Classical analog of electromagnetically induced transparency

C. L. Garrido Alzar
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, SP, Brazil

M. A. G. Martinez
Pós-graduação em Engenharia Elétrica, Universidade Presbiteriana Mackenzie, Rua da Consolação 896, 01302-000, São Paulo, SP, Brazil

P. Nussenzveig
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, SP, Brazil

(Received 3 May 2001; accepted 27 August 2001)

We present a classical analog of electromagnetically induced transparency (EIT). In a system of just two coupled harmonic oscillators subject to a harmonic driving force, we reproduce the phenomenology observed in EIT. We also describe a simple experiment with two linearly coupled RLC circuits which can be incorporated into an undergraduate laboratory. © 2002 American Association of Physics Teachers. [DOI: 10.1119/1.1412644]

I. INTRODUCTION

Imagine a medium that strongly absorbs a light beam of a certain frequency. Add a second light source, with a frequency that would also be absorbed by the medium, and the medium becomes transparent to the first light beam. This curious phenomenon is called electromagnetically induced transparency (EIT).\(^5\)\(^6\) It usually takes place in vapors of three-level atoms. The light sources are lasers that drive two different transitions with one common level. Most authors attribute the effect to quantum interference in the medium, involving two indistinguishable paths leading to the common state. In addition to the phenomenon of electromagnetically induced transparency, the dispersive properties of the medium are significantly modified as has been recently demonstrated by the impressive reduction\(^7\)\(^8\) of the group velocity of a light pulse to only 17 m/s and the “freezing” of a light pulse in an atomic medium.\(^5\)\(^6\)

In this paper we develop a classical analog of electromagnetically induced transparency and discuss a simple experiment that can be carried out in an undergraduate physics laboratory. The stimulated resonance Raman effect has already been modeled classically in a system of three coupled pendula by Hemmer and Prentiss.\(^5\) Even though many aspects of electromagnetically induced transparency were already present in the stimulated Raman effect, as can be seen in Ref. 7, EIT had not been observed at that time,\(^1\) and the dispersive features were not considered. Our model involves only two oscillators with linear coupling. The experiment is performed with RLC circuits. The interest of such an experiment and the purpose of this paper is to enable undergraduate students to develop their physical intuition for the coherent phenomena that occur in atomic systems.

II. THEORETICAL MODEL

We will focus our attention on the simulation of EIT in media composed of three-level atoms in the so-called Λ configuration interacting with two laser fields (see Fig. 1). The quantum states $|\ 1\rangle$ and $|\ 2\rangle$ represent the two ground states of the atom, and the state $|\ 0\rangle$ is the excited atomic level.

The laser field that drives the atomic transition between the states $|\ 1\rangle$ and $|\ 0\rangle$ is the “pumping (or pump) laser,” and the laser that drives the transition between the states $|\ 2\rangle$ and $|\ 0\rangle$ is the “probe laser.” A typical experiment consists of scanning the frequency of the probe laser and measuring its transmitted intensity. In the absence of the pump laser, one observes a standard absorption resonance profile. Under certain conditions, the addition of the pump laser prevents absorption in a narrow portion of the resonance profile, and the transmitted intensity as a function of the probe frequency has a narrow peak of induced transparency.

The effect depends strongly on the pump beam intensity. Typically the pump laser has to be intense so that the Rabi frequency Ω_1 associated with the transition from state $|\ 1\rangle$ to $|\ 0\rangle$ is larger than all damping rates present (associated with spontaneous emission from the excited state and other relaxation processes). One of the effects of the pump beam is to induce an ac-Stark splitting of the excited atomic state. The probe beam will therefore couple state $|\ 2\rangle$ to two states instead of one. If the splitting (which varies linearly with the Rabi frequency Ω_1) is smaller than the excited state width, the two levels are indistinguishable, and one expects quantum interference in the probe absorption spectrum. As the Rabi frequency Ω_1 increases, the splitting becomes more pronounced and indistinguishability is lost. The absorption spectrum becomes a doublet called the Autler–Townes doublet.\(^5\)\(^6\) We will keep this picture in mind as we discuss a classical system with the same features.

EIT-like phenomena with masses and springs

We will model the atom as a simple harmonic oscillator, consisting of particle 1 with mass m_1 attached to two springs with spring constants k_1 and K (see Fig. 2). The spring with constant k_1 is attached to a wall, while the other spring is attached to a second particle of mass m_2 and initially kept immobile at a fixed position. Particle 1 is also subject to a harmonic force $F_x = F e^{-i(o_x t + \phi)}$. If we analyze the power transferred from the harmonic source to particle 1 as a function of frequency o_x, we will observe the standard resonance absorption profile discussed above [peaked at frequency $o^2_\Lambda = (k_1 + K)/m_1$]. If we now allow particle 2 to move, subject only to the forces from the spring of constant K and a third spring of constant k_2 attached to a wall (see
We have set up positions:\n\[x_0 \text{ and } x_2 \text{ from their respective equilibrium positions:} \]
\[\ddot{x}_1(t) + \gamma_1 \dot{x}_1(t) + \omega^2 x_1(t) - \Omega^2 x_2(t) = \frac{F}{m} e^{-i\omega_1 t}, \]
(1a)\n\[\ddot{x}_2(t) + \gamma_2 \dot{x}_2(t) + \omega^2 x_2(t) - \Omega^2 x_1(t) = 0. \]
(1b)\nWe have set \(\phi_s = 0 \) for the probe force without loss of generality. We also let \(\Omega^2 = K/m \), the frequency associated with the coherent coupling between the pumping oscillator and the oscillator modeling the atom; \(\gamma_1 \) is the friction constant associated with the energy dissipation acting on particle \(1 \) (which simulates the spontaneous emission from the atomic excited state); and \(\gamma_2 \) is the energy dissipation rate of the pumping transition.

Because we are interested in the power absorbed by particle \(1 \) from the probe force, we seek a solution for \(x_1(t) \). Let us suppose that \(x_1(t) \) has the form\n\[x_1(t) = Ne^{-i\omega_1 t}, \]
(2)\nwhere \(N \) is a constant. After assuming a similar expression for \(x_2(t) \) and substituting in Eq. (1a), we find
\[x_1(t) = \frac{(\omega^2 - \omega_s^2 - i \gamma_2 \omega_s) F e^{-i\omega_1 t}}{m[(\omega^2 - \omega_s^2 - i \gamma_1 \omega_s)(\omega^2 - \omega_s^2 - i \gamma_2 \omega_s) - \Omega^4]} \]
(3)\nThen if we compute the mechanical power \(P(t) \) absorbed by particle \(1 \) from the probe force \(F_s \),
\[P(t) = Fr e^{-i\omega_1 t} \]
(4)\nwe find for the power absorbed during one period of oscillation of the probe force
\[P_s(\omega_s) = - \frac{2 \pi F^2 \omega_s (\omega^2 - \omega_s^2 - i \gamma_2 \omega_s)}{m[(\omega^2 - \omega_s^2 - i \gamma_1 \omega_s)(\omega^2 - \omega_s^2 - i \gamma_2 \omega_s) - \Omega^4]} \]
(5)\nIn Fig. 3 we show the real part of \(P_s(\omega_s) \) for six values of the coupling frequency \(\Omega_r \) expressed in frequency units. These curves were obtained using the values \(\gamma_1 = 4.0 \times 10^{-2} \), \(\gamma_2 = 1.0 \times 10^{-7} \), and \(\omega_0 = \sqrt{K/m} = 2.0 \), all expressed in the same frequency units. The amplitude \(F/m \) was equal to 0.1 force per mass units.

For \(\Omega_r = 0 \), we have a typical absorption profile, with a maximum probe power absorption for \(\delta = 0 \), where \(\delta = \omega_s - \omega \) is the detuning between the probe and the oscillator frequencies. If we increase \(\Omega_r \) to 0.1, we observe the appearance of a narrow dip in the absorption profile of \(P_s(\omega_s) \). The zero absorption at the center frequency of the profile is a result of destructive interference between the normal modes of oscillation of the system. A further increase of the cou-
analogous to electromagnetically induced transparency. It is also important to note that this very steep normal dispersion is responsible for the recently observed slow propagation of light,2–4 and the “freezing” of a light pulse in an atomic medium.5,6 It should therefore be possible to observe such propagation effects by considering absorption in a medium consisting of a series of mechanical “atom analogs.”

Our theoretical model is not the only classical model that simulates EIT-like phenomena. As mentioned previously, in our model the pump field is replaced by a harmonic oscillator, simulating a quantum-mechanical description of the field. In most theoretical descriptions of EIT in atomic media, the pump and probe fields are classical. The mechanical analog to this description would then involve only one oscillator (one particle of mass m). In this latter model, it becomes apparent that EIT arises directly from destructive interference between the oscillatory forces driving the particle’s movement. To keep the discussion simple, we have chosen not to present this description here. Furthermore, it is not related to the experimental results presented below.

III. EIT-LIKE PHENOMENA IN COUPLED RLC CIRCUITS: A SIMPLE UNDERGRADUATE LABORATORY EXPERIMENT

An experiment to observe the predictions of Sec. II, although possible, would not be straightforward. Instead, we use the well-known analogy between mechanical oscillators and electric circuits to perform a simple experiment. The electrical analog to the system of Fig. 2 is the circuit shown in Fig. 5, where the circuit mesh consisting of the inductor L1 and the capacitors C1 and C simulates the pumping oscillator, and the resistor R1 determines the losses associated with that oscillator. The atom is modeled using the resonant circuit formed by the inductor L2 and the capacitors C2 and C; the resistor R2 represents the spontaneous radiative decay from the excited level. The capacitor C, belonging to both circuit meshes, models the coupling between the atom and the pumping field, and determines the Rabi frequency associated with the pumping transition. In this case, the probe field is simulated by the frequency-tunable voltage source V5.

The circuit mesh used to model the atom has only one resonance frequency representing the energy of the atomic excited level. That is, the probability of excitation of this circuit will be maximal when the applied harmonic force is on resonance. Because in this case we have two possible paths to accomplish this excitation, we are dealing with the analog of a three-level atom in the Λ configuration. Namely, the oscillator corresponding to the atom analog can be excited directly by the applied voltage V5 or by the coupling to the pumping oscillator.

Here again the induced transparency is investigated by analyzing the frequency dependence of the power \(P_2(\omega_2) \) transferred from the voltage source V5 to the resonant circuit \(R_2L_2C_2 \).
Here with Eq. \(v \) as a function of the frequency \(\omega \), we have the following system of coupled differential equations for the charges \(q_1(t) \) and \(q_2(t) \):

\[
\ddot{q}_1(t) + \gamma_1 \dot{q}_1(t) + \omega_1^2 q_1(t) - \Omega_2^2 q_2(t) = 0, \tag{8a}
\]

\[
\ddot{q}_2(t) + \gamma_2 \dot{q}_2(t) + \omega_2^2 q_2(t) - \Omega_1^2 q_1(t) = \frac{V_S(t)}{L_2}. \tag{8b}
\]

Table I. Correspondences between the mechanical and electrical parameters.

<table>
<thead>
<tr>
<th>Mechanical model</th>
<th>Electrical model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_1) ((\gamma_2))</td>
<td>(R_1/L_1) ((R_2/L_2))</td>
</tr>
<tr>
<td>(m_1) ((m_2))</td>
<td>(L_1) ((L_2))</td>
</tr>
<tr>
<td>(k_2) ((k_3))</td>
<td>(1/C_1) ((1/C_2))</td>
</tr>
<tr>
<td>(K)</td>
<td>(1/C)</td>
</tr>
<tr>
<td>(x_2) ((x_3))</td>
<td>(q_1) ((q_2))</td>
</tr>
<tr>
<td>((F/m)e^{-i\omega t})</td>
<td>(V_0(t)/L_2)</td>
</tr>
</tbody>
</table>

\[
P_2(\omega_s) = \Re\{V_S T_{2}^2\},
\]

where \(V_S \) and \(T_2 \) are, respectively, the complex representations of the voltage \(V_S \) and the transfer function \(T_2 \). The equivalent capacitor \(C_{eq} \) is the series combination of \(C \) and \(C_2 \):

\[
C_{eq} = \frac{CC_2}{C + C_2}.
\]

If we set \(L_1 = L_2 = L \) (\(m_1 = m_2 = m \) in the mechanical model) and write the equations for the currents \(i_1(t) = q_1(t) \) and \(i_2(t) = q_2(t) \) shown in Fig. 5, we find the following system of coupled differential equations for the charges \(q_1(t) \) and \(q_2(t) \):

\[
\ddot{q}_1(t) + \gamma_1 \dot{q}_1(t) + \omega_1^2 q_1(t) - \Omega_2^2 q_2(t) = 0, \tag{9a}
\]

\[
\ddot{q}_2(t) + \gamma_2 \dot{q}_2(t) + \omega_2^2 q_2(t) - \Omega_1^2 q_1(t) = \frac{V_S(t)}{L_2}. \tag{9b}
\]

Table I. Correspondences between the mechanical and electrical parameters.

<table>
<thead>
<tr>
<th>Mechanical model</th>
<th>Electrical model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_1) ((\gamma_2))</td>
<td>(R_1/L_1) ((R_2/L_2))</td>
</tr>
<tr>
<td>(m_1) ((m_2))</td>
<td>(L_1) ((L_2))</td>
</tr>
<tr>
<td>(k_2) ((k_3))</td>
<td>(1/C_1) ((1/C_2))</td>
</tr>
<tr>
<td>(K)</td>
<td>(1/C)</td>
</tr>
<tr>
<td>(x_2) ((x_3))</td>
<td>(q_1) ((q_2))</td>
</tr>
<tr>
<td>((F/m)e^{-i\omega t})</td>
<td>(V_0(t)/L_2)</td>
</tr>
</tbody>
</table>

There are many ways of measuring the power \(P_2(\omega_s) \). We have chosen to measure the current flowing through the inductor \(L_2 \), which has the same frequency dependence as \(P_2(\omega_s) \). We actually measure the voltage drop across the inductor \(L_2 \) and integrate it to find a voltage proportional to the current flowing through the inductor. This voltage is an oscillatory signal at the frequency \(\omega_s \). We are interested in the amplitude of this signal, which we read from an oscilloscope.

In Fig. 6 we show the measured amplitudes corresponding to four values of the coupling capacitor \(C \). For each value of \(C \) a measurement was made with the switch open (open square) and with the switch closed (open circle). In Table II we give the specifications of the electronic components used in the experiment.

As we can see from Fig. 6, in the open switch configuration (no pumping), we have a maximum coupling of electrical power from the voltage source \(V_S \) to the resonant circuit \(R_2 L_2 C_{eq} \) at the resonant frequency (zero detuning). When

![Fig. 6. The power transferred to the circuit R_2 L_2 C_{eq} as a function of the frequency \(\omega_s \) for different values of the coupling capacitor C. The values of C are (a) C=0.0106 \(\mu \)F, with resonance frequency \(f_{res} = \omega_2/2\pi = 20.0 \) kHz, (b) C=0.150 \(\mu \)F, \(f_{res} = 19.5 \) kHz, (c) C=0.096 \(\mu \)F, \(f_{res} = 21.5 \) kHz, (d) C=0.050 \(\mu \)F, \(f_{res} = 26.5 \) kHz. The open squares correspond to measurements made with the switch SW open (see Fig. 5), which is equivalent to turning the pump off. The open circles correspond to measurements made with the switch closed. The solid curves are a comparison to the theory presented in Sec. III. The evolution from EIT to the Autler–Townes regime is clearly observed.](image-url)
the switch is closed, that is, when the pumping circuit (pumping force) is acting on the resonant circuit $R_2 L_2 C_e$, the absorption of the electrical power of the voltage source at zero detuning is depressed. This fact corresponds to the transparent condition and is more pronounced when the value of the coupling capacitor is reduced, corresponding to an increment of the Rabi frequency of the pumping field in electromagnetically induced transparency in atomic systems.

Here, as in the experiments with atoms and light, the observed transparency can be interpreted as a destructive interference. In this case, the interference is between the power served transparency can be interpreted as a destructive interference between the two normal modes of the coupled oscillators. For the minimum value of C used in our experiment [see Fig. 6(d)], we observe two absorption peaks, which are the classical analog of the Autler–Townes effect and correspond to the splitting of these normal modes. We should also point out that the smallest coupling value we used [Fig. 6(a)] does not lead to an infinitely narrow transparency peak as would be expected from the value $R_1 = 0$. This behavior is probably due to internal residual series resistances of the components we used.

The solid lines shown in Fig. 6 represent the theoretical results obtained using Eq. (9) or (12). These curves are not expected to fit the experimental data exactly because our measurements are affected by the frequency response of the integrator used to derive the voltage proportional to the current in the inductor L_2. It is not our purpose to analyze in detail the deviations of our system from the ideal model proposed.

It is also possible to measure the dispersive response of our atom analog. One has to analyze the relative phase between the oscillating current flowing through inductor L_2 and the phase of the applied voltage. This measurement is best performed with a lock-in amplifier. Because this equipment is not always available in undergraduate laboratories, we prefer to describe a simple procedure that allows us to observe the qualitative features that are predicted theoretically (see Fig. 4). We observe the oscillatory signal on the oscilloscope corresponding to the current flowing through the inductor, with the trigger signal from the voltage source $V_S(t)$. The phase of the sinusoidal signal is observed to “jump” as we scan ω_s across the absorption resonance and transparency region. If we scan by increasing the value of ω_s, we observe three abrupt phase variations, with the intermediate one being opposite to the other two. This behavior is exactly what we would expect from Fig. 4.

IV. CONCLUSION

We have shown that EIT can be modeled by a totally classical system. Our results extend the results of Hemmer and Prentiss \cite{2} to EIT-like phenomena, with the use of only two coupled oscillators instead of three. We also treat the dispersive response of the classical oscillator used to model the three-level atom. We performed an experiment with coupled RLC circuits and observed EIT-like signals and the classical analog of the Autler–Townes doublet as a function of the coupling between the two RLC circuits. The experiment can be performed in undergraduate physics laboratories and should help form students’ physical intuition on coherent phenomena that take place in atomic vapors.

ACKNOWLEDGMENTS

This work was supported by the Brazilian agencies FAPESP, CAPES, and CNPq.

\cite{6}Electronic mail: nussen@if.usp.br
\cite{7}See, for example, S. E. Harris, “Electromagnetically induced transparency,” Phys. Today \textbf{50} (7), 36–42 (1997).
\cite{15}As discussed, the induced transparency results from the existence of two possible paths for the absorption of the probe energy to excite the oscillation of particle 1. We can see these paths in Eq. (5) by rewriting it as a superposition of the normal modes of oscillation of the coupled oscillators.