
GEOG 490/590 

GIS Programming 

Lab 5: ArcMap UITool, Commands, and Vector Features Operations 

Introduction: You will create a UITool that allows users to select polygons from a polygon layer in 

ArcMap and report the number and total area of the selected polygons. You can find a polygon 

shapefile to use as test data or download this subset of RLIS taxlot data. 

Polygon Area Tool (PAT): 
Users can use the PAT to draw a rectangular box and select polygons that fall within the 
rectangular area. ArcMap will zoom in to the selected features and a popup message box then 
shows the number of features selected, the total area of the selected features, and the linear unit. 
The required output of the PAT tool is this popup message box. 
 
UITool Control: 
Please refer to Lab 1 and Exercise 6 for instructions on how to create custom tool controls for 
ArcMap addIns. Don’t forget to set the tooltip of the PAT UITool control and assign an appropriate 
button image. As in previous labs, the category must be GEOG 4/590 Add-In Controls so the 
instructor can find your work. 

 
Setting the Cursor Type: 
You should use the cursor property of the Tool object to set the cursor type. Adding the 
following code to the New() Sub of your UITool will change the cursor type to a crosshair. 
Other cursor types are available here. 
Me.Cursor = Windows.Forms.Cursors.Cross 

 

MouseDown Event: 
The PAT tool requires a user to click the mouse cursor on a map and drag the cursor to select 
a rectangular area. That means all your code must be associated with the OnMouseDown() 
subroutine. 

     Protected Overrides Sub OnMouseDown(ByVal arg As 

ESRI.ArcGIS.Desktop.AddIns.Tool.MouseEventArgs) 

        MyBase.OnMouseDown(arg) 

        ' Put your VB .NET code here 

End Sub 

  

http://web.pdx.edu/~lbross/labs/Lab5_Data.zip
http://msdn.microsoft.com/en-us/library/system.windows.forms.cursors.aspx


Drawing a Rectangle: 
You use the RubberBand object to track the movement of the mouse cursor. When done, 

you assign the tracked rectangular geometry to a graphic element. You then display the 

rectangular area as a rectangular graphic element. This can be achieved by adding the code 

below to the OnMouseDown() subroutine. 

        Dim pEnv As IEnvelope2 

        Dim pRubberEnv As IRubberBand = New RubberEnvelope 

        Dim pElem As IElement 

        Dim pFillShapeElem As IFillShapeElement 

        Dim pFillSymbol As IFillSymbol 

        Dim pColor As IColor 

        Dim pLineSymbol As ILineSymbol 

        Dim pGContainer As IGraphicsContainer 

 

        Try 

            'use the RubberBand object to track the movement of mouse cursor 

            pEnv = GetEnvelopeFromMouseClicks(My.Document.ActivatedView) 

            'selected elements 

            pElem = GetRectangleFromEnvelope(pEnv) 

 

            'graphics container 

            pGContainer = My.Document.ActivatedView 

            'add pElem with default order 

            pGContainer.AddElement(pElem, 0) 

            

My.Document.ActivatedView.PartialRefresh(esriViewDrawPhase.esriViewGraphics, 

pGContainer, Nothing) 

 

        Catch ex As Exception 

            MsgBox("OnMouseDown Exception: " & ex.Message) 

        Finally 

            pGContainer = Nothing 

            pLineSymbol = Nothing 

            pColor = Nothing 

            pFillSymbol = Nothing 

            pFillShapeElem = Nothing 

            pElem = Nothing 

            pRubberEnv = Nothing 

            pEnv = Nothing 

            GC.WaitForPendingFinalizers() 

            GC.Collect() 

        End Try 
  



You’ll also need the following two “helper” functions: 
 

    Private Function GetEnvelopeFromMouseClicks(ByVal activeView As IActiveView) As 

IEnvelope2 

        'get the screenDisplay from the activeView which comes from 

My.Document.ActivatedView 

        Dim screenDisplay As IScreenDisplay = activeView.ScreenDisplay 

        'use the RubberBand object to track the movement of mouse cursor 

        Dim rubberBand As IRubberBand2 = New RubberEnvelope 

        'RubberBand.TrackNew() returns an IGeometry object 

        Dim geometry As IGeometry5 = rubberBand.TrackNew(screenDisplay, Nothing) 

        'Cast IGeometry to Envelope; Envelope implements IGeometry5 

        Dim env As IEnvelope2 = CType(geometry, Envelope) 

        Return env 

    End Function 

 

    Private Function GetRectangleFromEnvelope(ByVal env As IEnvelope) As 

IRectangleElement 

        'Create new Rectangle object 

        Dim pElem As IElement = New RectangleElement 

        'Set IEnvelope as the geometry 

        pElem.Geometry = env 

        'Create object so we can set the symbology for the shape 

        Dim pFillShapeElem As IFillShapeElement = pElem 

        'Create object so we can set the fill symbology 

        Dim pFillSymbol As IFillSymbol = pFillShapeElem.Symbol 

        'Get line symbology from fill symbology 

        Dim pLineSymbol As ILineSymbol = pFillSymbol.Outline 

        'Create object to set the fill transparency via color property 

        Dim pFillColor As IColor = pFillSymbol.Color 

        'Create object to set the line color 

        Dim pLineColor As IColor = pLineSymbol.Color 

        'set background to transparent for fill symbol 

        pFillColor.Transparency = 0 

        'set line color to green 

        pLineColor.RGB = RGB(0, 255, 0) 

        'set line width 

        pLineSymbol.Width = 2.0 

        'set Color on ILineSymbol 

        pLineSymbol.Color = pLineColor 

        'set transparency (color) on IFillSymbol 

        pFillSymbol.Color = pFillColor 

        'set ILineSymbol on IFillSymbol 

        pFillSymbol.Outline = pLineSymbol 

        'set symbology on fill shape element 

        pFillShapeElem.Symbol = pFillSymbol 

        Return pElem 

    End Function 
 
Make sure you remember to clear your graphics container before the PAT draws a new 
rectangle. This can be done with the DeleteAllElements() method of the IGraphicsContainer 
interface. 

  



Select and Zoom to Features: 
You should use ArcMap built-in commands to accomplish the next tasks. First use the 
Edit_SelectAll command to select the rectangular graphic element, then use the 
Query_SelectByGraphics command to select polygon features, and then use the 
Query_ZoomToSelected command to zoom to the selected polygons. 
 
The following subroutine can be used to call each of the built in commands:  
    Private Sub FindCommandAndExecute(ByVal application As 

ESRI.ArcGIS.Framework.IApplication, ByVal commandName As String) 

        Dim document As ESRI.ArcGIS.Framework.IDocument = My.ArcMap.Document 

        ' Get the commandBars object from the document 

        Dim commandBars As ESRI.ArcGIS.Framework.ICommandBars = 

document.CommandBars 

        Dim uid As UID = New UIDClass() 

        ' Example: "esriFramework.HelpContentsCommand" or "{D74B2F25-AC90-

11D2-87F8-0000F8751720}" 

        uid.Value = commandName 

        Dim commandItem As ESRI.ArcGIS.Framework.ICommandItem = 

commandBars.Find(uid, False, False) 

        If Not (commandItem Is Nothing) Then 

            'Execute the command 

            commandItem.Execute() 

        End If 

    End Sub 
 
You pass the IApplication object along with the CLSID or ProgID of the command you want 
to execute when you call this subroutine. A list of CLSID and ProgID’s for built in ArcMap 
commands can be found here. 
 
Here is an example of calling the above subroutine for the Edit_SelectAll command. You will 
call the subroutine a total of 3 times: once for each command that needs to be executed 

      FindCommandAndExecute(My.ArcMap.Application, _ 

"esriArcMapUI.EditSelectAllCommand") 

 
  

http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#//00010000029s000000


Spatial Query: 
You perform a spatial query to select the polygon features that fall within the rectangle area 
specified by the UITool. The opening part of a sample subroutine for a spatial query is below. 
 

    Private Function SumAreaForSelectedFeatures(ByVal pEnv As IEnvelope) As Double 

        Dim pSFilter As ISpatialFilter 

        Dim pFLayer As IFeatureLayer 

        Dim pFCursor As IFeatureCursor 

        Dim pFeature As IFeature 

        Dim pArea As IArea 

        Dim sumArea As Double 

 

        Try 

            'prepare a spatial filter 

            pSFilter = New SpatialFilter 

            pSFilter.Geometry = pEnv 'pEnv is the envelope geometry 

            'you got from the IrubberBand interface 

            pSFilter.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects 

 

            'assign the reference to a feature layer 

            pFLayer = My.Document.FocusMap.Layer(0) 

            pFCursor = pFLayer.Search(pSFilter, False) 

            pFeature = pFCursor.NextFeature 

 

            'This is how you get an individual feature  

            'from the feature cursor. You need to use a loop 

            'to access all selected features 

 

Calculating Total Area: 
The next step is to sum the areas of all the selected features (i.e., the features in the Feature 
Cursor.) You use the IArea interface to extract the area information of the shape geometry. 
This is done by the following code. You have to put the code in a loop to sum all area values. 

                pArea = pFeature.Shape 

                sumArea = sumArea + pArea.Area 

 

Retrieving the Linear Unit: 

The total area isn’t very useful without knowing the unit of measure. You can use the code 
below to work your way down to the ILinearUnit object from the FeatureClass. Note that 
outside of this code block, we got a reference to a FeatureLayer from the Map so it could be 
interrogated. 
 
You can examine the properties of the ILinearUnit object to find the unit of measure. The 
‘Name’ property of the ILinearUnit will return the unit in String format similar to the layer 
information found in ArcMap. 

  



        Dim geoDataSet As IGeoDataset 

        Dim pSpRef As ISpatialReference 

        Dim projCoordSys As IProjectedCoordinateSystem 

        Dim pLinearUnit As ILinearUnit 

 
        'Get the geoDataSet from the FeatureClass 

        geoDataSet = pFLayer.FeatureClass 

        ‘Get the spatial reference of the geoDataSet 

        pSpRef = geoDataSet.SpatialReference 

        ‘Cast the spatial reference to the projected coordinate system 

        projCoordSys = pSpRef 

        ‘Get the linear unit from the projected coordinate system 

         pLinearUnit = projCoordSys.CoordinateUnit 

 
You might want to use the PanZoom_FullExtent command (see the FindCommandAndExecute() 
subroutine above) to reset the map display extent after the message box shows the query result. 

 

Questions: 
 
Q1) What is the difference between a Button and a Tool control in an ArcMap addIn? When 
might you choose to use one over the other? 
 
Q2)If you wanted to make your rectangle blue rather than green, you would only need to 
change one line of code. What is that modified line of code? 
 
Q3)Provide the CLSID and ProgId for the PanZoom_FullExtent command. 
 
Q4)Your sumArea total will likely return a number that isn’t user friendly. ie: A long number 
with no commas and many places behind the decimal point. Describe one or more VB .NET 
functions you could use to make this number easier to read. 
 

Submit the answers to the questions along with your VB .NET project in a .zip file e-mailed to the 
instructor. Don’t forget to use try/catch/finally blocks to catch errors, or to comment your code! 


