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Abstract
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failure. We give examples in both the competing risks and mark variable settings and discuss details
concerning the implementation of our methods.
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1. Introduction

In the standard competing risks model, a unit or subject is exposed to several risks at the
same time, but the actual failure is attributed to one cause. In studies with mark variables
interest lies in exploring the association between a subject’s failure time and the level of a
mark variable that is measured only when the subject fails. We only observe (T , �), where
T is the time until failure and � is the cause of failure or the level of the mark variable at the
time of failure. Typically, in both situations, statistical inference is based on the sub-survival
functions,

Si(t) = P(T � t, � = i), i = 1, . . . , r

or the cumulative incidence functions (CIF),

Fi(t) = P(T � t, � = i), i = 1, . . . , r .

Note that
∑r

i=1 Si(t) = ST (t) and
∑r

i=1 Fi(t) = FT (t) where ST and FT are the survival
function and the distribution function of T, respectively.

An alternative approach is to compare the cause (mark) specific hazard rates, which for
continuous failure times are defined by

hi(t) = lim
�t→0

1

�t
P (t �T < t + �t, � = i|T � t), i = 1, . . . , r ,

and for discrete T are given by

P(T = t, � = i|T � t).

The overall hazard rate for time to failure is given by h(t) = ∑r
i=1 hi(t). In the continuous

case the sub-survival functions and the cumulative incidence functions can be expressed in
terms of the cause specific hazard rates by the relations,

Si(t) =
∫ ∞

t

hi(u)ST (u) du, Fi(t) =
∫ t

0
hi(u)ST (u) du, (1.1)

for i = 1, 2, . . . , r . Similar relations can be established for the discrete case.
In many applications within both the competing risks setting and the studies involving

mark variables it is of interest to distinguish between the following alternatives: (i) the
cumulative incidence functions are equal, (ii) at least one CIF is greater than the others,
(iii) the CIFs are ordered according to a prespecified order. For example, one may wish to
investigate whether there is any evidence in the data that the CIFs are ordered according to
the level of the mark variable. Possible applications where one may be interested in testing
this type of association include (a) studies that investigate the relationship between survival
time and a quality of life score, (b) studies that relate survival time to accumulated medical
costs, (c) AIDS clinical trial studies investigating the association between failure time and
the extent of drug-selected genetic evolution between baseline and failure, an example of
which is presented in this paper.

In this paper, we consider the problem of testing the null hypothesis,

H0 : F1(t) = F2(t) = · · · = Fr(t) for t �0, (1.2)
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against the alternative H1 − H0, where

H1 : F1(t)�F2(t)� · · · �Fr(t), for t �0. (1.3)

We also consider the hypothesis test:

H1 versus H2 − H1, (1.4)

where H2 imposes no constraints on the cumulative incidence functions, Fi, i =1, 2, . . . , r .
We note here that H0 can be expressed in terms of the sub-survival functions, H0:S1(t)=

S2(t)=· · ·=Sr(t), or in terms of the cause (mark) specific hazard rates, H0:h1(t)=h2(t)=
· · · = hr(t). However, H1 in (1.3) is not equivalent to

H′
1 : S1(t)�S2(t)� · · · �Sr(t).

It is plausible that the cumulative incidence functions are ordered but the corresponding
sub-survival functions cross each other and vice versa.

Note that the hypothesis of ordered cumulative incidence functions, H1, can be expressed
as

H1 : P(� = i|T � t)�P(� = i + 1|T � t) i = 1, 2, . . . , r − 1 for t �0.

In this form H1 − H0 has the interpretation that given that a unit has failed by time t , the
conditional probability of its failing from cause i + 1 (or having a mark variable level equal
to i + 1) is uniformly greater than that from cause i (or having a mark variable equal to i).

Several tests are available in the literature for the special case of testing the equality of
two competing risks (r = 2). These have been referenced in Aly et al. (1994), El Barmi and
Kochar (2003) and in the review paper by Kochar (1995).

We note here that Aly et al. (1994) and Sun and Tiwari (1998) consider the problem of
testing the null hypothesis, H0 : F1(t) = F2(t) against the alternatives

H1 : F1(t)�F2(t), t �0,

and

H′
1 : S1(t)�S2(t), t �0,

with strict inequality for some t. Kochar et al. (2002) give a class of tests for testing the
equality of two cause specific hazard rates and this class contains the test of Aly et al. (1994)
as a special case. Carriere and Kochar (2000) assume continuous failure times and obtain a
distribution-free test for the problem of testing H0 against H′

1 − H0. Lam (1998) proposed
a class of distribution-free tests for testing the equality of k cause specific hazard rates.
Kulathinal and Gasbarra (2002) considered the problem of testing the equality of cause
specific hazard rates corresponding to m competing risks in k groups. El Barmi and Kochar
(2002) consider the same problem with discrete failure times and use the likelihood ratio
to test H0 versus H′

1 − H0.
In this paper we investigate inference based on the cumulative incidence function as-

suming discrete failure times and mark variables. Discrete failure times arise in competing
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risk and mark variable studies when the recorded times to failure are grouped in inter-
vals. A discrete mark variable can result by grouping a continuous mark variable in in-
tervals or by observing an ordinal categorical variable at time of failure. We note here
that for this framework, and within the competing risks context, Dykstra et al. (1995) ob-
tained the nonparametric maximum likelihood estimates (NPMLEs) of the cause specific
hazard rates under the ordered alternative and derived the likelihood ratio test statistic
for testing the equality hypothesis of the cause specific hazard rates against the ordered
alternative.

Besides many applications in the health sciences, our procedure has potential applica-
tions in industrial accelerated life tests. While comparing different brands of a component,
the components may be tested in series. The components are functioning in the same en-
vironment and their times to failure are generally dependent. The system fails as soon as
one of the components fails. Our methods allow testing whether components supplied by
different suppliers are of the same quality against the ordered alternative, thus leading to
early identification of weak components.

In Section 2 we obtain maximum likelihood estimators of the cumulative incidence
functions Fi, i = 1, 2, . . . , r , under H0 as well as under H1. In Section 3 we derive the
likelihood ratio test for testing H0 versus H1 − H0, and the likelihood ratio test for testing
H1 versus H2 −H1 and obtain their asymptotic null distribution. In Section 4 we present two
examples, one from a competing risks study and one from a clinical trial study investigating
the association between survival and a mark variable. The more technical details related to
the proofs of the theorems behind our results as well as details on the algorithms needed
for the computation of our test statistics and their asymptotic p-values are given in the
Appendix. Finally, we note that this work is closely related to that of El Barmi and Dykstra
(1995) on testing for and against a set of linear inequality constraints in a multinomial
setting.

2. Maximum likelihood estimation

Suppose that we have n individuals exposed to r risks and assume the times and causes
of failure represent a random sample from (T , �). Denote the observations by (T1, �1), . . . ,

(Tn, �n).
In this section we obtain nonparametric maximum likelihood estimates of the cumulative

incidence functions, Fi, i = 1, 2, . . . , r , under H0, H1, and H2.
For the special case, r =2, Peterson (1977) derived the unrestricted generalized nonpara-

metric MLEs of the two sub-survival functions. The generalized NPMLEs put their weights
on the set of observations. Similarly it can be shown that for more than two competing
risks (r > 2), the unrestricted generalized NPMLE of the ith cumulative incidence function,
Fi(t), is

F̂i(t) =
∑n

j=1 I (Tj � t, �j = i)

n
.

In this paper we assume that failures occur on the discrete time points t1 < t2 < · · · < tk
(t0 =0 and tk+1 =∞). For i =1, 2, . . . , r and j =1, 2, . . . , k, let pij denote the probability
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of failure from cause i at time tj and dij denote the number of failures from cause i at time
tj . Then

Fi(tj ) = pr(T � tj , � = i) =
j∑

l=1

pil , (2.1)

i =1, 2, . . . , r; j =1, 2, . . . , k. We write the likelihood function as Ln =∏r
i=1

∏k
j=1 p

dij

ij ,
and the corresponding log-likelihood function as

Ln = n

r∑
i=1

k∑
j=1

p̂ij ln pij , (2.2)

where

p̂ij =
∑n

l=1 I [Tl = tj , �l = i]
n

= dij

n
(2.3)

is the usual unrestricted MLE of pij .
It is easy to show that under H0 : F1 =F2 =· · ·=Fr , the restricted maximum likelihood

estimate of pij is given by

p̂
(0)
ij =

∑n
l=1 I [Tl = tj ]

rn
= d.j . (2.4)

To facilitate the discussion on finding the maximum likelihood estimates of the pij s under
the hypothesis H1, we first introduce some notation. Note that the restriction Fu �Fu+1
implies k constraints. Hence, for each u ∈ {1, 2, . . . , r − 1} define the k constraint matrices

x
(u,s)
i,j =

{1 if i = u and j = 1, 2, . . . , s,

−1 if i = u + 1 and j = 1, 2, . . . , s,

0 otherwise.
s ∈ {1, 2, . . . , k},

It is easily seen that Fu �Fu+1 is equivalent to

r∑
i=1

k∑
j=1

x
(u,s)
i,j pij �0, s = 1, 2, . . . , k.

Therefore the maximum likelihood estimates of the pij s under H1 are the maximizers of
the log-likelihood, Ln, in (2.2), subject to the k × (r − 1) constraints

r∑
i=1

k∑
j=1

x
(u,s)
i,j pij �0, u = 1, 2, . . . , r − 1, s = 1, 2, . . . , k. (2.5)

The solution to this optimization problem does not exist in a closed form but can be obtained
by using an iterative algorithm based on the Fenchel duality (El Barmi and Dykstra, 1994).
This algorithm is presented in Appendix A. We will denote the restricted MLEs under H1

by p̂
(1)
ij , i = 1, . . . , r; j = 1, . . . , k.
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3. Hypotheses testing

Following the discussion and notation introduced in the previous section, write H0 and
H1 as

H0 :
r∑

i=1

k∑
j=1

x
(u,s)
ij pij = 0, u = 1, 2, . . . r − 1, s = 1, 2, . . . , k (3.1)

and

H1 :
r∑

i=1

k∑
j=1

x
(u,s)
ij pij �0, u = 1, 2, . . . r − 1, s = 1, 2, . . . , k. (3.2)

Let � ⊂ {(u, s), u = 1, 2, . . . , r − 1, s = 1, 2, . . . , k} be the indices that correspond to an
arbitrary subset of the (r − 1) × k equality constraints in (3.1) and let d denote its cardinal;
i.e. d = card(�).

First, consider testing H0 against H1,� − H0 where

H1,� :
k∑

i=1

k∑
j=1

x
(u,s)
ij pij = 0, (u, s) ∈ �. (3.3)

It is clear from Eq. (2.2) that the log-likelihood ratio test statistic for testing H0 versus
H1,� − H0 is given by

T01,� = −2n

r∑
i=1

k∑
j=1

p̂ij [ln(p̂
(0)
ij ) − ln(p̂ij (�))], (3.4)

where p̂
(0)
ij and p̂ij (�), i=1, . . . , r; j =1, . . . , k, are the MLEs of pij under H0 and under

H1,�, respectively.
It is a fairly standard exercise to show that the asymptotic distribution of T01,� is a

chi-square distribution. Nevertheless, we give a detailed proof of this, especially since the
arguments contained in our proof are crucial in obtaining the asymptotic distributions of the
likelihood ratio test statistics for testing (a) H0 versus H1 − H0, and (b) H1 versus H2 − H1.

To derive the asymptotic distributions of the log-likelihood ratio statistic in (3.4), we work
with the (rk − 1) column vector p = (p11, . . . , prk−1)

′ of cell probabilities. Corresponding
to this parameterization, let p̂ denote the unrestricted MLE of p. Also let p̂(0) and p̂(�)

denote the MLEs of p under H0 and H1,�, respectively. Let B be the (rk − 1) × (rk − 1)

matrix:

B = diag(p) − pp′. (3.5)

When in the above matrix we let p=p0, the true value of p, we obtain B0 =diag(p0)−p0p′
0,

the asymptotic covariance matrix of
√

n(p̂ − p0).
Let H be an (rk − 1) × (r − 1)k matrix given by

H = [x(u,s)
ij − x

(u,s)
rk ]1�u� r−1,1� s �k,1� i � r,1� j �k,(i,j) �=(r,k).
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We note here that the columns of H define the (r − 1)k order constraints implied by H1.
That is, we can write H0 and H1 in Eqs. (3.1) and (3.2) as

H0 : H′p = e (3.6)

and

H1 : H′p�e, (3.7)

where e is an (r −1)k×1 column vector with zeroes everywhere except for the last element
which is equal to 1. For an illustration of the matrix H see Examples 1 and 2.

Let H(�) be the (rk − 1) × d submatrix made of columns of H whose (u, s) index is in
the set � (recall that d = card(�)). Clearly the hypothesis H1,� in Eq. (3.3) can be expressed
as

H1,� : H′(�)p = e∗, (3.8)

where e∗ is the appropriate subvector of e in (3.7). The quantity p̂(�), the MLE of p under
H1,�, is the maximizer of the log-likelihood in (2.2) subject to the equality constraints in
(3.3) or equivalently in (3.8). It can be obtained using the El Barmi and Dykstra (1994)
algorithm, shown in Appendix A.

Let the d × 1 column vector �∗(�) = [�∗
1, . . . , �

∗
d ]′ contain the Lagrange multipliers

corresponding to the maximization of (2.2) subject to (3.8). Define the (r − 1)k × (r − 1)k

matrix R, the (rk − 1) × (rk − 1) matrices P and P(�) and the d × d matrix R(�) by

R = (H′BH)−1,

R(�) = (H′(�)BH(�))−1,

P = B − BH(H′BH)−1H′B,

P(�) = B − BH(�)(H′(�)BH(�))−1H′(�)B. (3.9)

Let B0, R0, R0(�), P0, P0(�) denote the values of the matrices in (3.5) and (3.9) when
evaluated at p = p0, where p0 is the true value of p. It is shown in Appendix B that, under
H0,

√
n(p̂(0) − p0, p̂(�) − p0, �

∗(�))
d−→ N(0, V0(�)), (3.10)

where the variance-covariance matrix is given by

V0(�) =
[P0 P0 0

P0 P0(�) 0
0 0 R0(�)

]
.

The following theorem gives the asymptotic null distribution of T01,�, the log-likelihood
ratio test statistic in (3.4).

Theorem 3.1. 1. Under H0,

√
n[p̂(0) − p̂(�)] d−→ N(0, P0 − P0(�)),
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2. Let T01,� be the log-likelihood ratio test statistic for testing H0 versus H1,� − H0. Let
d = card(�) denote the cardinal of �. Under H0, we have

T01,�
d−→ �2

k(r−1)−d .

Proof. The proof is given in Appendix B. �

We now consider testing the two hypotheses tests of H0 versus H1 − H0 and H1 versus
H2 − H1.

Let p̂(1) denote the restricted MLE of p under H1; i.e. under the constraints in (3.7), and
let

T01 = −2n

r∑
i=1

k∑
j=1

p̂ij [ln(p̂
(0)
ij ) − ln(p̂

(1)
ij )],

T12 = −2n

r∑
i=1

k∑
j=1

p̂ij [ln(p̂
(1)
ij ) − ln(p̂ij )]

denote the log-likelihood ratio test statistics for testing H0 versus H1 − H0 and H1 versus
H2 − H1, respectively.

For any positive definite matrix W, define Q(W) as the upper quadrant Gaussian proba-
bility,

Q(W) = P(N(0, W) > 0), (3.11)

and let

a0(p) = Q(H′BH) = Q(R−1),

ad(p) =
∑

�,card(�)=d

Q(R(�))Q(R−1(�c) − H′(�c)BH(�)R−1(�)H′(�)BH(�c)),

d = 1, . . . , k(r − 1) − 1,

ak(r−1)(p) = Q(R) = 1 −
k(r−1)−1∑

d=0

ad , (3.12)

where �c denotes the complement of �. H(�) (H(�c)) is the submatrix of H with the columns
determined by the indices in � (�c).

The following theorem gives the joint asymptotic distribution of (T01, T12), under H0.

Theorem 3.2. Under H0 and for any t1 > 0 and t2 > 0, we have

lim
n→∞ P(T01 � t1, T12 � t2) =

k(r−1)∑
d=0

ad(p0)P (�2
k(r−1)−d � t1)P (�2

d � t2) (3.13)

with �2
0 ≡ 0.

Proof. The proof is given in Appendix C. �
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In particular, the null asymptotic distribution of the log-likelihood ratio test statistic for
testing H0 versus H1 − H0 is obtained by

lim
n→∞ P(T01 � t) =

k(r−1)∑
d=0

ad(p0)P (�2
k(r−1)−d � t) (3.14)

with �2
0 ≡ 0. Similarly the asymptotic distribution of the log-likelihood ratio test statistic

for testing H1 versus H2 −H1, under the hypothesis of equality of the cumulative incidence
functions, is obtained by

lim
n→∞ P(T12 � t) =

k(r−1)∑
d=0

ad(p0)P (�2
d � t) (3.15)

with �2
0 ≡ 0. In practice, since p0, the true value of p, is unknown, the weights ad(p0), as

defined in (3.12), are estimated by ad(p̂(0)), their consistent estimators under H0. That is,
let B̂(0) be the estimated covariance matrix of p̂, under H0, obtained by setting p = p̂(0) in
Eq. (3.5). As indicated by (3.12), computation of the estimated asymptotic p-values rests in
obtaining the weights, ad(p̂(0)), each of which involves estimation of multiple multivariate
quadrant probabilities, defined in (3.11). These can be efficiently obtained after successive
applications of the Sweep operator to the matrix H′B̂(0)H combined with a routine for
approximating Gaussian quadrant probabilities. The matrix H′B̂(0)H involves the sample
cumulative frequency of failures and is given in the examples. Details on the efficient
estimation of the weights are given in Appendix D.

If r=2 which is the case discussed in El Barmi and Kochar (2002),ad(p)=p(d, k, pr ), d=
0, 1, . . . , k, where p(0, k, pr ) is the probability that Epr [U|I] is identically zero and
p(d, k, pr ), d = 1, 2, . . . , k, is the probability that Epr [U|I] has d distinct values. Here
pr =(p21, . . . , p2k)

′, U=(U1, U2, . . . , Uk)
′ where Uis are independent and Ui has a normal

distribution with mean 0 and variance 1/p2i and Epr [U|I] is the least squares projection
of U onto I = {x ∈ Rk, 0�x1 �x2 � · · · �xk}. So that for testing H0 against H1 − H0, if
there is evidence that p21, p22, . . . , p2k do not vary too much, a test based on equal weights
critical value will have a significance level reasonably close to the reported value. These
equal weights level probabilities can be found in Robertson et al. (1988). Since we have
0 as an upper bound in the cone I, the value k should be increased by 1 to account for
it. As pointed out in El Barmi and Kochar (2002), this is like having k + 1 normal means
indexed by 0, 1, 2, . . . , k with the weight associated with the variable indexed by 0 being
∞. Finally, they also showed that

sup
p∈H0

lim
n→∞ P(T01 � t) = 1

2 [P(�2
k−1 � t) + P(�2

k � t)] (3.16)

and

sup
p∈H1

lim
n→∞ P(T12 � t) = sup

p∈H0

lim
n→∞ P(T12 � t)

=
k+1∑
d=1

(
k

d − 1

)
2−kP (�2

d−1 � t). (3.17)
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We have not being able to extend these results to r > 2 but from the well known properties
of the weights of a chi-bar square distribution (3.16) always hold with � instead of =.

4. Examples

Example 1. For our first illustration we consider the mortality data on RFM strain male
mice reported in Hoel (1972). Two risks are considered. The second risk is cancer and the
first combines all other risks. The failure times are grouped into k = 6 categories. Thus, we
have two competing risks, r = 2, and k = 6 time periods. In this case the constraints are

s∑
j=1

p1j �
s∑

j=1

p2j , s = 1, . . . , 6,

and the matrix H is an 11 × 6 matrix and is given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 2
0 1 1 1 1 2
0 0 1 1 1 2
0 0 0 1 1 2
0 0 0 0 1 2
0 0 0 0 0 2

−1 −1 −1 −1 −1 0
0 −1 −1 −1 −1 0
0 0 −1 −1 −1 0
0 0 0 −1 −1 0
0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Under H0 : ∑s
j=1 p1j = ∑s

j=1 p2j , s = 1, 2, . . . , 6, we can write the vector p0 as

p0 = [p1, p2, p3, p4, p5, p6, p1, p2, p3, p4, p5]′.
It is easy to show that

H′B0H=

2

⎡
⎢⎢⎢⎢⎢⎣

p1 p1 p1 p1 p1 p1
p1 (p1 + p2) (p1 + p2) (p1 + p2) (p1 + p2) (p11 + p12)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3) (p1 + p2 + p3) (p1 + p2 + p3)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4 + p5) (p1 + p2 + p3 + p4 + p5)

p1 (p1 + p2) (p1 + p2 + p3) (p1 + p2 + p3 + p4) (p1 + p2 + p3 + p4 + p5) 1
2

⎤
⎥⎥⎥⎥⎥⎦ .

The data and estimates are shown in Table 1. In this table the column labeled d.j is the
total number of failures at time j, combined over both causes, and the column labeled D.j

contains the corresponding cumulative counts.
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Table 1

No. Interval d1j d2j d.j D.j p̂1j p̂2j p̂
(1)
1j

p̂
(1)
2j

1 (0, 350) 15 18 33 33 0.1515 0.1818 0.1515 0.1818
2 [350, 450) 6 7 13 46 0.0606 0.0707 0.0606 0.0707
3 [450, 550) 6 4 10 56 0.0606 0.0404 0.0606 0.0404
4 [550, 650) 8 18 26 82 0.0808 0.1818 0.0808 0.1818
5 [650, 750) 2 12 14 96 0.0202 0.1212 0.0202 0.1212
6 [750, 850) 2 1 3 99 0.0202 0.0101 0.0152 0.0152

The matrix, H′B̂(0)H, needed for estimation of the weights in (3.13)–(3.15), is given by

H′B̂(0)H = 1

99

⎡
⎢⎢⎢⎢⎢⎣

33 33 33 33 33 33
33 46 46 46 46 46
33 46 56 56 56 56
33 46 56 82 82 82
33 46 56 82 96 96
33 46 56 82 96 99

⎤
⎥⎥⎥⎥⎥⎦ .

The estimated weights needed for the null asymptotic distribution of the test statistic T01,
are given below

a0(p̂(0)) = 0.2775879, a1(p̂(0)) = 0.4532581, a2(p̂(0)) = 0.2177982,

a3(p̂(0)) = 0.0403585, a4(p̂(0)) = 0.0107544, a5(p̂(0)) = 0.0002417,

a6(p̂(0)) = 0.0000012.

For this example the value of T01 = 12.6247 and the value of T12 = 0.3397.
The estimated approximate p-value for testing H0 vs H1 − H0 is pval = 0.02915. The

estimated approximate p-value for testing H1 vs H2 − H1 is pval = 0.7961356.

Example 2. In our second illustration we consider data from a randomized study conducted
by the Adult AIDS Clinical Trials Group (AACTG) to evaluate two combination antiretro-
viral treatments in terms of their ability to suppress HIV viral load. The failure time, T, was
defined as the time from randomization until plasma HIV levels rose above 1000 copies/ml.
At failure a measure of acquired mutational distance during the trial was obtained. This dis-
tance is a measure of the accumulated HIV genetic resistance due to treatment exposure and
is only obtained when a subject fails. Gilbert et al. (2004) normalize this distance so that it lies
in the interval [0, 1]. For our purposes we discretize the normalized distance measure, call it
V, and consider r =3 groups. A subject is classified as belonging to group 1 if V ∈ (0, 1/3],
to group 2 if V ∈ (1/3, 2/3] and to group 3 if V ∈ (2/3, 1]. Also we consider k = 3 failure
time intervals. We take j = 1 if T ∈ (0, 5], j = 2 if T ∈ (5, 20] and j = 3 if T ∈ (20, 50].
The data is given in Table 2. Hence we have r =3, and k=3. The matrix H is an 8×6 matrix
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Table 2

Interval d1j d2j d3j d.j D.j p̂1j p̂2j p̂3j p̂
(1)
1j

p̂
(1)
2j

p̂
(1)
3j

(0, 5] 5 7 7 19 19 0.1111 0.1556 0.1556 0.1111 0.1458 0.1667
(5, 20] 6 5 4 15 34 0.1333 0.1111 0.0889 0.1333 0.1042 0.0952
(20, 50] 4 4 3 11 45 0.0889 0.0889 0.0667 0.0889 0.0833 0.0714

and is given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1
0 1 1 0 0 1
0 0 1 0 0 1

−1 −1 −1 1 1 2
0 −1 −1 0 1 2
0 0 −1 0 0 2
0 0 0 −1 −1 0
0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the setting of this example, H0 states no association between the cumulative risk function
and the level of V, the acquired mutational distance. The hypothesis H1 states that for every
time period the cumulative incidence increases as the level of V increases. Under H0, we
can write the vector p0 as

p0 = [p1, p2, p3, p1, p2, p3, p1, p2]′.
The matrix, H′B̂(0)H, needed for estimation of the weights in (3.14), is given by

H′B̂(0)H = 3

45

⎡
⎢⎢⎢⎢⎢⎣

19 19 19 −9.5 −9.5 −9.5
19 34 34 −9.5 −17 −17
19 34 45 −9.5 −17 −22.5

−9.5 −9.5 −9.5 19 19 19
−9.5 −17 −17 19 34 34
−9.5 −17 −22.5 19 34 45

⎤
⎥⎥⎥⎥⎥⎦ .

The estimated weights needed for the null asymptotic distribution of the test statistic T01,
are given below

a0(p̂(0)) = 0.0516802, a1(p̂(0)) = 0.2325504, a2(p̂(0)) = 0.3604903,

a3(p̂(0)) = 0.2532694, a4(p̂(0)) = 0.0872682, a5(p̂(0)) = 0.0143132,

a6(p̂(0)) = 0.0008899.

For this example the value of T01 = 0.8958848 and the value of T12 = 0.1334323. The
estimated approximate p-value for testing H0 vs H1−H0 is pval=0.8803156. The estimated
approximate p-value for testing H1 vs H2 − H1 is pval = 0.9647699. Thus we do not have
enough evidence to conclude association between the failure time and the level of the mark
variable, a result consistent with the conclusion in Gilbert et al. (2004). Evidently, our test
does dependent on how the data are grouped.
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Appendix A. Description of algorithm

El Barmi and Dykstra (1994) showed that, if y∗ solves

max
y∈K∗

C

m∑
i=1

p̂i ln(1 + yi), (A.1)

where K∗
C ={y,

∑m
i=1 xiyi �0, ∀x ∈ C}, for C a closed, convex subset ofP={(x1, x2, . . . ,

xm)′, xi �0, ∀i,
∑m

i=1 xi = 1}, then

p∗
i = p̂i

1 + y∗
i

, i = 1, 2, . . . , m,

solves

max
C

m∏
i=1

p
p̂i

i . (A.2)

Here p̂ = (p̂1, p̂2, . . . , p̂m)′ ∈ P and is in general the vector of the relative frequencies. In
the event that C = {p ∈ P,

∑m
i=1 piaij = 0, j = 1, 2, . . . , s}, a set of linear constraints, it

is easy to show that (A.1) reduces to

max
�j ;j=1,...,s

m∑
i=1

p̂i ln

⎛
⎝1 +

s∑
j=1

�j aij

⎞
⎠ . (A.3)

Note that our maximization problem defined by maximizing the log-likelihood in (2.2)
subject to the constraints in Eq. (2.5) is of the type (A.2). Let (�∗

1, �
∗
2, . . . , �

∗
s ) denote the

maximizing values of the above expression. Then the solution to the maximization in (A.2)
is given by

p∗
i = p̂i

1 + ∑s
j=1 �∗

j aij

, i = 1, . . . , m. (A.4)

The following algorithm can be used to find (�∗
1, �

∗
2, . . . , �

∗
s ) and hence p∗

1, p∗
2, . . . , p∗

s .

Algorithm.

• Step 1: initially �j = 0, j = 1, 2, . . . , s, � = 1
• Step 2: Find the optimal value of �� over R with all the other �s held fix. This value of

�� replaces it previous value.
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• If � < s set � = � + 1, if � = s, set � = 1.
• Go to step 2. Find the optimal value of �� over R with all the other �s held fix. This

value of �� replace its previous value.
These steps are repeated for � = 1, 2, . . . until sufficient accuracy is attained. We note
here that (�∗

1, �
∗
2, . . . , �

∗
s ) are the Lagrange multipliers corresponding to maximizing the

log-likelihood function subject to the constraints p ∈ C, i.e.

k∑
i=1

aijpi = 0, j = 1, 2, . . . , s.

If it is the case that C = {p ∈ P,
∑k

i=1 piaij �0, j = 1, 2, . . . , s}, then Step 2 of the
algorithm should be replaced by

• Step 2*: Find the optimal value of �� over R+ with all the other �s held fix. This value
of �� replaces its previous value.

We note that at a given step of the algorithm, the desired � can be found very quickly
by a Newton–Raphson (in general 2–3 steps to find the optimum value in each step). This
procedure been successfully used by Dykstra et al. (1996) for 60 linear constraints in a
61-dimensional space.

Appendix B. Proof of Theorem 3.1

Using a Taylor expansion, under H0, we have

T01,� = − 2n

r∑
i=1

k∑
j=1

p̂ij [ln(p̂
(0)
ij ) − ln(p̂ij (�))]

= n

r∑
i=1

k∑
j=1

1

p̂ij (�)
(p̂ij (�) − p̂

(0)
ij )2 + op(1). (B.1)

Write the likelihood function as

Ln =
⎡
⎣ ∏

(i,j) �=(r,k)

p
nij

ij

⎤
⎦

⎡
⎣1 −

∑
(i,j) �=(r,k)

pij

⎤
⎦

nrk

.

Let

DLn(p) =
(

�

�pij

ln Ln(p)

)
(i,j) �=(r,k)

be the gradient of the log-likelihood and p0 = (p0
11, p

0
12, . . . , p

0
r1, . . . , p

0
r,k−1)

′ ∈ H0 be the
true value of p. Then we have
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√
n[p̂(0) − p0] = 1√

n
P0DLn(p0) + op(1),

√
n[p̂(0)(�) − p0] = 1√

n
P0(�)DLn(p0) + op(1),

√
n�∗(�) = 1√

n
Q0(�)DLn(p0) + op(1), (B.2)

where p̂(0) = (p̂
(0)
11 , p̂

(0)
12 , . . . , p̂(0))r,k−1)

′ and p̂(�) = (p̂11(�), p̂12(�), . . . , p̂r,k−1(�))′ are
the maximum likelihood estimators of p under H0 and H1,�, respectively and �∗(�) is the
Lagrange multiplier associated with the maximization of the likelihood function under H1,�.
If the p̂ij > 0 for all (i, j) then p̂0 and p̂(�) will be unique. The matrices P and P(�) are
as defined in (3.9) and Q(�) = −BH(H′BH)−1. P0, P0(�) and Q0(�) are the values of the
matrices when B = B(p0), as defined before with p = p0.

Therefore under H0, we have

√
n[p̂0

11 − p̂11(�), p̂0
12 − p̂12(�), . . . , . . . , p̂0

r,k−1 − p̂r,k−1(�))′

= 1√
n

[P0 − P0(�)]D lnLn(p0) + op(1)

and therefore converges in distribution as n goes to infinity to a multivariate normal distri-
bution with mean vector zero and covariance matrix given by

(P0 − P0(�))B−1(P0 − P0(�)) = P0 − P0(�).

Assume without loss of generality assume that H(�) is made of the first d columns of H,
then

P0 − P0(�) = BH(H′BH)−1H′B − BH(�)(H′(�)BH(�))−1H′(�)B
= (P0 − P0(�))B−1(P0 − P0(�))

= (BH(�c) − BH(�)�12)�
−1(H′(�)B − �12H(�)′B), (B.3)

where

� = H′(�c)[B − BH(�)(H′(�)BH(�))−1H(�)B]H(�c),

�12 = �′
21 = (H′(�)BH(�))−1H(�)′BH(�c)

and H(�c) is made of the remaining columns of H.
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Since
√

n(p̂0
11−p̂11(�), . . . , p̂0

r,k−1−p̂r,k−1(�))′ converges in distribution toN(0, P0(�)−
P0), it follows from (3.9) that the asymptotic covariance of

√
n[p̂0

i − p̂i(�)] and
√

n[p̂0
j −

p̂j (�)] is

v′
i (�)�−1vj (�) − v′

i (�)�−1�21uj (�) − u′
i (�)�12�

−1vj (�)

+ u′
i (�)�12�

−1�21uj (�),

where BH(�) = (u1(�), u2(�), . . . , urk−1(�))′, BH(�c) = (v1(�), v2(�), . . . , vrk−1(�))′,
urk(�) = −∑rk−1

j=1 uj (�) and vrk(�) = −∑rk−1
j=1 vj (�). Consequently, under H0

√
n

⎛
⎜⎝ p̂0

11 − p̂11(�)√
p0

11

, . . . ,
p̂0

rk − p̂rk(�)√
p0

rk

⎞
⎟⎠

d−→ N(0, [M ′
2 − M ′

1�12]′�−1[M2 − �21M1]),

where

M1 =
(

u1(�)

/√
p0

11 , u2(�)

/√
p0

12 , . . . , urk(�)

/√
p0

kk

)′
,

M2 =
(

v1(�)

/√
p0

11 , v2(�)

/√
p0

12 , . . . , vrk(�)

/√
p0

rk

)′
.

It then follows that

√
n

⎛
⎜⎝ p̂0

11 − p̂11(�)√
p0

11

, . . . ,
p̂0

rk − p̂rk(�)√
p0

rk

⎞
⎟⎠

converges in distribution to

(Y11, Y12, . . . , Yr1, Yrk)
′ = [M ′

2 − M ′
1�12]′�−1/2(Z1, Z2, . . . , Z(r−1)k−d)′,

where Zi are i.i.d N(0, 1). It follows that

r∑
i=1

k∑
j=1

n
(p̂0

ij − p̂ij (�))2

p0
ij
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converges in distribution to

r∑
i=1

k∑
j=1

Y 2
ij = Z′�−1/2[M2 − �21M1][M ′

2 − M ′
1�12]′�−1/2Z

=
(r−1)k−d∑

l=1

Z2
i

which has a chi-square distribution with (r − 1)k − d degrees of freedom. Here Z′ =
(Z1, Z2, . . . , Z(r−1)k−d) and the second equality holds because

[M2 − �21M1][M ′
2 − M ′

1�12]′ = �.

Appendix C. Proof of Theorem 3.2

LetC be the set of all subsets of constraints. If follows from El Barmi and Dykstra (1994)
(see Appendix A) that p̂(1)(�), the maximizer of

r∏
i=1

k∏
j=1

p
nij

ij (C.1)

subject to

r∑
i=1

k∑
j=1

pij x
(u,s)
ij = 0, (u, s) ∈ �,

and the solution, �∗(�), of the maximization

max
�us ,(u,s)∈�

r∑
i=1

k∑
j=1

p̂ij ln

⎛
⎝1 +

∑
(u,s)∈�

�usx
(u,s)
ij

⎞
⎠ , (C.2)

satisfy

p̂
(1)
ij = p̂ij

1 + ∑
(u,s)∈� �∗

us(�)x
(u,s)
ij

, ∀(i, j).

Moreover p̂(1) = p̂(1)(�) for precisely one �. Also, we have

p̂(1) = p̂(1)(�) ⇐⇒
{

�∗
us(�) > 0, (u, s) ∈ �,∑r

i=1
∑k

j=1 x
(u,s)
ij p̂

(1)
ij (�)�0, (u, s) ∈ �c.
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Combining the above statements gives

P(T01 � t1, T12 � t2)

=
∑
�∈C

P(T01 � t1, T12 � t2, p̂(1) = p̂(1)(�))

=
∑
�∈C

P

⎛
⎝T01 � t1, T12 � t2, �

∗
us(�) > 0, (u, s) ∈ �,

∑
i,j

x
(u,s)
ij p̂

(1)
ij (�)�0, (u, s) ∈ �c

⎞
⎠

=
∑
�∈C

P

⎛
⎝∑

i,j

n
(p̂

(0)
ij − p̂

(1)
ij (�))2

p̂
(1)
ij (�)

+ op(1)� t1,

√
n�∗′

(�)n[R0(�)]−1�∗(�) + op(1)� t2,

�∗
us(�) > 0, (u, s) ∈ �,

∑
i,j

x
(u,s)
ij p̂

(1)
ij (�)�0, (u, s) ∈ �c

⎞
⎠ ,

where R0(�) is as defined before. The third equality is true by (B1) for T01 and a result in
Silvey (1959) for T12. Lemma B and Lemma D, in Robertson et al. (1988, p. 71) and (3.10)
imply that

lim
n→∞ P(T01 � t1, T12 � t2) =

k(r−1)∑
j=0

aj (p(0))P (�2
k(r−1)−j � t1)P (�2

j � t2),

which is the desired result.

Appendix D. Efficient computation of the weights associated with the asymptotic dis-
tribution of the test statistic

In this section of the Appendix we show how the estimated weights needed for obtaining
the estimated asymptotic null distributions in (3.12) and (3.13) can be efficiently computed
through the successive use of matrix sweeps and inversions.

Without loss of generality assume that � = {1, . . . , d}, i.e. the set of constraint indices
corresponding to the first d order constraints, i.e. the first d columns of H. Partition the H
matrix according to � as follows

H = [H(�) : H(�c].
The corresponding partition of R−1 = H′BH is

R−1 =
[

H′(�)BH(�) H′(�)BH(�c)

H′(�c)BH(�) H′(�c)BH(�c)

]
. (D.1)
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A sweep of the matrix R−1 on its first d rows yields two matrices needed for the computation
of the weights as its diagonal blocks. That is

SWEEP(R−1; �) =
[

R−1(�)

R−1(�c) − H′(�c)BH(�)R−1(�)H′(�)BH(�c)

]
.

Denote the two matrices shown above by

SWEEP(1)(R−1; �) = R−1(�),

SWEEP(2)(R−1; �) = R−1(�c) − H′(�c)BH(�)R−1(�)H′(�)BH(�c). (D.2)

Using the fact that the Sweep operator is reversible, that is SWEEP(SWEEP(R−1; �); �)=
R−1, we get

SWEEP−1(R−1; �)

= (SWEEP(R−1; �))−1

=
[

R−1(�) − H′(�)BH(�c)R−1(�c)H′(�c)BH(�)

R−1(�c)

]
.

Denote the two matrices shown above by

SWEEP(3)(R−1; �) = R−1(�c),

SWEEP(4)(R−1; �) = R−1(�c) − H′(�c)BH(�)R−1(�)H′(�)BH(�c). (D.3)

Similarly define the matrices in (D.2) and (D.3) for an arbitrary � with card(�) = d.
The number of �s that have cardinal d is equal to

md = C(r−1)k
d = [(r − 1)k]!

d![(r − 1)k − d]! .

Denote these by �1,d , . . . , �md,d . Clearly the whole set of �s with cardinal (r − 1)k − d is
easily obtained as �c

1,d , . . . , �c
md,d .

From the discussion above it follows that we can compute the weights by successive
sweeps and inversions using the following algorithmic scheme:

ad(p) =
md∑
i=1

Q(SWEEP(1)(R−1; �i,d ))Q(SWEEP(2)(R−1; �i,d )),

ak(r−1)−d(p) =
md∑
i=1

Q([SWEEP(3)(R−1; �i,d )]−1)

× Q([SWEEP(4)(R−1; �i,d )]−1). (D.4)

For a given cardinal d, we used the SAS procedure PROC PLAN to generate all possible
�s with cardinal d, i.e. all possible combinations of d rows of the R−1 matrix on which we
sweep in order to evaluate the weights in (D.4). The Sweep operations and matrix inversions
were done using SAS IML. Finally, we used a SAS/IML program for the calculation of the
multivariate normal quadrant probabilities in (D.4). The program was written by Genz and
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Bretz (contact: bretz@ifgb.uni-hannover.de) and evaluates the multivariate normal integral
by applying a randomized lattice rule on a transformed integral as described by Genz (1992,
1993). It utilizes variable priorization and antithetic sampling and can compute multivariate
normal probabilities for positive semi-definite covariance matrices until dimension 100.
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