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Abstract: In Escherichia coli, several enzymes have been identified that participate in completing
replication on the chromosome, including RecG, SbcCD, ExoI, and RecBCD. However, other enzymes
are likely to be involved and the precise enzymatic mechanism by which this reaction occurs remains
unknown. Two steps predicted to be necessary to complete replication are removal of Okazaki
RNA fragments and ligation of the nascent strands at convergent replication forks. E. coli encodes
two RNases that remove RNA-DNA hybrids, rnhA and rnhB, as well as two ligases, ligA and ligB.
Here, we used replication profiling to show that rnhA and ligA, encoding RNase HI and Ligase A,
participate in the completion reaction. Deletion of rnhA impaired the ability to complete replication
and resulted in over-replication in the terminus region. It additionally suppressed initiation events
from oriC, suggesting a role for the enzyme in oriC-dependent initiation, as has been suggested
previously. We also show that a temperature-sensitive mutation in Ligase A led to over-replication at
sites where replication completes, and that degradation at these sites occurred upon shifting to the
nonpermissive temperature. Deletion of rnhB or ligB did not affect the growth or profile of replication
on the genome.
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1. Introduction

Cells must tightly regulate all phases of DNA replication to ensure that genomic
stability is maintained and each daughter cell inherits an identical copy of the genetic
information. Cellular genomes devote large numbers of proteins to limit replication initia-
tion events to specific times and loci (reviewed in [1]). Similarly, several proteins ensure
that DNA elongation remains processive (reviewed in [2]). Whereas these two phases of
replication have been well characterized, the process by which cells complete replication
has, until recently, remained largely unknown. To complete replication accurately, cells
must have an enzymatic system that limits replication events to a precise doubling, joining
the convergent strands at the point where every nucleoside in the parental strands have
replicated once, and only once. In human cells, completion occurs thousands of times per
cell division at loci all along the chromosomes where replication forks converge, and it
must therefore proceed with remarkable efficiency. With respect to genome stability, one
could argue that it is more critical to efficiently complete replication events than it is to
efficiently initiate them. Both prokaryotic and eukaryotic cells tolerate variations in their
origin number without severe phenotypic consequences, as elongation of replication forks
from neighboring origins can compensate [3–7]. However, a failure to complete any single
replication event would result in mutation, copy number variations, or cell lethality if the
ends cannot be joined. Given this critical role, it is reasonable to infer that this final step,
though far less understood, is also tightly regulated and controlled enzymatically.

Over-replication appears to be an inherent and promiscuous problem during genome
duplication. Early reconstitution experiments found that converging replisomes continue
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past their meeting point, resulting in over-replication of the region where the forks meet [8].
Over-replication also occurs in vivo on the chromosome of cells lacking the helicases or
nucleases required to disrupt and degrade these events [9–17]. In addition, illegitimate
initiations of replication can occur at single-strand nicks, gaps, D-loops and R-loops created
by repair or transcriptional processes [13,15,18–22]. Each of the events described above
would likely result in excess copies of the chromosome region where replication continues
or initiates. Thus, it is extremely likely that cells will encode enzymes to specifically limit,
degrade, and join these events when they occur each cell cycle.

The completion reaction has thus far been challenging to characterize in eukaryotic
cells, where multiple origins initiate with varying efficiencies and timing, making the
location where forks meet highly variable [4,5]. By comparison, Escherichia coli is well
suited to dissect this reaction since the replication completes within a single ~400 kb region
of the chromosome, opposite to its bidirectional origin of replication (reviewed in [23]). This
region is flanked by ter sequences which bind the protein Tus, blocking replication forks
in an orientation-specific manner, further narrowing the location where most completion
events occur [24]. Although ter sequences ensure that completion occurs within this region,
they do not appear to be directly involved in the reaction, as chromosomes lacking ter
replicate normally and are stably maintained [25–27].

Current models suggest that converging replisomes transiently bypass each other
at the point where they converge, creating an over-replicated region that contains three
copies of the genetic information. The RecG helicase appears to play a critical role in
disrupting the bypassed replication forks, limiting the extent to which over-replication
occurs [9,28,29]. Subsequent incisions by the structure-specific nucleases SbcCD and ExoI
are thought to cleave the intermediate created by these events [17,30–32]. In the absence
of the SbcCD and ExoI nucleases, the over-replicated region persists, leading to genomic
instabilities and amplifications at these loci [16,17,28]. The absence of other exonucleases,
RecJ and Exo VII, can also exacerbate this effect [12]. Following incision, the RecBCD
helicase-nuclease complex processes the over-replicated intermediate and is required to
catalyze or recruit enzymes that promote joining of the convergent strands [16,33]. In vitro,
RecB and RecC interact with RecD to form a dual helicase–nuclease complex that unwinds
and degrades double-strand DNA ends [34–38]. Loss of RecB or RecC inactivates the
enzyme complex, whereas loss of RecD inactivates the nuclease, but retains the helicase
activity and recombination proficiency of the complex [37,39,40]. On the chromosome, in
the absence of RecB or RecC, the nascent ends of convergent replication forks are not joined,
leading to excessive degradation and rendering cells unable to maintain the chromosome
region where forks converge [16,28,33]. The inability to complete replication or maintain
these regions of the genome severely compromises the viability and growth of recBCD
cultures [16,33,41]. In the absence of RecD, degradation of the excess sequence is impaired,
however, joining appears to occur normally and viability is not compromised [16,17,33].

Importantly, the completion reaction occurs normally in the absence of RecA or
recombination [16,33]. However, when completion is impaired or prevented from occurring
normally, viability and growth become dependent on an aberrant form of recombination
that leads to genetic instabilities and amplifications at these loci [17].

The precise mechanism by which these enzymes catalyze the completion reaction and
several key enzymatic steps remain unknown. Two events that are likely to be required
during this reaction are the removal of Okazaki RNA fragments where the leading strand
polymerase encounters the 50 end of the convergent replisome’s lagging strand and the
subsequent joining or ligation of the convergent nascent strands. E. coli has two known
RNases (HI and HII) that remove RNA-DNA hybrids, encoded by rnhA and rnhB, as well
as two Ligases (A and B), encoded by ligA and ligB [42,43].

In vitro, both RNase HI and HII can incise RNA-DNA hybrids that are analogous to
Okazaki fragments formed during DNA replication [44,45]. However, they each recognize
different substrates and have unique functions in the cell. RNase HI will cleave 50-ended
RNA hybridized to DNA at multiple sites when multiple RNA bases are present in the sub-



DNA 2021, 1 15

strate and is capable of incising 30 to the RNA base at the RNA-DNA junction [44,45]. RNase
HII can also incise these substrates, but makes incisions 50 to the final RNA base at the RNA-
DNA junction [45–47]. Mutants lacking RNase HI grow poorly but suppressor mutations
rapidly accumulate that relieve this phenotype [48–50]. The enzyme’s primary function
has been proposed to be for the removal of Okazaki primers generated during replication
elongation, along with polymerase I [44,48]. Additionally, RNase HI suppresses illegitimate
initiation of replication from sites other than the chromosomal origin, oriC [49–52], and
may be required for, or contribute to the efficiency of initiation at oriC [50,52]. RNase HII
is the primary cellular activity that removes ribonucleotides misincorporated by DNA
polymerases during replication through ribonucleotide excision repair [46,53]. It has also
been suggested that RNase HII may play a minor role in Okazaki fragment removal [43].

Ligase A is an NAD+-dependent enzyme that catalyzes joining between 50-phosphate
and 30-hydroxyl termini at nicks in duplex DNA [54–57]. It is essential for viability and
replication, although temperature-sensitive mutants exist [58–61]. It functions in the joining
of Okazaki fragments on the lagging strand during replication elongation and is required
during nucleotide excision repair, base excision repair, mismatch repair, and double-strand
break repair [58,60,62–66]. Ligase B was identified based upon sequence similarity to
Ligase A and possesses a similar catalytic activity, but is nonessential [67]. A report recently
suggested Ligase B may contribute to resistance during oxidative stress, but otherwise
its cellular function presently remains unknown [68]. Whether Ligase A or B participates
in the completion of replication has not yet been examined. Here, we used replication
profiling to assess the ability of these mutants to complete replication and found that RNase
HI and Ligase A participate in the reaction.

2. Materials and Methods
2.1. Bacteria

Strains utilized in these experiments are derived from SR108, a W3110 derivative that
contains thyA deoC mutations [69] (see Table 1).

Table 1. Strains used and constructed for this study.

Strain Relevant Genotype Source or Construction

GR501 ligA251(ts) [70]

JW0204 rnhA::kan [71]

JW0178 rnhB::kan [71]

JW3622 ligB::kan [71]

DY329 W3110 Del(lacU169) nadA::Tn10, gal490, Lambda cI857,
Del(cro-bioA) [72]

CL1180 DY329 (nupC-yfeA intergenic region)::cat

primers 50 GTTACGGGTTGTACAAGCGGAAAGAGATTGCG
TCTTGTCGATGAGACGTTGATCGGCAC, 50
TCCTTTTCGACGATTCTCGCTGAGCAGTCGGGT
TTTACTGCTTTCGAATTTCTGCCATTC to amplify cat, transformed into
recombineering strain DY392. cat inserts within nupC-yfeA intergenic region.

CL1834 GR501 (nupC-yfeA intergenic region)::cat P1 transduction of (nupC-yfeA intergenic region)::cat from CL1180 into GR501

SR108 L-thyA deoC IN(rrnD-rrnE) [69]

CL1056 SR108 D(recC ptr recB recD)::cam [17]

CL2357 SR108 xonA::Cat300 sbcCD::Gm [16]

CL3362 SR108 rnhA::kan P1 transduction of rnhA::kan from JW0204 into SR108

CL3360 SR108 rnhB::kan P1 transduction of rnhB::kan from JW0178 into SR108

CL3912 SR108 ligA251(ts) (nupC-yfeA intergenic region)::cat P1 transduction of ligA251(ts) (nupC-yfeA intergenic region)::cat from CL1834
into SR108

CL3909 SR108 ligB753::kan P1 transduction of ligB753::kan from JW3622 into SR108
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2.2. Growth Rates
Equivalent viable cells were inoculated into 0.1 mL cultures of LB supplemented

with 10 µg/mL thymine (LBthy medium) and placed into a 96-well microtiter dish. Cul-
tures were then grown at 37 �C with agitation and the absorbance at 630 nm was mea-
sured at 20-min intervals, using a BIO-Whittaker ELx808 plate reader (BioTek Instruments,
Winooski, VT, USA) [16].

2.3. Replication Profiling
Cultures grown overnight were diluted 1:250 in LBthy media. All cultures were grown

at 37 �C with aeration, unless otherwise indicated. To normalize profiles, stationary phase
cultures were grown for 36 h before harvesting. When cultures reached an OD600 of 0.4,
genomic DNA was purified by placing 0.75-mL of culture into 0.75-mL ice cold 2⇥ NET
buffer (100 mM NaCl, 10 mM Tris at pH 8.0, 10 mM EDTA). All samples were then pelleted
by centrifugation, resuspended in a solution containing 140 µL of 1 mg/mL lysozyme
and 0.2 mg/mL RNaseA in TE (10 mM Tris at pH 8.0, 1 mM EDTA), and incubated at
37 �C for 30 min to lyse cells. Subsequently, Sarkosyl [10 µL, 20% (wt/wt)] and proteinase
K (10 µL, 10 mg/mL) were added and the incubation was continued at 37 �C for an
additional 30 min. The samples were then further purified by extracting the DNA with
4 vol phenol/chloroform (1/1) followed by dialysis for 1 h using 47 mm MF-Millipore
0.05-µm pore disks (#VMWP04700; Merck Millipore, Darmstadt, Germany) to float the
samples on a 250-mL beaker of TE buffer (1 mM Tris at pH 8.0, 1 mM EDTA) [16]. A
minimum of two replication profiles were obtained for each strain and representative plots
are shown.

Genomic DNA samples were sequenced using single-end, 51-bp, bar-coded reads
prepared and run on NexteraXT and Illumina HiSeq2000 (Illumina, San Diego, CA, USA)
following the manufacturer’s instructions. To determine the SR108 parent sequence, struc-
tural variations between SR108 and its W3110 parent genome were identified using the
program Breseq, and the differences were then annotated by hand to generate the reference
genome for SR108 [73]. For all subsequent strains, the original Illumina sequence reads
were aligned to the SR108 reference genome using the program Bowtie 1.0.0 [74]. All
aligned reads were then characterized to determine the nucleotide frequency at each posi-
tion. The number of sequences per kilobase was determined and plotted using a custom
Python script. To prevent sequencing bias caused by the purification or sequencing, the
copy number for each strain was normalized to a stationary phase culture of SR108. Plots
represent these relative copy number values at each genomic location in 1 kb bins, and
depict the replication profile of each strain.

3. Results and Discussion
3.1. RNase HI, but Not RNase HII, Participates in Completing Replication on the Chromosome

To examine potential contributions of RNase H to replication completion on the
chromosome, we compared the replication profiles of isogenic mutants deleted for rnhA
or rnhB to that of the parental strain. For the purposes of controls, we also examined
recBC and sbcCD xonA mutants which have been shown previously to be impaired in their
ability to complete replication. To this end, genomic DNA was purified from replicating
cultures and fragmented, prior to high-throughput sequencing. The replication profile
was then determined by counting the number of sequences that align to each segment of
the chromosome. In rapidly growing cultures, sequences proximal to the origin replicate
early and are observed at higher frequencies relative to chromosome regions near the
terminus, which replicate later (Figure 1A). Overall, we observed that the frequency of a
given sequence in our parental cells decreases inversely with its distance from the origin
until reaching the terminus region where the two replication forks converge and replication
completes (Figure 1B). By comparison, recBC mutants fail to join the strands of convergent
replication forks, leading to extensive degradation and an inability to maintain this region
of the chromosome ([16,28] and Figure 1C). The loss of chromosome integrity severely
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compromises growth and viability in these cultures [16,17]. In contrast, SbcCD and ExoI
nucleases are required to initiate the processing of convergent forks. In the absence of
SbcCD and ExoI, the over-replicated regions at loci where forks converge persist, leading
to amplifications in this region ([16,17,30] and Figure 1C).
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a severe over-replication of the terminus region is observed, suggesting that in the absence of RNase 
HI, the completion reaction is impaired and does not occur normally. A suppression of oriC initia-
tion is also observed in these mutants. By contrast, the completion of replication occurs normally in 
the absence of rnhB. Sequence read frequencies are normalized to stationary-phase cells and are 
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Figure 1. RNase HI, but not RNase HII, affects the ability to complete replication normally on
the chromosome. (A) A diagram of method employed to profile replication on the Escherichia coli
chromosome is shown. Genomic DNA from replicating cultures is purified, fragmented, and profiled
using high-throughput sequencing. (B) In wild-type cultures, replication proceeds bidirectionally
from the origin and completes in the terminus region. (C) recBCD mutants fail to join the strands of
the convergent forks, leading to degradation of the terminus region. sbcCDxonA mutants fail to incise
the intermediate formed where replication forks converge, allowing these over-replicated regions to
persist and creating amplifications in the region where forks converge. (D) In rnhA mutants, a severe
over-replication of the terminus region is observed, suggesting that in the absence of RNase HI, the
completion reaction is impaired and does not occur normally. A suppression of oriC initiation is also
observed in these mutants. By contrast, the completion of replication occurs normally in the absence
of rnhB. Sequence read frequencies are normalized to stationary-phase cells and are plotted relative
to their position on the genome. The position of the origin and terminus region is shown. A 50-kb
floating average of the sequence frequency is plotted in black.
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We next examined mutants lacking rnhA and rnhB, encoding RNase HI and HII,
respectively. Whereas the profile of rnhB mutants looked similar to that of the parental
cultures, the profile of rnhA mutants was clearly abnormal, both in the terminus region as
well as across the genome (Figure 1D). In the absence of RNase HI, the terminus region was
amplified suggesting that the efficiency of the completion reaction has been compromised
or impaired. Additionally, an inhibition or severe suppression of replication initiation from
oriC also occurred. This produced an inversion of the overall replication profile, with the
predominant site of replication initiation appearing to occur in the terminus region where
replication forks normally converge. Suppression of oriC initiation in rnhA mutants has
been reported by others [10,52]. In these previous studies, the investigators also noted
a similar amplification of DNA in the terminus region where replication forks converge
and complete. However, neither group observed an inhibition of initiation from oriC and
inversion of the total profile, unless either Tus or DnaA, which binds and is required for
oriC initiation, was also inactivated. Tus binds to ter sequences in the terminus region and
inhibits replication fork progression in an orientation-dependent manner, which helps limit
the over-replication to this region [24,75]. DnaA binds to sequences proximal to oriC and
is required to initiate replication from this locus [76]. Unlike these previous studies, our
parental strain retains wild-type copies of both tus and dnaA. We observed steep declines
in read frequencies as replication proceeded out of the terminus region in this strain,
suggesting that the replication stalled at the Tus/ter sequences for significant periods
of time. Our rnhA strain did acquire an insertion element-mediated deletion between
abgT-ydeN during selection or out-growth. It is possible that differences in our conditions,
strains, or a gene or sequence in this deletion region is responsible for this phenotype.
Several other mutations and conditions have been reported that also bypass the DnaA
requirement for initiating replication, including topA, rpoB, rpoA, rnhA heat stress, and
DNA damage [77–82].

Suppression of dnaA by rnhA could be mediated by R-loops that serve to open and/or
prime initiation at this locus in the absence of DnaA. Several lines of evidence support
the idea that transcriptional RNA-DNA hybrids contribute to oriC initiation efficiency.
Transcription from the genes proximal to oriC, allele-specific mutations in RNA polymerase,
and deletion of rnhA have all been shown to promote oriC initiation and would be expected
to enhance RNA-DNA hybrid formation in this region [50,83–85]. A similar form of R-
loop-mediated replication initiation is also utilized by ColE1 type plasmids [86,87]. R-loops
have also been suggested to allow replication initiation from multiple sites around the
chromosome [13,49,52]. However, as shown in Figure 1C and consistent with the results
reported by others, the predominant point of replication initiation in rnhA mutants appears
to occur in the terminus where replication forks converge [10,52]. This would imply that
when the completion reaction is impaired, DNA ends from the converging replication
forks persist, allowing replication to resume or re-initiate from these sites. Consistent with
this view, recG mutants similarly impair the ability to complete replication, leading to a
prominent peak of DNA initiation at the terminus region, and bypassing the requirement
for DnaA and oriC when specific allelic mutations of RNA polymerase or Tus are also
present, similar to rnhA [10,88].

3.2. Ligase A, but Not Ligase B, Participates in Completing Replication on the Chromosome
Completing replication is also likely to involve ligation of 50- and 30-strand ends

where forks converge. To determine whether Ligase A or B participates in the reaction, we
examined the profiles of a temperature-sensitive ligA allele, as well as a deletion mutant
of ligB. The profile of the ligAts mutant was determined by growing the culture at the
permissive temperature of 30 �C. As shown in Figure 2A, the absence of Ligase B did
not detectably alter the mutant’s profile relative to wild-type cells. By contrast, ligAts
mutants exhibited an over-replication in the region where forks converge, even at the
permissive temperature. The observation suggests that when Ligase A activity is less than
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fully functional, even at 30 �C, the reduced rate of ligation allows DNA ends to initiate or
extend replication when forks meet, compromising the completion reaction.
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some. (A) At the permissive temperature, an over-replication of the terminus region is observed in
ligA(ts) mutants, suggesting that the completion of replication has been impaired. By comparison,
the replication profile and terminus of ligB mutants is not detectably different from the parental
strain. (B) After 1 h at the non-permissive temperature, extensive degradation in the terminus region
is observed in the ligAts mutant, suggesting that in the absence of Ligase A, the strands of the
convergent replication forks are not joined and remain susceptible to exonucleolytic degradation.
Top panel—ligAts grown at 30 �C, middle panel—ligAts grown at 42 �C for 1 h, bottom panel the
difference between these profiles after 1 h at the restrictive, 42 �C temperature; 30 �C ligAts profile
represents the same experiment. Profiles were determined as in Figure 1. Data for the parental strain
is reproduced from Figure 1 and plotted for comparison.

To further characterize the role of Ligase A, we also compared the replication profile of
ligAts cells at the permissive temperature of 30 �C, to one after the culture had been shifted
to the fully restrictive temperature of 42 �C for one hour. As shown in Figure 2B, when
Ligase A has been inactivated for a period of one hour, the over-replicated region is lost and
the chromosome region where forks converge begins to degrade. The observation indicates
that Ligase A participates in the completion reaction and implies that the efficiency or
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timing of ligation during completion is critical to maintaining genome stability. When
Ligase A activity is reduced, such as occurs at the permissive temperature, 30-ends may
persist and allow replication to reinitiate leading to the amplifications observed. However,
if ligation or joining of the convergent forks is completely prevented, after an extended
period of time the DNA ends of the replication forks may break and/or succumb to
exonucleases, leading to the excessive degradation and loss of this region of the genome.

When we compared the growth rates of these strains at 37 �C, we observed that both
ligAts and rnhA, but not ligB or rnhB, impaired growth of cultures, to an extent similar to
that of recBCD mutants (Figure 3). Both Ligase A and RNase HI have cellular functions
other than completing replication, including the processing of Okazaki primers during
replication elongation, which would also be expected to reduce growth when these genes
are mutated or impaired. Thus, although we cannot specifically attribute the reduced
growth rates to an impaired ability to complete replication, the results are consistent with
those seen in the replication profiles indicating that Ligase A and RNase HI, but not Ligase
B or RNase HII, participate in completing replication on the chromosome.
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3.3. Efficient Removal of Okazaki Primers and Joining of DNA Ends Is Important to Accurately
Complete Replication on the Chromosome

RNase HI plays a prominent role, along with the 50-30 exonuclease activity of Poly-
merase I, in removing Okazaki primers during replication elongation [48,89], and it is likely
to be similarly required to allow replication on the chromosome to complete (Figure 4).
Consistent with this interpretation, a similar over-replication in the terminus region is ob-
served in polA mutants lacking the 50-30 exonuclease required for RNA primer removal [11].
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Persistent RNA primers at convergent replication forks would prevent joining of 50- and
30-ends, leaving the 30-ends free to prime and initiate or resume illegitimate replication
at these sites. This could explain the observed over-replication that is observed at sites
of convergent forks in these mutants. Similarly, mutations that inactivate other helicases,
nucleases, or topoisomerases which generate excessive 3-DNA ends, appear to lead to
over-replication on the chromosome [12,22].
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Figure 4. Model for the completion of DNA replication on the chromosome. (A) Convergent
replication forks continue past their meeting point, creating a partially over-replicated substrate that
contains three copies of the genetic information. The RecG helicase disrupts replication, limiting the
over-replicated region. (B) SbcCD and ExoI recognize and cleave this hairpin-like, over-replicated
substrate, creating a DNA substrate that can be resected and processed by RecBCD. Following
resection, RecBCD promotes or recruits enzymes that join the convergent strands at the doubling
point. The proposed roles for RNase HI in removing RNA primers (red) at the convergent strands so
that Ligase A can join these substrates is indicated.

Reducing the efficiency of Ligase A by the temperature-sensitive mutation would also
be expected to allow 30-ends to persist longer than normal and similarly leads to a modest
over-replication in the region where forks converge. Curiously, when inactivated at the
restrictive temperature, this leads to loss and degradation of this region of the chromosome.
The results imply that if joining of the 50- and 30-ends of converging forks is prevented
entirely, they remain susceptible to exonucleolytic attack and the region is degraded. A
similar degradation is observed in recBCD mutants, an observation that is consistent with
that idea that this enzyme is required to recruit ligase, either directly or indirectly to these
sites to promote joining of the DNA ends, as has been speculated previously [16,17,30,33].
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It will be of interest in future work to determine how the progression of this reaction
occurs, and whether these proteins interact and function as a complex, ‘completosome’, or
sequentially.
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