
GEOG 490/590 

GIS Programming 

Lab 4: ArcMap Layers Display & Attribute Data Manipulation 

Introduction: Now things start to get interesting as we practice using the ArcObjects VB .NET API. 

You will create a Layers & Attribute Manipulation (LAM) AddIn that mimics what the instructor 

demonstrated in class. Start by finding several small shapefiles to use for test data. The shapefiles 

must have numerical attribute fields. One good example is the RLIS census track dataset on the I:\ 

drive. 

User requirements: The LAM Tool (Figure 1) allows users to add/delete GIS data layers to/from the 

active ArcMap map frame. A listBox shows the names of the layers that are present in the frame. 

The order of the items in the listBox can be changed and is linked with the display order in ArcMap 

(Figure 2). Once an item in the Layer listBox is selected, its attribute fields can be displayed in an 

attribute listBox. Users can select a numerical field from the attribute listBox to display its 

minimum, maximum, and average.  

 
Figure 1 

http://web.pdx.edu/~jduh/courses/geog490w09/Lab4_Fig1.gif
http://web.pdx.edu/~jduh/courses/geog490w09/Lab4_Fig2.gif


 
Figure 2 

Creating the GUI: 

1. Create a new ArcGIS Desktop Add-In project for ArcMap. Include your last name when 

naming your Visual Basic project: for example, BrossLab4.  

 

2. Add a Button and a DockableWindow to your addIn. This part of Lab 4 is similar to Lab 2 so 

see the instructions for Lab 2 if you need instructions 

 

3. The category for your addIn button needs to be ‘GEOG 4/590 Add-In Controls’ so the 

instructor can find your work. 

 

4. When the New Project Wizard has finished creating the project use File > Save All to save 

your project. Verify you are using the same name you used in step 1 when naming the 

project. Save your project in a folder in the C:\Users folder and regularly back up your data to 

your H:\ drive or portable device. 

 

5. A sample layout of the DockableWindow of the AddIn is shown below in Figure 3. The form 

should have: 

1. Two buttons for adding / removing layers from the display list. 
2. Two buttons for moving a selected layer up and down the display list.  
3. Two listBoxes for showing the names of map layers and attribute fields. 
4. A button for showing the attribute fields. 

  

http://web.pdx.edu/~jduh/courses/geog490w09/Lab4_Fig3.gif


5. A button for calculating the summary statistics of a selected numerical field. 
6. Three textBoxes for displaying the minimum, maximum, and average. 
7. A button to clear the layer list and reset the addIn form. 
8. You also need to add labels to describe the controls (fields and buttons) on the form. 

Hints: 

 Remember the naming conventions: Buttons start with Btn, ListBoxes start with Lst, 

TextBoxes start with Txt, Labels start with Lbl 

 The textBoxes on this form should be read-only since we aren’t processing the user input 

 
Figure 3 

6. Copy and paste the following code into the OnClick() sub of your addIn Button class. This 

code toggles the display of the DockableWindow when you click on the addIn Button. Note 

that you may have to change the form name to match the name of your form. 

Protected Overrides Sub OnClick() 

My.ArcMap.Application.CurrentTool = Nothing 

   ' Declare the IDockableWindow class 

   Dim dockWindow As ESRI.ArcGIS.Framework.IDockableWindow 

   ' Declare the UID class 

   Dim dockWinID As ESRI.ArcGIS.esriSystem.UID = New 

ESRI.ArcGIS.esriSystem.UIDClass() 

   ' Set value property of UID to the form we wish to display 

   dockWinID.Value = My.ThisAddIn.IDs.FrmLam 
   ' Get the dockable window containing the form frm the 

DockableWindowManager 

   dockWindow = 

My.ArcMap.DockableWindowManager.GetDockableWindow(dockWinID) 

   ' Toggle the dockable window visible/invisible depending on current 

setting 

   dockWindow.Show((Not dockWindow.IsVisible())) 

End Sub 



7. Verify that the height and width of the DockableWindow in the Config.esriaddinx file match 

the height and width properties of FrmLam. 

 

8. Start ArcMap from inside Visual Basic Express using the debug functionality. Use the 

Customize > Customize Mode… dialog to add the BtnLam command button to one of your 

toolbars. Click the button to verify that your form looks as expected. 

Add layer button 

1. When the ‘Add Layer’ button is clicked, you will use the GxDialog object to allow the user to 
select a shapefile layer. You need to change the GxObjectFilter type to GxFilterShapefiles. 
This means your dialog box will only show shapefiles. That is: 
 

Dim pFilter As IGxObjectFilter 

pFilter = New GxFilterShapefiles 

 

Once the GxDialog object returns a value successfully, you can use the following code to 
display the map. 

 
pGxDataset = pGxObjects.Next 

Dim pFLayer As IfeatureLayer 

pFLayer = New FeatureLayer 

pFLayer.FeatureClass = pGxDataset.Dataset 

pFLayer.Name = pGxDataset.Dataset.Name 

 

'add the feature layer to the active map 

pMap = My.Document.Maps.Item(0) 

pMap.AddLayer(pFLayer) 

 

2. Note the use of the built-in ArcGIS addIn ‘My.Document’ object to access the MxDocument 
object. We then have access to the IMap object through the MxDocument collection of 
maps. Although an MxDocument can have a collection of maps, for the purpose of this lab 
assume that there is only one. Remember that collection indices are zero-based so we will 
always work with Item(0). 

 

You also need to add the name of the layer to the Layer listBox. Please note that the AddLayer() 
method of a Map object adds a layer to the top of the TOC (Table of Contents) of the map while the 
AddItem() method of a listBox adds an item to the end of the list.  
 
One easy way to synchronize the TOC and the listBox is: whenever a layer is added or removed, the 
program resets the listBox and displays the updated TOC. The same procedure may be used when 
the order of the items in the layer list is modified. This is a good reason to create a private 
subroutine to update the listBox using the map layer information. 
 
Add the following subroutine to the end of your dockableWindow code (but before the End Class 
declaration). Please note that the sample code is just for your reference, you must read it carefully 



and modify it to fit your program. 
 
    Private Sub RefreshLayerNames() 

        Dim layercounter As Integer 

        Dim i As Integer 

 

        'reset the lstLayer list box 

        LstLayers.Items.Clear() 

 

        'add the layer name to the list box 

        Dim pMap As IMap = My.Document.Maps.Item(0) 

        layercounter = pMap.LayerCount - 1 

        For i = 0 To layercounter 

            LstLayers.Items.Add(pMap.Layer(i).Name) 

        Next 

    End Sub 

 

When you need to update the Layer list box, call the RefreshLayerNames() subroutine in your 
program. You can try using this subroutine in the Move Down/Up and Remove Layer sections 
below. 
 

Remove layer button 

When a user clicks on an item in the Layer listBox, the Remove Layer command button becomes 
enabled. Hint: Look at the SelectedIndexChanged event for ListBoxes.  
 
You will use the DeleteLayer() method of a Map object to remove a layer. You also need to remove 
the selected item from the Layer listBox. As mentioned earlier, you can use the 
RefreshLayerNames() subroutine to sync the list box, or use the RemoveAt() method of a listBox to 
remove the item. You also need to check if there are any layers left in the listBox. If the listBox is 
empty, then you need to disable the Remove Layer button. 
 
        Dim pFLayer As IFeatureLayer 

        Dim pmap As IMap = My.Document.Maps.Item(0) 

        pFLayer = pmap.Layer(LstLayers.SelectedIndex) 

        pmap.DeleteLayer(pFLayer) 

        LstLayers.Items.RemoveAt(LstLayers.SelectedIndex) 

        My.Document.ActivatedView.Refresh() 

 

 

Move Down/Move Up Buttons & Layer ListBox 
 

1. To use the Move Down/Move Up functions, the user has to select an item from the Layer 
listBox first. Then, depending on which item is selected, the program enables or disables the 
Move Down or Move Up buttons.  
 
The code to control these actions needs to be put in the SelectedIndexChanged event 
subprocedure (i.e., LstLayers_SelectedIndexChanged, when the name of the Layer listBox is 

http://msdn.microsoft.com/en-us/library/system.windows.forms.listbox.selectedindexchanged.aspx


LstLayers.) The SelectedItem property of the listBox tells you which item in the list is 
selected. When an item in the Layer listBox is selected, the Remove Layer and Show 
Attribute Fields command buttons are enabled. 

 
Private Sub LstLayers_SelectedIndexChanged(ByVal sender _ 

As System.Object,ByVal e As System.EventArgs) _Handles 

LstLayers.SelectedIndexChanged 

  Dim item As Object = LstLayers.SelectedItem 

' If something is selected 

        If item IsNot Nothing Then 

            BtnRemove.Enabled = True 

BtnAttribute.Enabled = True 

 

            'don't enable up or down button when there's only one layer 

            If LstLayers.Items.Count = 1 Then Exit Sub 

 

            'enable the up button when the selected layer 

            'is not the first layer 

            If LstLayers.SelectedIndex > 0 Then 

                BtnUp.Enabled = True 

            Else 

                BtnUp.Enabled = False 

            End If 

            'enable the down button when the selected layer 

            'is not the last layer 

       If LstLayers.SelectedIndex < _ 

   (LstLayers.Items.Count -1) Then 

                BtnDown.Enabled = True 

            Else 

                BtnDown.Enabled = False 

            End If 

        Else 

            'Disable layer-specific buttons 

            BtnRemove.Enabled = False 

            BtnUp.Enabled = False 

            BtnDown.Enabled = False 

            BtnAttribute.Enabled = False 

        End If 

End Sub 

 

2. The MoveLayer() method of a Map object allows you to rearrange the display order of a 
layer in a Map object. You will need to know the position the layer is to be moved to and a 
pointer that points to the layer that is to be moved. Below is the sample code for the Move 
Down button. The Move Up button uses similar logic. 

 
Private Sub BtnDown_Click(ByVal sender As System.Object, ByVal e As  

  System.EventArgs) Handles BtnDown.Click 

        Dim position As Long = LstLayers.SelectedIndex 

        'Declare ArcObjects outside of Try/Catch so we can dispose of them in   

  Finally 

        Dim pFLayer As IFeatureLayer 

        Dim pMap As IMap = My.Document.Maps.Item(0) 

 

        Try 



            pFLayer = pMap.Layer(position) 

            'swap the layer listbox 

            pMap.MoveLayer(pFLayer, position + 1) 

            'refresh the active map and the layer list box 

            My.Document.ActivatedView.Refresh() 

            RefreshLayerNames() 

            'keep the selected item being selected after the move 

            LstLayers.SelectedIndex = position + 1 

        Catch ex As Exception 

            MessageBox.Show("BtnDown_Click Exception: " & ex.Message) 

        Finally 

            pFLayer = Nothing 

            pMap = Nothing 

            ' Call garbage collection 

            GC.Collect() 

            GC.WaitForPendingFinalizers() 

        End Try 

End Sub 

 

 

Show Fields button 

When the Show Fields button is clicked, the names and types of the attribute fields of the selected 
map layer are displayed in the Attribute list box. Please refer to Week 6’s lecture notes for 
retrieving the name and type information of the fields in an attribute table. Check the notes on the 
IFields and IField interfaces. After you retrieve the field information, use the code below to add 
them to the Attribute listBox. 
 
            Dim fCount As Long, i As Long 

            Dim position As Long = LstLayers.SelectedIndex 

            pFLayer = pMap.Layer(position) 

            pFields = pFLayer.FeatureClass.Fields 

            fCount = pFields.FieldCount - 1 

            LstAttribute.Items.Clear() 

            For i = 0 To fCount 

                aField = pFields.Field(i) 

                LstAttribute.Items.Add(aField.Name & ", " & aField.Type) 

            Next 

 
Summary statistics Button & Attribute List Box 
 

1. The final piece of the LAM program is finding the minimum and maximum of a selected 
numerical attribute field and calculating its average value.  

 
You have to check to see if the field the user selected is a numerical field. If yes, then you 
enable the Summary Statistics button. Disable the Summary Statistics button otherwise. You 
extracted field type information when creating the Attribute list and stored this type 
information in the list items. You can get the type information from the list items without 
accessing the attribute table of the map layer again. Here is how it’s done in the 
SelectedIndexChanged() subprocedure of the Attribute listBox.  



 
Please read the code carefully because it contains important information. For example, you 
should know that when the value of the field type property is smaller then 4 (i.e., 0, 1, 2, and 
3), then the field is a numeric field (see lecture notes for a complete list of field types.) 

 
    Private Sub LstAttribute_SelectedIndexChanged(ByVal sender As  

 System.Object, ByVal e As System.EventArgs) Handles  

 LstAttribute.SelectedIndexChanged 

        Dim attType As Integer 

        Dim attStr As String 

 

        'check the attribute type 

        attStr = CStr(LstAttribute.SelectedItem) 

        'extract the attribute type information from the string 

        attType = Microsoft.VisualBasic.Right(attStr, Len(attStr) - InStr(attStr, 

",")) 

        'numerical data types are 

        'small integer(0), long integer(1), single(2), and double(3) 

        If attType <= 3 Then 

            BtnSummary.Enabled = True 

        Else 

            BtnSummary.Enabled = False 

        End If 

        'reset the text in the textbox 

        TxtMin.Text = "" 

        TxtMax.Text = "" 

        TxtAverage.Text = "" 

    End Sub 

 

2. Once you have a numeric field selected, the next step is to read the values of its records and 
find the min/max/mean values. Please refer to Week 6’s lecture notes to see how to get the 
values from an attribute table. You will need to use the ArcObjects ICursor and IFeature 
interfaces for this task. 
 
You don’t have to store the values you read in an array to find the min/max/mean values. The 
code below is an example of finding/calculating these numbers. You begin by setting the 
minimum (attMin) to the largest number you can get and the maximum (attMax) to the 
smallest number. A variable (attSum), initialized to 0, holds the sum of all numbers you 
retrieve from the attribute table. Then use a loop to compare the minimum and maximum 
values in each record with the number you retrieve and add the number to attSum. 
 

      'initialize values 

       attMin = 2147483647 

       attMax = -2147483648 

       attSum = 0 

 

       nRecord = pFLayer.FeatureClass.FeatureCount(Nothing) 

 

       'find min, max, and sum of all values 

       For i = 1 To nRecord 

         aFeature = pCursor.NextRow 

            tempVal = aFeature.Value(LstAttribute.SelectedIndex) 



            If tempVal < attMin Then attMin = tempVal 

            If tempVal > attMax Then attMax = tempVal 

            attSum = attSum + tempVal 

       Next 

 

       'update output textboxes 

       TxtMin.Text = Format(attMin, "0.000") 

       TxtMax.Text = Format(attMax, "0.000") 

 TxtAverage.Text = Format(attSum / nRecord, "0.000") 

 

 
Clear map button 
 
The Clear Map button removes all layers from the map and reset every control on the 
DockableWindow 
 
        'clear layers in the active map frame 

        Dim pMap As IMap = My.Document.Maps.Item(0) 

        pMap.ClearLayers() 

        'clear the TOC 

        My.Document.UpdateContents() 

        'refresh the map document 

        My.Document.ActivatedView.Refresh() 

        'clear attribute and layer lists 

        LstAttribute.Items.Clear() 

        LstLayers.Items.Clear() 

 

Hint: In one possible solution, the following subroutines contain code: 

 BtnAdd_Click() 

 BtnAttribute_Click() 

 BtnClear_Click() 

 BtnDown_Click() 

 BtnRemove_Click() 

 BtnSummary_Click() 

 BtnUp_Click() 

 LstAttribute_SelectedIndexChanged() 

 LstLayers_SelectedIndexChanged() 

 RefreshLayerNames() 
  



Questions: 
 
Q1) What is the easiest way to begin writing code to respond to a ListBox_SelectedIndexChanged 
eventor a Button_Click event? 
 
Q2)What do we mean when we say that VB .NET arrays are zero based? Give an example of an 
ArcObjects collection that you worked with in this lab that is also zero based. 
 
Q3) In this lab we used the GxFilterShapefiles class with the IGxDialog so that the user could only 
select from shapefiles. Review the ESRI API for IGxObjectFilter. What filter class might we use to 
show only raster files? Both types of datasets? 
 
Q4) What happens if you try to add the same layer twice in your LAM Tool? Provide a few lines of 
pseudo code that could handle this situation better. For extra credit, 
implement your psuedocode in the LAM Tool. 
 
Submit the answers to the questions along with your VB .NET project in a .zip file e-mailed to the 
instructor. Don’t forget to comment your code! 
 


