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Abstract

For nonnegative random variablesX andY we writeX ≤TTT Y if
∫ F−1(p)

0 (1−F(x)) dx ≤∫ G−1(p)
0 (1 − G(x)) dx all p ∈ (0, 1), where F and G denote the distribution functions

of X and Y respectively. The purpose of this article is to study some properties of this
new stochastic order. New properties of the excess wealth (or right-spread) order, and of
other related stochastic orders, are also obtained. Applications in the statistical theory of
reliability and in economics are included.
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1. Motivation and definitions

Consider a distribution function F , of a nonnegative random variable X, which is strictly
increasing on its interval support. Let p ∈ (0, 1) and t ≥ 0 be two values related by p = F(t)

or, equivalently, by t = F−1(p), where F−1 is the right-continuous inverse of F . Every such
choice of p and t determines three regions of interest:

AF := {(x, u) : u ∈ (0, p), x ∈ (0, F−1(u))}
= {(x, u) : x ∈ (0, t), u ∈ (F (x), F (t))},

BF := {(x, u) : u ∈ (p, 1), x ∈ (0, F−1(p))}
= {(x, u) : x ∈ (0, t), u ∈ (F (t), 1)},

CF := {(x, u) : u ∈ (p, 1), x ∈ (F−1(p), F−1(u))}
= {(x, u) : x ∈ (t,∞), u ∈ (F (x), 1)},

as depicted in Figure 1. When we want to emphasize the dependence of AF on p ∈ (0, 1), we
write AF (p). When we want to emphasize the dependence of AF on t > 0, we write ÃF (t).
Of course, AF (p) = ÃF (t) when p = F(t). We define BF (p), B̃F (t), CF (p), and C̃F (t)

similarly.
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Figure 1: Depiction of AF , BF , and CF .

The areas of the regions depicted in Figure 1 have various intuitive meanings in different
applications. For example, if F is the distribution of wealth in some community, then ‖CF (p)‖
(denoting by ‖D‖ the area of D for any two-dimensional set D with an area) corresponds to
the excess wealth of the richest (1 − p) · 100% individuals in that community (see Shaked
and Shanthikumar (1998)). Similarly, ‖AF (p)‖ corresponds to the total income of the poorest
p · 100% individuals in that community. If F is the distribution function of the lifetime of a
machine, then

TX(p) := ‖AF (p) ∪ BF (p)‖, p ∈ (0, 1),

corresponds to the total time on test (TTT) transform associated with this distribution (see, for
example, Figure 1 in Klefsjö (1991), Figure 9.2 in Høyland and Rausand (1994), or Figure 2.1
in Hürlimann (2002)). Notice also that

‖AF (p) ∪ BF (p) ∪ CF (p)‖ = ‖ÃF (t) ∪ ÃF (t) ∪ ÃF (t)‖
is the mean, E X, of that lifetime, provided the mean exists.

Let G be another distribution function, of a nonnegative random variable Y , which is also
strictly increasing on its interval support. Let Ḡ := 1 − G be the corresponding survival
function, and analogously define AG(p), ÃG(t), etc. Assume the existence of the means E X

and E Y , if necessary. Comparisons of areas of analogous sets for F and G for each p ∈ (0, 1)
or t > 0 yield and characterize many well-known useful stochastic orders. For example,

‖ÃF (t) ∪ B̃F (t)‖ ≤ ‖ÃG(t) ∪ B̃G(t)‖ for all t ∈ (0,∞) ⇐⇒ X ≤icv Y, (1.1)

where ≤icv denotes the increasing concave order (see Shaked and Shanthikumar (1994, Sec-
tion 3.A)), whereas

‖C̃F (t)‖ ≤ ‖C̃G(t)‖ for all t ∈ (0,∞) ⇐⇒ X ≤icx Y,
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where ≤icx denotes the increasing convex order (again, see Shaked and Shanthikumar (1994,
Section 3.A)). The normalized comparison

‖C̃F (t)‖
F̄ (t)

≤ ‖C̃G(t)‖
Ḡ(t)

, t > 0,

yields the mean residual life order ≤mrl (see Shaked and Shanthikumar (1994, Section 1.D)).
Similarly,

‖AF (p)‖
E X

≤ ‖AG(p)‖
E Y

for all p ∈ (0, 1) ⇐⇒ X ≥Lorenz Y,

where ≤Lorenz denotes the Lorenz order (see Shaked and Shanthikumar (1994, Section 3.A)).
The comparison

‖CF (p)‖ ≤ ‖CG(p)‖, p ∈ (0, 1), (1.2)

yields the excess wealth order, that is, X ≤EW Y (see Shaked and Shanthikumar (1998)),
or, equivalently, the right-spread order X ≤RS Y (see Fernandez-Ponce et al. (1998)). The
NBUE (new better than used in expectation) order of Kochar and Wiens (1987) can also be
characterized by the sets above as follows:

‖AF (p) ∪ BF (p)‖
E X

≤ ‖AG(p) ∪ BG(p)‖
E Y

for all p ∈ (0, 1) ⇐⇒ X ≥NBUE Y

(see (3.5) in Kochar (1989)).
The various stochastic orders mentioned above share some similarities, but they are all

distinct, and each is useful in different contexts. For example, the order ≤EW is location inde-
pendent (and thus it can also be used to compare random variables that are not nonnegative) and
it compares the variability of the underlying random variables (see Shaked and Shanthikumar
(1998)). Similarly, the order ≤Lorenz is an order which compares variability. On the other hand,
the orders ≤icx and ≤icv combine comparison of location with comparison of variation. The
order ≤NBUE compares ageing mechanisms of different items.

One purpose of this article is to study the stochastic order which is defined by

TX(p) ≤ TY (p), p ∈ (0, 1), (1.3)

where TY (p) := ‖AG(p) ∪ BG(p)‖. When (1.3) holds, we write X ≤TTT Y , and we say that
X is smaller than Y in the TTT transform order. We investigate in this paper some properties of
this stochastic order. New properties of the excess wealth (or right-spread) order, and of other
related stochastic orders, are obtained as well.

The inequality (1.3) has appeared already in Bartoszewicz (1986), but it was not studied there
as a stochastic order. In fact, Bartoszewicz (1986) derived (1.3) for the so-called generalized
TTT transforms. In the present paper, we only study the order defined in (1.3) for standard
TTT transforms, and for such transforms the result obtained in Proposition 1 of Bartoszewicz
(1986) is trivial. The inequality (1.3) for the so-called normalized generalized TTT transforms
has appeared in Barlow and Doksum (1972), in Barlow (1979), and in Bartoszewicz (1995),
(1998), but, again, it has not been studied there as a stochastic order.

We also devote Section 4 to the excess wealth order, giving some new and useful properties
of this order. In Section 5, applications in the statistical theory of reliability and in economics
illustrate the usefulness of our results.

In this paper ‘increasing’ and ‘decreasing’ stand for ‘nondecreasing’ and ‘nonincreasing’
respectively. For any distribution function F , we denote by F̄ := 1 − F the corresponding
survival function.
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2. Some basic properties of the TTT transform order

Let X and Y be two nonnegative random variables with distribution functions F and G

respectively. It is easy to verify that X ≤TTT Y if and only if

∫ F−1(p)

0
F̄ (x) dx ≤

∫ G−1(p)

0
Ḡ(x) dx, p ∈ (0, 1). (2.1)

A simple sufficient condition for the order ≤TTT is the usual stochastic order:

X ≤st Y �⇒ X ≤TTT Y, (2.2)

where X ≤st Y means that F̄ (x) ≤ Ḡ(x) for all x ∈ R (see, for example, Shaked and
Shanthikumar (1994, Section 1.A)). In order to verify (2.2) we may just notice that, if X ≤st Y ,
then F−1(p) ≤ G−1(p) for all p ∈ (0, 1).

Using the fact that, for any nonnegative random variable X and for any a > 0, we have

TaX(p) = aTX(p), p ∈ (0, 1),

it is easy to see that, for any two nonnegative random variables X and Y , we have

X ≤TTT Y �⇒ aX ≤TTT aY for any a > 0. (2.3)

The implication (2.3) may suggest that, if X ≤TTT Y , then φ(X) ≤TTT φ(Y ) whenever φ is
an increasing function. However, this is not true, as it is shown in the following example.

Example 2.1. We show that

X ≤TTT Y ��⇒ φ(X) ≤TTT φ(Y ) for all increasing functions φ.

Let X, with distribution function F , be an exponential random variable with rate λ > 0, and
let Y , with distribution function G, be a uniform(0, 1) random variable. Then a straightforward
computation yields

TX(p) = p

λ
, p ∈ (0, 1),

TY (p) = p(2 − p)

2
, p ∈ (0, 1).

When λ = 4 we see that TX(p) ≤ TY (p) for all p ∈ (0, 1), and thus X ≤TTT Y . Let us
consider the kth power of both X and Y when k > 1. Then, for p ∈ (0, 1),

TXk (p) = k

λk

∫ − log(1−p)

0
xk−1e−x dx, TYk (p) = k

pk(k + 1 − kp)

k(k + 1)
.

Now,

lim
p↑1

TXk (p) = k

λk

∫ ∞

0
xk−1e−x dx = k!

λk
and lim

p↑1
TYk (p) = 1

k + 1
.

If λ = 4 and k = 10, then

lim
p↑1

TXk (p) = 10!
410 >

1

11
= lim

p↑1
TYk (p).

So, for some p near 1, we have TXk (p) > TYk (p), and thus Xk �≤TTT Y k when k = 10.
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It is true, however, that the order ≤TTT is closed under increasing concave transformations.
This is shown in the next theorem, the proof of which is given in Appendix A.

Theorem 2.1. Let X and Y be two continuous nonnegative random variables with interval
supports, with 0 being the common left endpoint of the supports. Then, for any increasing
concave function φ such that φ(0) = 0,

X ≤TTT Y �⇒ φ(X) ≤TTT φ(Y ).

A stochastic order � is said to be location independent if

X � Y �⇒ X � Y + c for any c ∈ (−∞,∞). (2.4)

For example, the order ≤EW is location independent; see Section 4. The order ≤TTT is not
location independent. However, if Y is a random variable with distribution function G, then

TY+c(p) = ‖AG(·−c)(p) ∪ BG(·−c)(p)‖
= ‖AG(p) ∪ BG(p)‖ + c

= TY (p) + c, p ∈ (0, 1), c ∈ (−∞,∞).

It follows that the order ≤TTT is closed under right shifts of the larger variable, that is,

X ≤TTT Y �⇒ X ≤TTT Y + c for any c > 0.

Note that
X ≤TTT Y �⇒ E X ≤ E Y, (2.5)

provided that the expectations exist.

3. The relationship of the TTT transform order to other stochastic orders

In this section, X and Y are continuous nonnegative random variables with interval supports,
and with distribution functions F and G respectively.

When E X = E Y , the order ≤TTT is equivalent to the orders ≤EW and ≤NBUE (described in
Section 1) in the sense that

X ≤TTT Y ⇐⇒ X ≥EW Y ⇐⇒ X ≥NBUE Y. (3.1)

However, these orders are distinct when E X < E Y ; this will be shown later in this section. It
is useful to note that, for nonnegative random variables X and Y with finite means,

X ≥NBUE Y ⇐⇒ X

E X
≤TTT

Y

E Y
. (3.2)

Note that the inequality on the right-hand side of (3.2) is just an inequality between two scaled
TTT transforms; such transforms are studied, for example, in Barlow and Campo (1975). This
provides an interesting illustration of the ≥NBUE inequality. Furthermore, recall that the scaled
TTT transform that is associated with an exponential distribution (with any mean) is just a
straight line connecting (0, 0) and (1, 1). Recall also from Kochar and Wiens (1987) that,
if X is an exponential random variable, then Y is an NBUE random variable if and only if
X ≥NBUE Y . Thus, it is seen from (3.2) that Y is an NBUE random variable if and only if its
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Figure 2: Depiction of DF .

scaled TTT transform is above the diagonal of the unit square; the latter is an observation in
Bergman (1979).

The next result, which is a corollary of Theorem 2.1, shows that the order ≤TTT is stronger
than the order ≤icv. This agrees with the intuitive fact that the order ≤TTT is a stochastic order
that combines comparison of location with comparison of variation.

Corollary 3.1. Let X and Y be two continuous nonnegative random variables with interval
supports, with 0 being the common left endpoint of the supports. Then

X ≤TTT Y �⇒ X ≤icv Y.

Proof. Suppose that X ≤TTT Y . Let φ be an increasing concave function defined on [0,∞).
Define φ̃(·) = φ(·) − φ(0), so that φ̃(0) = 0. From Theorem 2.1 we obtain φ̃(X) ≤TTT φ̃(Y ).
Hence from (2.5) we get E[φ̃(X)] ≤ E[φ̃(Y )], and this reduces to E[φ(X)] ≤ E[φ(Y )],
provided the expectations exist.

The order ≤TTT seems to be closely related to the order ≤EW, and to the location independent
riskier (LIR) order of Jewitt (1989) which is defined by

X ≤LIR Y ⇐⇒ ‖DF (p)‖ ≤ ‖DG(p)‖ for all p ∈ (0, 1).

Here, for p ∈ (0, 1) (and t = F−1(p)), the set DF (p) (depicted in Figure 2) is defined as

DF (p) := {(x, u) : u ∈ (0, p), x ∈ (F−1(u), F−1(p))}
= {(x, u) : x ∈ (0, t), u ∈ (0, F (x))},

and DG(p) is similarly defined. In particular, Kochar and Carrière (1997, Theorem 2.2) and
Shaked and Shanthikumar (1998, Theorem 2.1) showed, under the same conditions on the
supports of X and of Y as in the present Corollary 3.1, that if X ≤EW Y , then X ≤icx Y (see
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Corollary 4.1 below), and Fagiuoli et al. (1999, Corollary 3.4) showed, under some conditions
on the supports of X and of Y , that if X ≤LIR Y , then X ≤icv Y . Thus, we may ask: can the
result of Corollary 3.1 be directly derived from the above-mentioned facts? Corollary 3.1 could
not be proved using such an argument. In fact, we argue and show below that the order ≤TTT
is strictly different from either of the orders ≤EW and ≤LIR.

First we show that neither of the orders ≤EW and ≤LIR imply the order ≤TTT. In order
to see this, recall that the order ≤EW is location independent in the sense of (2.4). The order
≤LIR is also location independent (an easy way to see this is by using the fact (see Figure 2)
that ‖DF(·−c)(p)‖ = ‖DF (p)‖ for any p ∈ (0, 1) and c ∈ (−∞,∞)). Thus, if X ≤EW Y

or X ≤LIR Y had implied that X ≤TTT Y , then it would have followed that it would have
implied X + c ≤TTT Y for every c > 0, and in particular it would have implied, by (2.5), that
E[X+c] ≤ E Y for every c > 0. But clearly the last inequality does not hold for c > E Y −E X.
Thus, neither of the inequalities X ≤EW Y and X ≤LIR Y necessarily implies that X ≤TTT Y .
In a similar manner it can be shown that neither of the inequalities Y ≤EW X and Y ≤LIR X

necessarily implies that X ≤TTT Y .
The following examples show that the converses are also false.

Example 3.1. We show that

X ≤TTT Y ��⇒ X ≥EW Y.

Let X, with distribution function F , be an exponential random variable with rate λ > 0, and
let Y , with distribution function G, be a uniform(0, 1) random variable, as in Example 2.1. We
saw there that, if λ = 4, then X ≤TTT Y . A straightforward computation yields

WX(p) := ‖CF (p)‖ = 1 − p

λ
, p ∈ (0, 1),

WY (p) := ‖CG(p)‖ = (1 − p)2

2
, p ∈ (0, 1).

Note, when λ = 4, that WX(p) ≤ WY (p) if and only if p ∈ (0, 1
2 ), and thus neither X ≤EW Y

nor Y ≤EW X hold.

Note that Example 3.1 also shows that

X ≤TTT Y ��⇒ X ≤st Y. (3.3)

This is so because for X and Y in Example 3.1 we have X �≤st Y .

Example 3.2. Let X, with distribution function F , be a uniform(0, 1) random variable, and let
Y be a beta(2, 1) random variable, that is, the distribution function of Y is given by G(x) = x2,

x ∈ (0, 1). Obviously X ≤st Y , and, therefore, by (2.2), X ≤TTT Y . On the other hand, a
straightforward computation yields

‖DF (p)‖ = p2

2
, p ∈ (0, 1),

‖DG(p)‖ = p3/2

3
, p ∈ (0, 1).

That is, ‖DF (p)‖ ≤ ‖DG(p)‖ if and only if p ≤ 4
9 , and thus neither X ≤LIR Y nor Y ≤LIR X

hold.
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In light of (3.1) it is also of interest to note that without the assumption that E X = E Y the
orders ≤TTT and ≤NBUE are distinct. This is shown in the following example.

Example 3.3. First we show that

X ≥NBUE Y ��⇒ X ≤TTT Y.

In order to see this, first note that, for any nondegenerate nonnegative random variable X, we
have X ≥NBUE X. Since the order ≤NBUE is scale independent, it follows that for such a
random variable X we have aX ≥NBUE X for any a > 0. Now, obviously for a > 1 we have
E aX > E X. Therefore, from (2.5) we get that aX �≤TTT X when a > 1.

Next we show that
X ≤TTT Y ��⇒ X ≥NBUE Y.

For this purpose, let X be a uniform(0, 2) random variable, and let Y have the distribution
function G given by

G(x) =




0, x < 0,
x

2
, x ∈ [0, 1],

x + 1

4
, x ∈ [1, 3],

1, x > 3,

that is, G is an equal mixture of the uniform(0, 1) and uniform(1, 3) distributions. It is easy
to see that X ≤st Y , and, therefore, by (2.2), X ≤TTT Y . Actual computations of the TTT
transforms give

TX(p) = 2p − p2, p ∈ (0, 1),

TY (p) =



2p − p2, p ∈ (0, 1
2 ),

3

4
+ (4p − 2)

(
3

4
− p

2

)
, p ∈ [ 1

2 , 1].

Also, E X = TX(1) = 1 and E Y = TY (1) = 5
4 . Therefore, TX(p)/E X > TY (p)/E Y when

p ∈ (0, 1
2 ). That is, X/E X �≤TTT Y/E Y . It follows from (3.2) that X �≥NBUE Y .

4. Some new properties of the excess wealth order

Let X and Y be two random variables with distribution functions F and G respectively. It
is well known (or it can be easily seen from (1.2)) that X ≤EW Y , or, equivalently, X ≤RS Y ,
if and only if ∫ ∞

F−1(p)

F̄ (x) dx ≤
∫ ∞

G−1(p)

Ḡ(x) dx, p ∈ (0, 1). (4.1)

The similarity between (2.1) and (4.1) may suggest that results which involve the order ≤TTT
may have analogues that involve the order ≤EW. In this section, we highlight some similarities
and some differences between these two orders. While doing that we also obtain some new
results involving the order ≤EW.

First we note that the order ≤EW is location independent (see (2.4)); an easy way to see this
is to notice (see Figure 1) that

‖CF(·−c)(p)‖ = ‖CF (p)‖, p ∈ (0, 1), c ∈ (−∞,∞).
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In contrast, the order ≤TTT is not location independent. We recall that the above facts about
location independence were used in Section 3 to show that Y ≤EW X does not imply that
X ≥TTT Y .

Because of the location independence property of the order≤EW, when we study this order we
do not need to assume that the compared random variables are nonnegative. As a consequence,
the random variables that are studied in this section can have any support in R, unless stated
otherwise.

Remark 4.1. In light of (3.1) it is of interest to note that without the assumption that E X = E Y

the orders ≤EW and ≤NBUE are distinct. This can be seen using the facts that the order ≤EW
is location independent, whereas the order ≤NBUE is scale independent. Explicitly, for any
random variable X we have that X ≤EW X + a for any a. Now, suppose that X is nonnegative
and that E X > 0 is finite. Let p ∈ (0, 1) be such that TX(p) < E X. Then, for any a > 0,

TX(p)

E X
<

TX(p) + a

E X + a
= TX+a(p)

E(X + a)
.

Therefore, X/E X �≥TTT (X + a)/E(X + a), and, hence, by (3.2), X �≤NBUE X + a.
Conversely, for any random variable X we have that X ≤NBUE aX for any a > 0. However,

if X is a uniform(0, 1) random variable, then, as can be easily verified, X �≤EW aX when a < 1.

In Theorem 2.1 we showed that the order ≤TTT is closed under increasing concave trans-
formations. In the following theorem it is shown that, somewhat similarly, the order ≤EW is
closed under increasing convex transformations.

Theorem 4.1. Let X and Y be two continuous random variables with finite means. Then, for
any increasing convex function φ,

X ≤EW Y �⇒ φ(X) ≤EW φ(Y ).

The proof of Theorem 4.1 is given in Appendix A.
A result which is similar to Theorem 4.1 holds for the dispersive order. It is reported in Rojo

and He (1991), but it is already implicit in Bartoszewicz (1985, p. 389).
Theorem 4.1 is a significant extension of Theorem 2.2 of Kochar and Carrière (1997)

and of Theorem 2.1 of Shaked and Shanthikumar (1998) (which are stated as Corollary 4.1
below). Explicitly, let X and Y have the same left endpoint of support which, by the location
independence property of the order ≤EW, can be taken to be 0 without loss of generality.
Let φ be an increasing convex function. Define φ̃(·) := φ(·) − φ(0), so that φ̃(0) = 0.
Then both φ̃(X) and φ̃(Y ) have 0 as the left endpoint of their supports. By Theorem 4.1
we have φ̃(X) ≤EW φ̃(Y ), and from (4.1) with p → 0 we obtain E[φ̃(X)] ≤ E[φ̃(Y )], and
therefore E[φ(X)] ≤ E[φ(Y )]. We thus obtain Theorem 2.2 of Kochar and Carrière (1997)
and Theorem 2.1 of Shaked and Shanthikumar (1998) for continuous random variables as the
following corollary. This corollary is used later in Section 5.

Corollary 4.1. Let X and Y be two continuous random variables with finite means, and with
a common left endpoint of support. Then X ≤EW Y implies that X ≤icx Y ,

The following example shows that the convexity assumption in Theorem 4.1 cannot be
dropped.
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Example 4.1. We show that

X ≤EW Y ��⇒ φ(X) ≤EW φ(Y ) for all increasing functions φ.

Let X, with distribution function F , be a uniform(0, 1) random variable, and let Y , with
distribution function G, be an exponential random variable with rate 2. Then a straightforward
computation yields, for p ∈ (0, 1),

∫ ∞

F−1(p)

F̄ (x) dx = (1 − p)2

2
,

∫ ∞

G−1(p)

Ḡ(x) dx = 1 − p

2
.

Therefore X ≤EW Y . Let φ(x) = 1 − e−x, x ≥ 0. Then, for p ∈ (0, 1),

∫ ∞

F−1(p)

F̄ (x)φ′(x) dx = e−1 − pe−p,

∫ ∞

G−1(p)

Ḡ(x)φ′(x) dx = (1 − p)3/2

3
.

The first function is smaller than the second for p in a right neighbourhood of 0. Therefore
φ(X) �≤EW φ(Y ).

5. Some applications of the TTT transform and the excess wealth orders

In this section, we give various applications of the results that were developed in previous
sections. We recall (3.1); that is, the ≤TTT comparison is the same as the ≥EW comparison
when the compared random variables have the same means. Below we do not always state the
results for both of the above orders, but in some cases (when the means are equal) it should be
easy to translate a result involving one order into a result involving the other order (and to the
order ≥NBUE as well).

The first theorem below shows that, if X ≤TTT Y , then a series system of n components
having independent lifetimes which are copies of Y has a larger lifetime, in the sense of ≤TTT,
than a similar system of n components having independent lifetimes which are copies of X. A
similar result for parallel systems involving the excess wealth order is also given. The proof of
the following theorem is given in Appendix A.

Theorem 5.1. Let X1, X2, . . . be a collection of independent and identically distributed (i.i.d.)
random variables, and let Y1, Y2, . . . be another collection of i.i.d. random variables.

(a) If X1 and Y1 are nonnegative and if X1 ≤TTT Y1, then min{X1, X2, . . . , Xn} ≤TTT
min{Y1, Y2, . . . , Yn} for n ≥ 1.

(b) If X1 ≤EW Y1, then max{X1, X2, . . . , Xn} ≤EW max{Y1, Y2, . . . , Yn} for n ≥ 1.

Let X1, X2, . . . and Y1, Y2, . . . be two collections of i.i.d. random variables with 0 being
the common left endpoint of the supports. Barlow and Proschan (1975, p. 121) proved that,
if X1 ≤icv Y1, then min{X1, X2, . . . , Xn} ≤icv min{Y1, Y2, . . . , Yn} for n ≥ 1. Comparing
this to Theorem 5.1(a) we see, using Corollary 3.1, that the latter yields a stronger conclusion,
but under a stronger assumption. Barlow and Proschan (1975, p. 121) also proved that, if
X1 ≤icx Y1, then max{X1, X2, . . . , Xn} ≤icx max{Y1, Y2, . . . , Yn} for n ≥ 1. Comparing this
result to Theorem 5.1(b) we see, this time using Corollary 4.1, that the latter again yields a
stronger conclusion, but, again, under a stronger assumption.
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Application 5.1. (Reliability.) Recall from Belzunce (1999) that, if a random variable X with
mean µ is NBUE, then

X ≤EW Exp(µ), (5.1)

where Exp(µ) denotes an exponential random variable with mean µ. Consider now a parallel
system of n components having i.i.d. NBUE lifetimes X1, X2, . . . , Xn with the left endpoint
of the common support being 0. Denote the common mean by µ. Let Y1, Y2, . . . , Yn be i.i.d.
exponential random variables with mean µ. From Theorem 5.1(b) we obtain

max{X1, X2, . . . , Xn} ≤EW max{Y1, Y2, . . . , Yn}. (5.2)

Since both max{X1, X2, . . . , Xn} and max{Y1, Y2, . . . , Yn} have 0 as the left endpoint of their
corresponding supports, it follows that

E[max{X1, X2, . . . , Xn}] ≤ E[max{Y1, Y2, . . . , Yn}],
var[max{X1, X2, . . . , Xn}] ≤ var[max{Y1, Y2, . . . , Yn}]

(this is so since, if two random variables X and Y have 0 as the left endpoint of their respective
supports, and if X ≤EW Y , then E X ≤ E Y and var[X] ≤ var[Y ]; the first inequality follows
from (4.1) with p → 0, and the second inequality follows from Corollary 3.3 of Shaked and
Shanthikumar (1998)). Now, computing

E[max{Y1, Y2, . . . , Yn}] =
∫ ∞

0
[1 − (1 − e−x/µ)n] dx

=
∫ ∞

0

n−1∑
k=0

e−x/µ(1 − e−x/µ)kdx

= µ

n∑
k=1

1

k

and

E[(max{Y1, Y2, . . . , Yn})2] = 2
∫ ∞

0
x[1 − (1 − e−x/µ)n] dx

= 2µ2
n∑

k=1

(−1)k+1

k2

(
n

k

)
,

we obtain the following upper bounds on the mean and on the variance of the lifetime of the
parallel system:

E[max{X1, X2, . . . , Xn}] ≤ µ

n∑
k=1

1

k
(5.3)

and

var[max{X1, X2, . . . , Xn}] ≤ µ2
[

2
n∑

k=1

(−1)k+1

k2

(
n

k

)
−

( n∑
k=1

1

k

)2]
. (5.4)

It should be remarked that (5.3) (but not (5.4)) can also be obtained as follows. Let Xi and Yi

be as above for i = 1, 2, . . . , n. If Xi ≤EW Yi and Xi and Yi both have 0 as the left endpoint of
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their supports, then Xi ≤icx Yi (see Corollary 4.1). It follows by Theorem 9 of Li et al. (2000)
(or by a more general result of Ross (1996, p. 436) which is also given as Theorem 3.A.9 in
Shaked and Shanthikumar (1994)) that max{X1, X2, . . . , Xn} ≤icx max{Y1, Y2, . . . , Yn}, and
therefore (5.3) holds. In fact, (5.3) even holds if theXi are merely HNBUE (harmonic new better
than used in expectation, that is, Xi ≤icx Exp(µ), where µ is the mean of Xi , i = 1, 2, . . . , n)
rather than NBUE.

We also mention that the inequalities (5.3) and (5.4) are reversed if the Xi are new worse
than used in expectation (NWUE).

Finally, it is worthwhile to note that from (3.1) and (5.1) it follows that, if X is an NBUE
random variable with mean µ, then X ≥TTT Exp(µ). Therefore, from Theorem 5.1(a) we
obtain

min{X1, X2, . . . , Xn} ≥TTT min{Y1, Y2, . . . , Yn},
where the Xi and the Yi are as in (5.2).

From Theorem 5.1(a) and (2.5) we get the following corollary.

Corollary 5.1. Let X1, X2, . . . , Xn be a collection of i.i.d. random variables, and let Y1,
Y2, . . . , Yn be another collection of i.i.d. random variables. If X1 and Y1 are nonnegative,
and if X1 ≤TTT Y1, then

E[min{X1, X2, . . . , Xn}] ≤ E[min{Y1, Y2, . . . , Yn}].
A similar result which compares E[max{X1, X2, . . . , Xn}] and E[max{Y1, Y2, . . . , Yn}] can

be derived under the assumptions that X1 and Y1 have the same left endpoint of support, and
X1 ≤EW Y1; see Application 5.1.

It is worthwhile to mention that, whereas the conclusion of Corollary 5.1 easily follows from
X ≤st Y , the assumption of the corollary that X ≤TTT Y is strictly weaker than the assumption
that X ≤st Y ; see (2.2) and (3.3).

A useful identity that involves the TTT transform TX of a nonnegative random variable X is
given in the next lemma.

Lemma 5.1. Let X be a nonnegative random variable with survival function F̄ . Then

(n − 1)
∫ 1

0
(1 − p)n−2TX(p) dp =

∫ ∞

0
F̄ n(t) dt, n ≥ 2. (5.5)

Proof. We compute

∫ 1

0
(1 − p)n−2TX(p) dp =

∫ 1

0

∫ F−1(p)

0
(1 − p)n−2F̄ (t) dtdp

=
∫ ∞

0

∫ x

0
F̄ n−2(x)F̄ (t) dtdF(x)

=
∫ ∞

0

∫ ∞

t

F̄ n−2(x)F̄ (t) dF(x) dt

=
∫ ∞

0

1

n − 1
F̄ n(t) dt,

and the stated result follows.

The identity (5.5) is used in the following application.
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Application 5.2. (Economics.) Let F be the wealth distribution of some population. Bhat-
tacharjee and Krishnaji (1984) studied the following Lorenz measure of inequality:

LF = 1 − 2
∫ ∞

0
F1(x) dF(x),

where F1 is the length-biased distribution associated with F and given by

F1(x) = µ−1
F

∫ x

0
t dF(t), x ≥ 0.

A straightforward computation gives

LF = 1 − µ−1
F

∫ ∞

0
F̄ 2(x) dx

(this corrects a minor mistake in Klefsjö (1984, p. 306)). Now, from (5.5) it is seen that, if X
and Y are two nonnegative random variables corresponding to wealth distributions F and G

respectively, and if E X = E Y and X ≤TTT Y , then LF ≥ LG; that is, a wealth distribution
that is larger in the ≤TTT order yields a smaller inequality measure. In other words, by (3.1), a
wealth distribution that is smaller in the ≤EW order yields a smaller inequality measure.

A further application of the orders ≤TTT, ≥EW, and ≥NBUE is the following.

Application 5.3. (Statistical reliability.) Let X1, X2, . . . , Xm be a sample (of size m) of i.i.d.
nonnegative random variables with a finite mean and a common continuous distribution function
F , and let Y1, Y2, . . . , Yn be another sample (of size n) of i.i.d. nonnegative random variables
with a finite mean and a common continuous distribution function G. We assume that the two
samples are independent and we wish to test the null hypothesis

H0: F =NBUE G (that is, F(·) = G(θ ·) for some θ > 0),

against the alternative hypothesis

H1: G is more NBUE than F (that is, Y1 ≤NBUE X1).

Let X and Y denote generic random variables with distributions F and G respectively.
Motivated by (3.2), it is seen that for testing H0 against H1 we can base a test on an estimate of

S :=
∫ 1

0

[
TY (p)

E Y
− TX(p)

E X

]
dp.

This integral is the difference between the area below the scaled TTT transform of X and that
below Y . A practitioner of the test described below should be aware that S may be positive
even if these transforms cross each other (that is, if Y1 �≤NBUE X1).

Let 0 ≡ X0:m ≤ X1:m ≤ X2:m ≤ · · · ≤ Xm:m denote the order statistics corresponding to
X1, X2, . . . , Xm. The corresponding empirical TTT transform, T X

m , is defined by

T X
m (p) :=

∫ F−1
m (p)

0
F̄m(x) dx, 0 ≤ p ≤ 1, (5.6)
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where Fm and F̄m are the corresponding empirical distribution and survival functions. From
(5.6) we have

T X
m

(
i

m

)
= 1

m

i∑
j=1

(m − j + 1)(Xj :m − Xj−1:m), 0 ≤ i ≤ m.

Note that T X
m (1) = X̄m. Similarly, define T Y

n (i/n) for 0 ≤ i ≤ n. The cumulative empirical
scaled TTT statistics based on the X-sample and on the Y -sample are, respectively,

AX
m = 1

m

m−1∑
i=1

T X
m (i/m)

T X
m (1)

and AY
n = 1

n

n−1∑
i=1

T Y
n (i/n)

T Y
n (1)

.

Barlow and Doksum (1972) proposed a test based on large values of AX
m for the one-sample

goodness-of-fit problem of testing the exponentiality of F against IFR (increasing failure rate)
alternatives. Later, Hollander and Proschan (1975) proved the consistency of the same test for
NBUE alternatives. The test was also generalized by Klefsjö (1983) to the larger HNBUE class.

For testing H0 against H1, we base our test on large values of the statistic

Sm,n := AY
n − AX

m.

Let N = m + n. Denote

η(F ) :=
∫ 1

0

TX(p)

E X
dp.

Note, by (5.5), that η(F ) = ∫ ∞
0 F̄ 2(t) dt . Define

ν2(F ) := 2
∫∫

0≤x≤y

[2F̄ (x) − η(F )][2F̄ (y) − η(F )]F(x)F̄ (y) dxdy. (5.7)

Similarly, define ν2(G). It follows from Theorem 6.6 of Barlow et al. (1972) that, under some
regularity conditions, the limiting distribution of

N1/2[Sm,n − (η(G) − η(F ))]
is normal with mean 0 and variance

σ 2 = ν2(F )

λ(E X)2 + ν2(G)

(1 − λ)(E Y )2 , (5.8)

where λ := limN→∞ m/N and 0 < λ < 1.
Let σ̂ 2

m,n be a consistent estimator of σ 2. Such an estimator can be obtained, for example, by
replacing F and G in (5.7) and (5.8) by the corresponding empirical distribution functions. It
follows that under the null hypothesis H0 the limiting distribution of N1/2Sm,n/σ̂m,n is normal
with mean 0 and variance 1. Thus, the two-sample test for testing H0 against H1 which rejects
H0 when

N1/2Sm,n

σ̂m,n

> z1−α

(where z1−α is the quantile of order 1−α of the standard normal distribution) is asymptotically
unbiased whenever X/E X ≤TTT Y/E Y (that is, X ≥NBUE Y ).

Ideas similar to those used above have been used by Gerlach (1988) to propose a test for the
two-sample problem of testing whether one distribution is ‘more NBU’ than another.
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Figure 3: Typical graphs of the distribution functionsF andG (ofX andY respectively) whenX ≤TTT Y .

Appendix A. Proofs

In this appendix we give the proofs of Theorems 2.1, 4.1, and 5.1, as well as lemmas that
are used in these proofs.

A.1. Proof of Theorem 2.1

Let F and G denote the distribution functions of X and Y respectively. First note that, if
F and G are not identical and do not cross each other, then, from (2.1), it is seen that F̄ ≤ Ḡ

at a right neighbourhood of 0, and therefore F̄ (x) ≤ Ḡ(x) for all x ≥ 0; that is, X ≤st Y .
It then follows that φ(X) ≤st φ(Y ) for any increasing function φ, and from (2.2) we get
φ(X) ≤TTT φ(Y ).

Thus, let us assume that F and G cross each other at least once. Denote the consecutive
crossing points by (0, 0) ≡ (t0, p0), (t1, p1), (t2, p2), . . . ; see Figure 3 for an example. Let
φ be an increasing concave function such that φ(0) = 0. For simplicity we assume that φ is
differentiable with derivative φ′. We note that

Tφ(X)(p) =
∫ F−1(p)

0
F̄ (x)φ′(x) dx, p ∈ (0, 1),

Tφ(Y )(p) =
∫ G−1(p)

0
Ḡ(x)φ′(x) dx, p ∈ (0, 1).

First consider p ∈ (0, p1]. Then G−1(p) ≥ F−1(p). Also, for x ∈ (0,G−1(p)), we have
Ḡ(x) − F̄ (x) ≥ 0 and φ′(x) ≥ φ′(t1) ≥ 0 (since φ is increasing and concave). Thus,

Tφ(Y )(p) − Tφ(X)(p) ≥ φ′(t1)
[∫ F−1(p)

0
[Ḡ(x) − F̄ (x)] dx +

∫ G−1(p)

F−1(p)

Ḡ(x) dx

]

= φ′(t1)[TY (p) − TX(p)], p ∈ (0, p1]. (A.1)

Next let p ∈ (p1, p2] (here p2 = 1 if F and G cross only once). Then G−1(p) ≤ F−1(p).
Also (recall that F−1(p1) = G−1(p1) = t1), for x ∈ (t1, F

−1(p)), we have F̄ (x) − Ḡ(x) ≥ 0
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and 0 ≤ φ′(x) ≤ φ′(t1) (since φ is increasing and concave). Thus,

Tφ(Y )(p) − Tφ(X)(p)

= Tφ(Y )(p1) − Tφ(X)(p1) +
∫ G−1(p)

t1

[Ḡ(x) − F̄ (x)]φ′(x) dx −
∫ F−1(p)

G−1(p)

F̄ (x)φ′(x) dx

≥ Tφ(Y )(p1) − Tφ(X)(p1) + φ′(t1)
[∫ G−1(p)

t1

[Ḡ(x) − F̄ (x)] dx −
∫ F−1(p)

G−1(p)

F̄ (x) dx

]

≥ φ′(t1)[TY (p1) − TX(p1)] + φ′(t1)[TY (p) − TY (p1) − TX(p) + TX(p1)],
where the last inequality follows from (A.1). That is,

Tφ(Y )(p) − Tφ(X)(p) ≥ φ′(t1)[TY (p) − TX(p)], p ∈ (p1, p2]. (A.2)

In a manner similar to the proof of (A.1) it can be shown that, if F and G cross at least twice,
then for p ∈ (p2, p3] we have

Tφ(Y )(p) − Tφ(X)(p)

≥ Tφ(Y )(p2) − Tφ(X)(p2) + φ′(t3)[[TY (p) − TY (p2)] − [TX(p) − TX(p2)]]
≥ φ′(t1)[TY (p2) − TX(p2)] + φ′(t3)[[TY (p) − TY (p2)] − [TX(p) − TX(p2)]]
≥ φ′(t3)[TY (p2) − TX(p2)] + φ′(t3)[[TY (p) − TY (p2)] − [TX(p) − TX(p2)]]

(here, if F and G cross exactly twice we set p3 = 1 and φ′(t3) = limt→∞ φ′(t)), where the
second inequality follows from (A.2) and the last inequality from the concavity of φ and t3 ≥ t1.
That is,

Tφ(Y )(p) − Tφ(X)(p) ≥ φ′(t3)[TY (p) − TX(p)], p ∈ (p2, p3]. (A.3)

Furthermore, if F and G cross each other at least three times it can be shown, using (A.3) and
the ideas in the proof of (A.2), that

Tφ(Y )(p) − Tφ(X)(p) ≥ φ′(t3)[TY (p) − TX(p)], p ∈ (p3, p4];
here p4 = 1 if F and G cross exactly three times.

In general, if F and G cross each other at least i times, then

Tφ(Y )(p) − Tφ(X)(p) ≥ φ′(tj (i))[TY (p) − TX(p)], p ∈ (pi, pi+1], (A.4)

where j (i) = i if i is odd, and j (i) = i + 1 if i is even. If there are exactly i crossings, and i is
even, then in (A.4) we take pi+1 = 1 and φ′(tj (i)) = limt→∞ φ′(t). From (A.4) and X ≤TTT Y

we get that
Tφ(Y )(p) − Tφ(X)(p) ≥ 0, p ∈ (pi, p(i+1)]. (A.5)

Since (A.5) is true for all relevant i, Tφ(Y )(p) − Tφ(X)(p) ≥ 0 for all p ∈ (0, 1), that is,
φ(X) ≤TTT φ(Y ).

A.2. Proof of Theorem 4.1

For the proof of Theorem 4.1 we will need the following two lemmas.

LemmaA.1. (Belzunce (1999).) Let X and Y be two continuous random variables with
distribution functions F and G respectively. Then X ≤EW Y if and only if∫ ∞

t

F̄ (x + F−1(p)) dx ≤
∫ ∞

t

Ḡ(x + G−1(p)) dx, t ≥ 0, p ∈ (0, 1).
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LemmaA.2. (Barlow and Proschan (1975, p. 120).) Let W be a measure on the interval (a, b),
not necessarily nonnegative. Let h be a nonnegative function defined on (a, b).

(a) If
∫ b

t
dW(x) ≥ 0 for all t ∈ (a, b) and if h is increasing, then

∫ b

a
h(x) dW(x) ≥ 0.

(b) If
∫ t

a
dW(x) ≥ 0 for all t ∈ (a, b) and if h is decreasing, then

∫ b

a
h(x) dW(x) ≥ 0.

Let F and G be the distribution functions of X and Y respectively. Assume that X ≤EW Y .
Let φ be an increasing convex function; for simplicity we assume that φ is strictly increasing
and differentiable.

Let Fφ and Gφ denote the distribution functions of φ(X) and φ(Y ) respectively. Then

Fφ(x) = F(φ−1(x)), Gφ(x) = G(φ−1(x)), x ∈ R,

F−1
φ (p) = φ(F−1(p)), G−1

φ (p) = φ(G−1(p)), p ∈ (0, 1).

Therefore,
∫ ∞

F−1
φ (p)

F̄φ(x) dx =
∫ ∞

φ(F−1(p))

F̄ (φ−1(x)) dx

=
∫ ∞

F−1(p)

F̄ (y)φ′(y) dy

=
∫ ∞

0
F̄ (y + F−1(p))φ′(y + F−1(p)) dy, p ∈ (0, 1).

Similarly,
∫ ∞

G−1
φ (p)

Ḡφ(x) dx =
∫ ∞

0
Ḡ(y + G−1(p))φ′(y + G−1(p)) dy, p ∈ (0, 1).

Thus, in order to prove the theorem we need to show that
∫ ∞

G−1(p)

Ḡ(x)φ′(x) dx ≥
∫ ∞

F−1(p)

F̄ (x)φ′(x) dx, p ∈ (0, 1), (A.6)

or, equivalently, that

∫ ∞

0
Ḡ(x + G−1(p))φ′(x + G−1(p)) dx

≥
∫ ∞

0
F̄ (x + F−1(p))φ′(x + F−1(p)) dx, p ∈ (0, 1). (A.7)

First we show that (A.7) holds for all p ∈ (0, 1) such that G−1(p) ≥ F−1(p). For such a
p, using the fact that φ′ is increasing, we get

∫ ∞

0
[Ḡ(x + G−1(p))φ′(x + G−1(p)) − F̄ (x + F−1(p))φ′(x + F−1(p))] dx

≥
∫ ∞

0
[Ḡ(x + G−1(p)) − F̄ (x + F−1(p))]φ′(x + F−1(p)) dx, p ∈ (0, 1). (A.8)
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Figure 4: Typical crossing points of the distribution functions F and G (of X and Y respectively) when
X ≤EW Y .

By Lemma A.1 we have∫ ∞

t

[Ḡ(x + G−1(p)) − F̄ (x + F−1(p))] dx ≥ 0, t ≥ 0.

Since φ′(x + F−1(p)) is nonnegative and increasing in x, it follows from Lemma A.2 that∫ ∞

0
[Ḡ(x + G−1(p)) − F̄ (x + F−1(p))]φ′(x + F−1(p)) dx ≥ 0.

This inequality, applied to (A.8), yields (A.7) for all p ∈ (0, 1) such that G−1(p) ≥ F−1(p).
Consider now a p ∈ (0, 1) such that G−1(p) < F−1(p). Note that in such a case F and

G are distinct and they must cross each other because otherwise (4.1) would not hold in a left
neighbourhood of 1. In fact, in the last point of crossing F must cross G from below. Therefore,
there exists a point p2 ∈ (p, 1) defined by p2 := inf{u > p : G−1(p) ≥ F−1(p)}. Define also
p1 := sup{u < p : G−1(p) ≥ F−1(p)}, where p1 ≡ 0 if {u < p : G−1(p) ≥ F−1(p)} = ∅.
Denote ti := F−1(pi) and note that ti = G−1(pi), i = 1, 2, by the continuity of F and G; see
Figure 4.

For p ∈ (0, 1) such that G−1(p) < F−1(p) we have Ḡ(x) ≤ F̄ (x) for all x ∈
[G−1(p1),G

−1(p)]. Recall also that G−1(p1) = F−1(p1). Therefore,

∫ ∞

G−1(p)

Ḡ(x)φ′(x) dx =
∫ ∞

G−1(p1)

Ḡ(x)φ′(x) dx −
∫ G−1(p)

G−1(p1)

Ḡ(x)φ′(x) dx

≥
∫ ∞

G−1(p1)

Ḡ(x)φ′(x) dx −
∫ F−1(p)

F−1(p1)

F̄ (x)φ′(x) dx

≥
∫ ∞

F−1(p1)

F̄ (x)φ′(x) dx −
∫ F−1(p)

F−1(p1)

F̄ (x)φ′(x) dx

=
∫ ∞

F−1(p)

F̄ (x)φ′(x) dx,
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where the second inequality follows from the validity of (A.6) for p1 proven earlier. This proves
that (A.6) holds also for p ∈ (0, 1) such that G−1(p) < F−1(p), and the proof of the theorem
is complete.

Because the orders ≤EW and ≤TTT are essentially different, the proofs of Theorems 2.1
and 4.1 should be contrasted. On one hand, both proofs share the idea of obtaining the desired
inequalities on one interval at a time, where the intervals are determined by the points in whichF

and G cross each other. On the other hand, the proofs differ significantly once the inter-crossing
interval is fixed.

A.3. Proof of Theorem 5.1

We only give the proof of part (a) since the proof of part (b) is similar. So, assume
that X1 ≤TTT Y1. It suffices to consider only the case n = 2. Let F̄ and Ḡ denote the
survival functions of X1 and Y1 respectively, and let F̄2 and Ḡ2 denote the survival functions
of min{X1, X2} and min{Y1, Y2} respectively. That is,

F̄2(x) = F̄ 2(x), x ≥ 0,

and
Ḡ2(x) = Ḡ2(x), x ≥ 0.

Now, from the assumed inequality (2.1) it follows that
∫ p

0
(1 − u) d(G−1(u) − F−1(u)) ≥ 0, p ∈ (0, 1).

By Lemma A.2(b),
∫ p

0
(1 − u)2 d(G−1(u) − F−1(u)) ≥ 0, p ∈ (0, 1).

That is, ∫ F−1(p)

0
F̄ 2(x) dx ≤

∫ G−1(p)

0
Ḡ2(x) dx, p ∈ (0, 1).

Since F−1
2 (p) = F−1(1−√

1 − p) and G−1
2 (p) = G−1(1−√

1 − p) for p ∈ (0, 1), it follows
that ∫ F−1

2 (p)

0
F̄2(x) dx ≤

∫ G−1
2 (p)

0
Ḡ2(x) dx, p ∈ (0, 1),

that is, min{X1, X2} ≤TTT min{Y1, Y2}.
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