depends on two attributes. Suppose,
for example, you measured the rate of a reaction as a function of both pH (integer values between 8 and
10, say) and the temperature at 1 degree intervals from 200C to 250C. Then to each value of the rate you
would have a corresponding temperature and a pH, and the natural way to display these results would be
to use a table like,

 pH
T Rate(20,8) Rate(20,9) Rate(20,10)
 Rate(21,8) Rate(21,9) .
 Rate(22,8) . .
 . . .
 . . .
 Rate(25,8) . Rate(25,10)

where each element of the table is a rate which is a function of both pH (across) and the temperature
(down), and where the number in parentheses is an index that corresponds to the value of the pH and
temperature for that rate. In other words, we have a matrix where the rates are the matrix elements and
the numbers in parentheses are the indicies that identify each element of the matrix according to the
general format,

 ArrayName(row subscript,col. subscript)

Thus the element A(23,10) would be the rate when T = 230C and the pH = 10. The fact that the indices in
the ‘rate table’ correspond to physical values of the variables pH and Temperature is convenient, but
unnecessary. The subscripts could have just as well been the usual integers 1,1; 1,2; ... ; 5,3.

The Dimension Statement
Like the one dimensional array, the two dimensional array is defined once the DIM statement is executed.
The syntax is,

 DIM ArrayName(d1,d2)

where d1 is the number of row elements and d2 is the number of column elements.

For example DIM X(4,3) defines a 4-by-3 (i.e., 4 rows and 3 columns) matrix consisting of 12 elements
total, and where each value is initialized to 0.

One can also define the lower and upper indicies for the subscripts using the snytax,

 DIM ArrayName(Lrow index to Urow index,Lcol index to Ucol index)

where Lrow and Urow etc. refer to lower row and upper row.

Thus the dimension statement for the ‘rate matrix’ would be

 DIM Rate(20 to 25,8 to 10)

if one chose to have the indices represent the pH and Temperature directly.

Redimensioning of two dimensional arrays can be accomplished with the statement,

 MAT REDIM A(d1,d2)

Changing the size of a two dimensional array ‘on the fly’ can be tricky and data will be lost if the new
matrix is of lower dimensionality. Be careful to check the resulting matrix.

43 INPUT/OUTPUT COMMANDS FOR TWO DIMENSIONAL ARRAYS
Exactly the same commands are used for two dimensional arrays as were used for one dimensional lists.

 To construct the ‘rate matrix’ of 18 values we would use,

 DIM Rate(25:30,8:10)
 FOR Row = 25 TO 30
 FOR Col = 8 TO 10
 INPUT Rate(Row,Col)
 NEXT Col
 NEXT Row
 END

or, alternatively,

 DIM Rate(25:30,8:10)
 MAT INPUT Rate
 END

In the former case you will get 18 question marks, one after the other as you input each value of the rate,
whereas in the latter case, you get a single question mark which expects you to input 18 values, each
separated by a comma. Apart from the details of the input, the resulting matrices will be the same.

It is important to understand how a double FOR/NEXT statement works. In the case above, the outside
FOR/NEXT begins by setting Row = 25 after which the inside FOR/NEXT is executed completely, i.e., for
Col = 8, 9 and 10. Flow then passes back to the outside FOR/NEXT whereupon Row is set equal to 26
and the inside FOR/NEXT is again executed for all three values of Col. In this way, the rows are written
sequentially.

Here is a simple program that constructs a 5 by 6 matrix and then computes the row sums and the sums
of those sums.

44

45 MATRIX COMMANDS
True Basic supports a rich array of matrix commands thus obviating the need for extensive use of nested
FOR/NEXT loops. By way of a simple example, suppose we wish to multiply the following two matrices:

 A =
1 2 3
4 5 6
F
HG

I
KJ and B =

6 8
9 0
1 2

F

H
GG
I

K
JJ

in which case we find,

 C = A* B =
27 14

75 44

 
 
 

where the code to multiply these two matrices is based on the algorithm for computing the cij element of
the product matrix C,

 c a bij ik kj
k

n





1

Here, if A is an m-by-n matrix and B is a n-by-l matrix then the product matrix, C, is an m-by-l matrix.

The code that implements this multiplication, assuming the A and B matrices have already been defined
(e.g., with a MAT READ or MAT INPUT statement together with appropriate DIM statements for A, B and
C) is the following.

 FOR i = 1 to 2
 FOR j = 1 to 2
 Sum = 0
 FOR k = 1 to 3
 Sum = Sum + A(i,k)* B(k,j)
 NEXT k
 c(i,j) = Sum
 NEXT j
 NEXT i

With True Basic’s MAT commands, these 9 lines of code can be replaced by the single statement MAT C
= A*B. However, there is always a tradeoff - the MAT command takes about 1.7 times longer to execute
than the nested FOR/NEXT loops.

The following table lists the most common matrix commands supported by the language.

TRUE BASIC MATRIX COMMANDS
OPERATION COMMENTS
MAT A = B  C A and B must be the same size
MAT B = k * A Multiplication by a scalar k
MAT C = A * B A must have the same number of columns as B has rows
MAT A = ZER(n,m) Redimensioning of A to a n-by-m matrix with all elements set to zero
MAT A = k*CON(n,m) Defines a n-by-m matrix with each element equal to k. CON by itself

defines each element as 1.
MAT A = IDN(n,n) n-by-n identity matrix (matrix must be square)
MAT A = TRN(B) Transpose of B
MAT A = INV(B) Inverse of B (B must be square)
MAT A$ = NUL$(n,m) String equivalent of MAT A = ZER(n,m). Each element is the null string “”.
DOT (A,B) Scalar (dot) product of vectors A and B
DET A Determinant of A (A must be square)

46 In addition to these commands, there are the following statements used to determine the size and index
bounds of a matrix.

SUBSCRIPT RANGE COMMANDS
OPERATION COMMENTS

LBOUND(A,d) Returns least subscript in the dimension d
UBOUND(A,d) Returns maximum subscript in the dimension d
SIZE(A,d) Returns the total number of elements in the array A in dimension d. If d

is omitted for a d1-by-d2-by- ... dn-1-by-dn dimensional array, then
SIZE(A) returns the product d1*d2*...*dn.

The value these functions return are determined from the dimension statement for the array A. The
dimension, d, can be omitted for a one dimensional list, but must be included for arrays of two or more
dimensions. For arrays of two or more dimensions, d can vary from 1 to the full dimensionality of the array.
For example, in the three dimensional array A(3,4,5), d=1 refers to the row subscripts from 1 to 3, d=2
refers to the column subscripts 1 to 4, and d=3 refers the subscripts from 1 to 5.
A few examples will help clearify how the range functions work.

 EXAMPLES OF SUBSCRIPT RANGE FUNCTIONS

DIM STATEMENT Size d Size(d) Lbound(A,d) Ubound(A,d)
DIM A(6) 6 1 6 1 6
DIM (0 to 10) 11 1 11 0 10
DIM(2,7) 14 2 7 1 7
DIM(3 to 10,5) 40 1 8 3 10
DIM A(3,4,6,5 to 9) 360 4 5 5 9

OTHER MAT COMMANDS
We have already encountered the MAT INPUT, MAT READ and MAT PRINT statements. Both the MAT
INPUT and MAT PRINT have alternatives that give the users more control. These include the
MAT PRINT USING, MAT LINE INPUT and MAT INPUT PROMPT. Read your text for details. The
following program and output illustrates the use of some of these MAT operations.

47

48 PROCEDURES
So far our programs have been written without much apparent structure other than the required order in
which statements had to appear to avoid runtime errors. This is okay for a program of a few dozen lines
of code, but when the length runs to multiple pages and there are numerous decision branches, then it
makes sense to look for ways to package parts of the program into units which accomplish specific tasks
and which can be invoked by the main program when needed. These sub programs units are termed
procedures and include both subroutines and functions.

Apart from the logistical and esthetic advantages of reducing code to managable units, there is also the
issue of code repetition. For example, suppose one has written a program that requires, amongst other
things, that the factorial of a number be computed numerous times before the program terminates.
Without subroutines, the code to compute the factorial would have to be repeated in full each time it is
needed. Instead, if the factorial code was contained in a single procedure, either a subroutine or a
function, and which could be implemented when desired, then the resulting code would be much smaller
and cleaner.

In this example, the factorial procedure does only one thing - compute the factorial of a number. A single
subroutine or function can be designed to do as many tasks as desired, but multiple tasks defeat the
purpose and advantage of using them. Ideally, ‘one task - one procedure’ makes good programming
sense.

SUBROUTINES

Types of Subroutines
There are two types of subroutines, internal and external and they are easily distinguished between. If the
last statement in a program containing subroutines is the END statement, then all subroutines are, by
definition, internal, and are referred to as internal subroutines (or subs).

Subroutines that are external to the END statement (that is, come after the END statement), are called
external.

For example,
!These are internal subroutines !These are external subroutines
some code some code
Subroutine 1 END
Subroutine 2 Subroutine 1
.... Subroutine 2
Subroutine n
END Subroutine n

Which is which should be obvious - look for the END statement.

Subroutine Syntax
There are two parts associated with implementing any subroutine. These include,

 a) the CALL statement
 Syntax: CALL subroutine name (parameter list)
 b) subroutine definition
 Syntax:
 SUB subroutine name (parameter list)
 code that defines the subroutine task
 END SUB

The subroutine name must be identical in the CALL and SUB statements, and, like the naming of
variables, the subroutine name ought to reflect what the subroutine does.

Execution Flow and the EXIT SUB Statement
When a sub is called, program flow branches to the called subroutine which is then executed until either
the program flow terminates naturally with the END SUB statement or, before reaching the END SUB with
an EXIT SUB statment. Flow then returns to the next line of code after the previous CALL statement and
execution continues.

49
Local and Global Variables and Their Scope
In the context of subroutines, string or numeric variables (or data), are said to be either local or global. A
global variable is one that is known or is accessible from anywhere within a program whereas a local
variable is one whose existence is known only within the subroutine in which it is used or defined. A way
to qualitatively refer to this ‘visiability’ of variables is to use the word scope: a global variable is one with a
broad scope while a local variable has a restricted scope.

The Parameter List
The parameters in the parameter list are the numeric, string, or array variables needed for one subroutine
to communicate with one another. A parameter list is optional for internal subroutines, but if it is omitted,
then all variables and data defined or used in the subroutine will be global (i.e., known) to the rest of the
program including all of the other subroutines. Internal subs may or may not have a parameter list. Internal
subs without a parameter list are an invitation to disaster since all variables will be global and hence
subject to unintended corruption. Internal subroutines with parameter lists are safe enough in principle, but
if you are going to write subroutines with parameter lists you might as well use external subs where all
variables are local to the subroutine and less likely to be corrupted. Furthermore, if one moves onto other
languages like Visual Basic, internal subroutines won’t even be an option so you might as well do things
properly to start with.

Programming Tip
The whole idea here is to limit the exposure or visibility that the program has to any variable; in other
words, always try to minimize variable scope (i.e., visibility), and that is most readily done by using external
subroutines.

External Subroutines
A parameter list is required when working with an external subroutine since all variables are strictly local
to that subroutine unless they are included in the parameter list. Consequently, whatever happens in an
external subroutine has no visibility outside that subroutine unless the variables involved are in the
parameter list – in other words, the parameter lists make it possible for external subroutines to talk with
one another.

To understand how this works, we list the code for the ‘Sum and Factorial’ program using external
subroutines with parameter lists. To confirm where that the subroutines are external, note the position of
the END statement.

50

Analysis
In order to decide on what parameters are to be passed to a given subroutine, you begin by asking, ‘what
information is required by the subroutine to accomplish its task’. Clearly, that is the basic information
which must be included in the parameter list. In the Sum/Factorial program, it is obvious that the value of
N which gleaned in the InputQuery subroutine must be passed to every sub that needs it and that includes
ComputeSum, ComputeFactorial and PrintResults. In addition, PrintResults needs to know the value of
Sum and Factorial in order to print these values. This means that all three variables, N, Sum and
Factorial must be passed back to Main so that PrintResults will have access to these values. However,
simply passing these variables back to Main will accomplish nothing unless all three variables are also
included, as was done, in the parameter list for PrintResults.
In addition, we had to include the string variable Ans$ in the parameter list for RepeatQuery since the IF
statement needed to know if Ans$=“N” in order to act on it if ‘true’.

Note that the variable Count, which is used in both ComputeSum and ComputeFactorial, is strictly local to
these subroutines, and is therefore completely unknown elsewhere in the program. In this way, one can
use the same variable name in different subroutines for the same or even a different purpose (a practice
that is not advised) without worry about unexpected interaction. Remember ‘Minimize Scope’ for more
hassle-free programming.

51
Parameters and Parameter Passing
Now that we have a feel for how parameters are passed between subroutines we will make the subject a
little more formal.

Parameter Syntax
Numeric variables, string variables and expessions are included in the parameter list exactly as they are
written. Arrays have a slightly different syntax. One dimensional arrays are coded as A(), two dimensional
arrays as A(,), three dimensional arrays as A(,,) etc. For example we might write,

 Sub DataInput (X(),Y(,),X$(),Count, Sum,N,Ans$,A$&B$,Z^2-2)

where X() and X$() are one dimensional arrays (numeric and string), Y(,) is a two dimensional array,
Count, Sum and N are ordinary numeric variables, Ans$ is a string and A$&B$ and Z^2-2 are string and
numeric expressions respectively.

In the CALL statement, you have the option of not including the () for the arrays, as in the statment,
CALL DataInput(X,Y,X$,Count,Sum,N,Ans$,A$&B$,Z^2-2).

How Parameters are Passed
The parameter lists in the CALL statement and in the subroutine definition must match exactly as to both
the number of parameters and the variable type, that is, numeric or string, but matching is not required
as to the name of the variables. Thus when the variables are passed to the subroutine, parameter 1 in the
CALL statement is passed to parameter 1 in the subroutine, parameter 2 in the CALL statement to
parameter 2 in the subroutine, and so on. In terms of computer memory, this means that, for example,
the statements,

CALL ComputeStuff(3.2, y,”No”, Data)

 SUB ComputeStuff(x, y, Ans$, z())

are compatible since x and y are numeric variables, “No” is a string and, provided Data has been
previously dimensioned as a one dimensional array, Data is compatible with z(). This example should
make it clear that the variables in the SUB statement are really ‘dummy’ variables that serve to take on the
values of the parameters passed in the CALL statement.

Had Data and “No” been reversed in the CALL statement or had there been a different number of
arguments in the CALL statement than the SUB statement, a compile time exception would have occurred
and execution would have halted.

One of the useful advantages of subroutines is that the transfer of data between the portion of the
program containing the CALL statement and the external subroutine can be reversible, that is, in both
directions but it need not be if one wishes to protect variables from change in the CALL routine.

To understand this, we need to differentiate between passing a parameter by value (or copy), and passing
by reference (or address). Subroutines have the capability to pass by either method although the most
common method is by reference, whereas functions, a topic to yet be explored, can pass parameters by
value only.

Passing by Value or Copy
When an argument (variable) is passed by value, a copy of the value of the variable is assigned to the
receiving subroutine’s parameter. This has the effect of protecting the original value of the variable in the
calling routine because, while the called subroutine can alter the value of the parameter, it only alters the
copy and not value of the original variable. In this way, the variable has two values, one in the calling
routine and one in the called subroutine and the two are independent. This is how parameter passing
works for functions (to be discussed shortly), but it is not the default method for subroutines which usually
pass parameters by reference.

52 Passing by Reference or Address
When a variable’s value is passed by reference, the variable’s memory address (but not its value) is
assigned to the called subroutine’s parameter. Thus the called subroutine knows where to look to find the
current value of the parameter. In this case, when the subroutine changes the value of the parameter it
will store the new value at the same memory location the parameter had previously thus altering the value
of the variable in both the calling routine and the called subroutine. In other words, the new value of the
variable is passed back to the calling routine. Depending on what you want to do, this may or may not be
desirable.

Here are some examples illustrating both kinds of parameter passing.

Example 1 (Passing by value)
!No information passed back to Main
!Main
CALL BlackHole(2,5)
PRINT x,y,z !get 0,0,0
END

SUB BlackHole(x,y)
 z=x*y
 PRINT x,y,z !get 2,5,10
END SUB

Here, the constants, 2 and 5 are passed to BlackHole whereupon x and y are defined as 2 and 5
respectively and z is computed. However, x, y and z remain strictly local to BlackHole and are not passed
back to Main as shown by the 0 values for the variables. This method of passing parameters is of little
practical value in most programming circumstances.

The most common method of passing parameters is by address as the following program illustrates.

Example 2 (Passing by address)
!x,y and z are passed back to Main
!Main
 x = 2
 y = 5
 z = 10
CALL Test(x,y,z)
PRINT x,y,z !get 4, 25, 29
END

SUB Test(x,y,z)
 x = x^2
 y = y^2
 z = x + y
 PRINT x,y,z ! get 4, 25, 29
END SUB

This example differs from the previous one in that the argument list for the CALL and SUB statements are
identical to one another. Consequently, the current values of x, y and z in Main are passed to Test,
changed and then passed back in altered form. This is typically how external subroutines pass
parameters -- by address.

This last example shows that if the arguments of the CALL and SUB statements are identical, then
whatever changes are made to the variables in the subroutine will be carried back to the calling routine
(Main in this case). This may or may not be a good thing. One often chooses to protect the variables
defined in the CALL routine from change while at the same time using those variables to compute some
new quantity in the subroutine. In other words, we might want to protect the variables in the calling routine
from changing.

53 Here are a couple of examples of how this might be done.

The first example takes advantage of the fact that a subroutine can alter any variable used as a parameter
in a CALL statement but it cannot alter an expression. To make an expression of a numeric or string
variable (but not an array) we have only to enclose it in parentheses as in (x) or (x$). So, for example, if
we re-write the CALL statement in the previous example as CALL Test((x),(y),(z)) so that now x, y and z
are deemed expressions, and run the program, we find that x, y and z retain the original values in Main of
2, 5 and 10 instead of 4, 25 and 29.

While the previous method works for simple variables, it will not work for arrays. To deal with this problem
we can make use of the fact that the arguments in the parameter list are dummy variables - a fact that we
will see can afford a strong measure of protection.

Suppose we have two one dimensional arrays, X and Y whose values we do not want to change.
However, we do want to use these values to compute two new arrays, Xnew and Ynew and then use
these values for other purposes. The following program illustrates how this can be done.

DIM x(5),y(5),Xnew(5),Ynew(5)
!First we make a couple of arrays whose values we do not want to alter! Note that Xnew and Ynew
!are lists whose five values are initially all zero since we dimensioned them but we did not assign
!them any values yet.

FOR i=1 to 5
 x(i)=i
 y(i)=i*i
NEXT i

PRINT "original x,y data"
MAT PRINT x,y !here’s the original data

CALL MakeNewData(x, y, Xnew,Ynew)
PRINT
PRINT "unaltered x,y data" !shows that the original data is not changed
MAT PRINT x,y
PRINT
PRINT "Xnew and Ynew" !here's the new array
MAT PRINT Xnew,Ynew
END !here’s our end statement

SUB MakeNewData(xold(),yold(),Xnew(),Ynew()) !note this is an external sub and its parameter list
 !includes Xnew and Ynew.
 FOR i=1 to 5
 Xnew(i)=10*xold(i)
 Ynew(i)=10*yold(i)
 NEXT i
END SUB

Here, Xold and Yold are ‘dummy’ variables that take on the values of X and Y. Xnew and Ynew are then
generated and passed back to Main. The important thing is that X, Y are not altered. Note that we
dimensioned Xnew and Ynew in the calling routine and not in MakeNewData. This is because an array
must be dimensioned before it is referenced, and since Xnew and Ynew were referenced in both the
MAT PRINT and in the argument list of the CALL statement, the DIM statement had to go in Main.
Typically, one would dimension a variable to 1 in Main and then redimension later in the external
subroutine once the dimensions where known. Note however that had there been no reference to Xnew
or Ynew in Main, then the DIM statement for these arrays would have gone in MakeNewData. Note as
well that we did not have to dimension the dummy variables Xold and Yold because they inherit the
dimensions of X and Y when they are passed. An alternative way to protect X and Y is to define a couple
of new variables, say Xdummy and Ydummy so that Xdummy(1)=X(1), Ydummy(1)=Y(1) and so on and
then pass the Xdummy and Ydummy arrays instead of X and Y.

54 NESTED SUBROUTINES
Here is a subtle problem to watch out for when using Calls from within a subroutine. Type in and run the
following program.

Call Test1
 Sub Test1
 Call Test2
 End Sub

 Sub Test2
 Call Test1
 End Sub
End

Here Test 1 is called which does nothing more than call Test2 which in turn calls Test 1 and so on. An
infinite loop you say, but in fact the program quickly crashes with an ‘out of memory’ error.

The reason the problem arises is that neither Test1 nor Test2 were ever allowed to finish by executing the
END SUB statement in either program. When a subroutine finishes naturally, i.e., either through the END
SUB or through and an EXIT SUB (which just transfers execution to the END SUB) execution is passed
back to the line following the CALL statement. When this occurs, the call routine’s stored variables are
cleared from the Heap, which is a region in memory (@ 1MB) for variables whose lifetimes are generally
unknown at the time of program execution. Once these variables are cleared, the problem is solved.

Returning to the previous program, we can re-write it with a simple DO/LOOP to ensure that each
subroutine is cleared through the END SUB as follows,

DO
 Call Test1
LOOP

Sub Test1
 Call Test2
End Sub

Sub Test2
 End Sub
End

This time, when Test 1 is called, Call Test2 is executed, and so is Sub Test2 but this time Test2 finishes
at the End Sub. Flow then passes to the End Sub in Test1which is also cleared for the next pass when
the LOOP is executed. Now you have an infinite loop and no memory problems. If you run this be sure to
put a counter in the DO/LOOP with an exit otherwise you will have problem with stoping the program.

PROGRAMMING TIP
Always allow subroutines to finish either through the END SUB or force the issue with an EXIT SUB.

One way to facilitate this is to limit the number of tasks a does subroutine does (ideally to one) so that
premature exits are not necessary. If one does leave a sub early, that is before the END SUB, through a
call to another subroutine, then use an EXIT SUB at some point, say, on the line following the call to force
a proper exit when execution returns to the calling routine.

Subroutines Calls to Other Subroutines
The calling of subroutines is very straight forward when dealing with external subs because any external
subroutine can call any other external subroutine. Just make sure the parameter lists are compatible.

FUNCTIONS
Functions are like subroutines in that there are both internal and external functions, and like subroutines,
they also use parameter passing. Functions differ from subroutines in that the parameter passing is only
one way namely, from the call statement to the function and not back again. In fact, the only value a
function can pass back to the calling routine is the value associated with the function’s name. So, if you

Note that END SUB is executed each time
in each subroutine before returning back
to the loop structure. This way the Heap
is cleared and we don’t have a problem.

55 use a function, make sure you set the name of the function equal to the computed value you want
returned.

Like subroutines, external functions are external to the END statement while internal functions are internal
to the END statement. And, like internal subroutines, internal functions are potential trouble makers so it is
recommend that you use external functions exclusively and that means you must use a parameter list in
most cases.

Declaring an External Function
When you use an external function, you must declare it, that is, tell the complier that the function exists
somewhere after the END statement. This is done with the statement DECLARE DEF Function Name

where this statement occurs somewhere before the function is invoked and before the END statement.
In addition, functions can be either single line or multiline. In either case, one must define the function with
the keyword, DEF.

Defining a Function

DEF RollDie=Int(6*RND+1) !single line definition

DEF Response(Par(),X(),Y()) !multi line definition
 For i=1 to NumObs
 Yobs=Y(i)
 Ycomp=Par(3)*X(i)^3+Par(2)*X(i)^2+Par(1)*x+Par(0)
 Residual=Yobs-Ycomp
 Sum=Sum+Residual^2
 Response=Sum !associate the name of the function with a computed value
 Next i
END DEF

In either case, we have to use the DEF keyword but for the multiline case we also have to tell the complier
when we are through defining the function with the keyword END DEF.

Invoking a Function
Invoking a function is simple, just use its name, as in
Result=RollDie !single line case
FinalSum=Response(Par,X,Y) !multi line case

Note that the value computed as a result of invoking the function is returned as the function name itself
i.e., in the multiline case, the name of the function, Response is set equal to the computed result Sum.

The following screen shot is of our old friend the Sum and Factorial of N Integers program written using
external functions calls instead of subroutines.

56

Note all of the functions declared on a single line (to make the screen shot possible) and the location of
the END statement. Clearly, these functions are all external.

57 GRAPHICS
One of the strong points of True Basic is the power and ease of use of its graphic commands. The
following is an outline of the commands available.

The Output Window in which any graphical object will be displayed has a default coordinate system
ranging from 0 to 1 along both axes. This means that if you want to plot either points or draw lines whose
coordinates fall between 0 and 1, the default window will work just fine. For any other coordinate range
you will need the statement:

SET WINDOW Xmin, Xmax, Ymin, Ymax
Here, Xmin etc. define the axes range in both directions. Thus if you are plotting data whose X axis ranges
from -23.6 to 123.9 you might set Xmin to -25 and Xmax to 125. The same is true for the Y axis.

Plotting Points and Lines
a) Points:

PLOT POINTS as in: PLOT POINTS: x,y – produces a dot on the screen at the coordinates, x,y.

Example:
Here is how you would plot a sine curve on the screen.

SET WINDOW 0,2*PI,-1.1,1.1
 For x=0 to 2*PI Step 0.05 !the smaller the increment, the more the points will resemble a line
 PLOT POINTS: x,sin(x) !or use y=sin(x) and Plot Points:x,y
 Next x
End

Alternatively, you could have used a Read/Data statement had you had data you wanted to plot, as in:

Do While More Data
 Read x,y
 Plot Points x,y
Loop
Data x1,y1,x2,y2,….etc.
End

b) Lines:

PLOT LINES:x1,y1;x2,y2
This makes sense if we remember that the delimiter ‘;’ suppresses the carriage return so
Plot Lines:x1,y1;x2,y2 simply plots two points but does not lift the pen between them thus connecting
them with a line.

Note: when plotting multiple unconnected lines on the same display or printer page, you must insert a
PLOT statement immediately following the code that draws each successive graph. This makes sense if
you think of the drawing process as involving a pen that moves over the paper (or screen) and in so doing,
draws a line. As we have seen, the ‘;’ or semicolon acts to keep the pen ‘down’. PLOT serves to lift the
pen so you can draw new line without a line connecting the last point of the previous line to the first point
of the new line. Sounds complicated, but it’s easy to use in True Basic.

c) Areas:
PLOT AREA X1,Y1;X2,Y2;…;Xn,Yn
Plot the points, connects a line between them including between Xn,Yn and X1 and Y1, and then fills the
area with the color of the line itself.

d) Text:
PLOT TEXT, AT x,y: s$
x and y define the beginning of the text s$ which has to be a string, i.e., something in quotes.

58 Here is how you would label the X axis using the Plot Text statement.

For x=1 to 10 !x is a numeric variable
 X$=STR$(x) !convert the number x into a string variable
 PLOT TEXT, AT x,-0.04:X$!now plot X$ slightly below the X axis
Next x

e) Graph Labels:
SET CURSOR row,col

This command will set the cursor at the specified row and col after which you may print something.
However, the maximum column and maximum row depends on the monitor you have so you need to
interrogate the computer for its maximum values of each of these constants. To do this you can write:

ASK MAX CUSOR maxrow,maxcol

Maxrow and maxcol will now be the point at the extreme bottom right of the monitor. Using these two
values you can now set the cursor the SET CURSOR statement without worrying about getting a ‘cursor
out of bounds’ error.

Other Commands include:
BOX AREA, BOX CIRCLE, BOX CLEAR, FLOOD etc. See your text for descriptions.

59 Examples:

1) One Dimensional Random Walk Problem (classic problem sometimes called the ‘drunkard’s walk’)

Consider a person who has enjoyed himself/herself a little too much and in so doing become slightly
‘altered’. Suppose that person is standing on a one dimensional walkway holding onto a lightpost. This
person can now take a fixed length step to the left or right but each step is completely ‘random’ i.e.,
without forethought. The walkway is of length five steps in either direction after which he/she will fall off the
walkway. The problem is to model this ‘one dimensional random walk’ problem on the computer. The
following program does just that through the use of the random number generator.

You can find the program in the list under ‘2DRandomWalk.tru’ and run it to see how it works.

60 2) Plot of a 2-S Hydrogen Orbital
This program illustrates the various steps involved in ploting a function, setting up the axes with labels etc.

!---------------------- PLOT OF A 2S HYDROGEN ORBITAL -----------------------
! Windows Version, Internal Subroutines

CALL AXES !sets the window and draws the axes
CALL TICKS !puts in the tick marks
CALL AXES_LABELS !adds the labels

FOR S=0 TO 15 STEP 0.01 !screen printing routine
 CALL PLOT !plots the function
NEXT S

SUB AXES
 SET WINDOW -2,15,-.05,.5 !X from -2 to 15; Y from - 0.05 to 0.5
 PLOT LINES: 0,0;15,0 !draws x axis
 PLOT LINES: 0,0;0,.5 !draws y axis
END SUB

SUB TICKS
 FOR X=1 TO 15 STEP 1
 PLOT LINES: X,-0.005;X,0.005
 NEXT X
 FOR Y=0.1 TO 0.5 STEP 0.1
 PLOT LINES: -.1,Y;.1,Y
 NEXT Y
END SUB

SUB AXES_LABELS
 FOR X=1 TO 9 !split X numbering into 2 parts to get spacing right
 X$=STR$(X)
 PLOT TEXT, AT X,-0.02:X$
 NEXT X

 FOR X=10 TO 14 !here's part 2
 X$=STR$(X)
 PLOT TEXT, AT X,-0.02:X$
 NEXT X

 FOR Y=0.1 TO 0.5 STEP 0.1 !Y axis numbering
 Y$=STR$(Y)
 PLOT TEXT, AT -0.4,Y:Y$
 NEXT Y

 SET TEXT JUSTIFY "CENTER","BASE" !add labels - start with X axis label
 PLOT TEXT, AT 7.5,-0.04:"RELATIVE COORDINATES, S=R/A0"
 A$="PROBABILITY" !Y axis label
 L=LEN(A$) !length of A$
 SET CURSOR 25,1 !starts cursor at row 25, column 1

 FOR I=1 TO L
 PRINT TAB(8); A$[I:I] !moves to col. 8 and prints a ter, then
 NEXT I !carriage returns to column 1, next row etc.

 SET CURSOR 2,23 !graph's label
 PRINT "PLOT OF PSI SQUARED FOR A HYDROGEN 2S ORBITAL"
END SUB

SUB PLOT !plot the prob function for the 2S H atom orbit
 A0=0.5921 !these 4 statements define the H atom 2 S orbital
 C=4*PI*(S*A0)^2
 PSI=(1/(4*SQR(2*PI)))*((1/A0)^(3/2))*(2-S)*EXP(-S/2)
 PROB=C*PSI^2
 PLOT POINTS: S,PROB !Plotting statement
END SUB
END

61 The following output window shows the results of running the program. Note that we are ploting points, not
a line but if the step size is small enough, there is very little difference from the way the plot looks. The
program is stored under 2SHPlotWinVer.Tru.

Analysis:
You will note that the program consistes of three subroutine calls (Axes, Ticks, Axes_Labels) that set up
the graph itself, followed by a call to ‘Plot’ that plots the graph. For the most part, the comments are pretty
self explanatory. The only part that might not be obvious is the code fragment:

 A$="PROBABILITY" !Y axis label
 L=LEN(A$) !length of A$
 SET CURSOR 17,1 !starts cursor at row 5, column 1
 FOR I=1 TO L
 PRINT TAB(8); A$[I:I] !moves to col. 8 and prints a letter, then
 NEXT I !carriage returns to column 1, next row etc.

Here A$ is the string we want to print. LEN(A$) computes the length in characters of A$ which in this case
is 11 (i.e., 11 characters in the word ‘PROBABILITY’). The SET CURSOR statement just defines the
starting point for printing. A$[i:j] is a very useful string operator which functions to identify the substring
contained within A$ starting with the ith character and ending with the jth. Thus, if i=1 and j=11 then the
substring is identical to A$. Now consider the For/Next loop and note that j=i in the PRINT TAB(8); A$[i:i]
statement. By setting i=j we are successively printing every character belonging to A$ as we move through
the loop. The TAB statement ensures that we move down one row after each character is printed. Thus
we get A$ printed vertically on the Y axis. True Basic has no method to rotate the letters to the left by 90o
(and print from bottom up as is standard in journals) so this is the best we can do. Still, it works fine for our
purposes.

62

FILES
True Basic support five files type: Text (or Sequential), Random, Record, Stream and Byte. We will only
discuss two of these, namely, Text and Random file types. Of these two, we recommend using Text files
exclusively because they have the advantage of producing data in a form that can be imported into Excel
or Word since they recognize the ASCII format. This is likely to be an issue when one is using True Basic
to communicate with an instrument that generates a lot of data or when one writes a True Basic program
that computes data that can be best analyzed in a Spread Sheet format. The downside of Text files is that
data can only be read from start to finish and new data can only be added to the end of the file. This kind
of file would be of little use to a business, for example, who had a large alphabetized data set where
searching would be made easier if each data record could be accessed when needed and new data could
be inserted in alphabetical order.

General Comments:
All file types have certain procedures in common even if the exact syntax will differ with the file type.

Opening a File

 a) Text Files: OPEN channel #: NAME filename$, ACCESS “OUTIN”, CREATE “NEWOLD”, ORG “TEXT”
 b) Record Files: OPEN channel #: NAME filename$, ACCESS “OUTIN”, CREATE “NEWOLD”, ORG “RECORD”

Comments:
Channel #: an integer of your choice between 0 (reserved for the screen) and 999. In the example below we
arbitrarly chose Channel #1 for the file we were opening and writing to and Channel #2 for the printer. Your choice
but you must be consistent within a given program.

Name: filename$ is a string and includes the path to where you want the file written, i.e., to a hard drive as in
“C:\trash\gaslawdata” which assumes a directory ‘trash’ exists etc.

ACCESS, CREATE, ORG are all required keywords and the phrases ‘outin’, ‘newold’ are the default and most
flexible methods of writing and reading existing or creating files. ORG simply specifies what kind of file you are
working with.

Other Commands

CLOSE channel # - closes a file – always close the file immediately after opening or writing to it!
ERASE channel # - erases the file’s contents
UNSAVE channel # - removes the entire file – make sure the file is closed before unsaving it!
OPEN channel #: PRINTER – opens the printer channel
PRINT channel #: [variable list in a loop of some sort] - sends output directly to the printer

Writing/Reading Data
Again, we have to distinguish between Text and Record files. In the examples below, we are assuming a
FOR/NEXT loop to either read (READ/DATA) the data in or input it from the keyboard.

 Writing Data to a File Reading Data in a File Comments
Text File: PRINT #1: X(I); “,”; Y(I) INPUT #1:X(I),Y(I) note the “,”; syntax for 2 dim data

Record File: WRITE #1: X(I),Y(I) READ #1: X(I),Y(I) record files require additional
 commands – see the example

Both of the following examples are available in the machines in the computer laboratory. You should run
them to get a feel for how they work.

63

These programs are stored on the computers under TextFile.Tru and RecordFile.Tru.

9/21/2005 2 PM

	Scientific Programming.pdf
	B) String Variables and String Constants

