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Abstract 

Oxygen radicals are a prominent and ever-present threat to all organisms. Reactive 

oxygen species (ROS) arise through regular aerobic metabolism and iron-catalyzed 

degradation of hydrogen peroxide or other exogenous sources such as UV radiation 

(Fridovich, 1995; Rowe et al., 2008). ROS react with DNA to form a variety of base 

modifications, single strand breaks (SSBs), or even double strand breaks (DSBs) when 

clustered oxidative lesions are formed (Lindahl, 1993; Semenenko and Stewart, 2005; 

Semenenko et al., 2005). Many of these DNA lesions are known to block DNA polymerases, 

preventing replication and subsequent cell division if not repaired.  Divalent metals such as 

iron and manganese play an important role in the cellular response to oxidative challenges 

and are required as cofactors by many enzymes. However, how these metals affect the 

ability and fidelity of replication after oxidative challenge is not known. Here we 

characterized how DNA replication recovers following oxidative damage under conditions 

where the cell has access to iron or manganese. We show that although the presence of 

either metal did not affect survival, the presence of manganese promoted rapid recovery of 

DNA replication after oxidative challenge; while cells cultured with iron or no metal failed 

to resume DNA synthesis, the recovery that occurred in the presence of manganese was 

associated with elevated rates of mutagenesis, and this mutagenesis was specific to 

oxidative DNA damage.  Finally, we found that this mutagenesis did not require the 

presence of RecF, but was partially reduced in the absence of translesion polymerases Pol 

II, Pol IV and PolV. 
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Introduction 

Some DNA lesions block DNA polymerases or prevent the progression of the 

replisome, arresting replication of the genome. Many DNA repair pathways exist; some 

respond to many types of lesions while others respond strictly to one, or a few related 

kinds of lesions. Oxidative lesions often affect single bases, sugars or phosphates within the 

DNA and efficient repair processes exist for many of these lesions. Oxidative stress 

conditions, however, can create a volume of these lesions great enough to impose a 

potential threat to genomic integrity. When the replisome encounters an unrepaired 

oxidative lesion, it may misread the base and polymerize incorrectly, resulting in a 

mutation introduced to the daughter strand. Oxidative lesions at high concentrations in the 

cell can lead to double strand breaks, mutagenesis, or cell death. Agents producing reactive 

ROS are inescapable – in humans, mitochondria release significant amounts of oxygen 

radicals into the cell, even under normal conditions. High intracellular ROS levels that 

generate DNA damage lead to increased mutation rate and cancer frequency in any 

replicating cell type (Rowe et al., 2008).  

The Role of Iron 

Iron acts as an important activating factor in many proteins in the cell. It plays a role 

in pathogen resistance (Nairz et al., 2010) and prominently influences the cellular response 

to oxidative stress. Iron of either charge catalyzes the Fenton and Haber-Weiss reactions, 

leading to the formation hydroxyl radicals (Haber and Weiss, 1932). In this respect iron 

homeostasis is dually critical for cellular metabolism – intracellular maintenance of iron 

concentration prevents the formation of excess oxygen radicals, while proteins from many 

functional domains depend on iron for activation.  The process of iron sequestration in 
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response to influx of oxygen radicals is well-characterized (Fillat, 2014; Carpenter & Payne, 

2014; Choi et al., 2001; Ricci et al., 2002; Farr and Kogoma, 1991; Lee and Helmann, 2006): 

E. coli responds to oxidative stress conditions by redox-dependent conformational changes 

in OxyR and PerR, transcription factors that induces transcription of ferritins, among other 

proteins responsible for oxygen radical quenching such as peroxidase and catalase 

(Horsburgh et al., 2001; Zámocký and Koller, 1999; Farr and Kogoma, 1991). Ferritins, like 

Dps, are proteins that sequester endogenous iron as well as functional iron stored in 

proteins. E. coli also disinhibits Fur in response to oxidative stress conditions, a regulon 

that encodes the transmembrane manganese importer MntH and several manganese-

dependent homologs to iron-dependent proteins, among other iron homeostasis and 

oxidative stress response proteins (Makui et al., 2000). This response seems to depict a 

compensatory relationship between the two metals – whereas the default metal, iron, is 

easily quenched by oxygen radicals, the alternative, manganese, is resistant (Archibald and 

Fridovich, 1981).  

Although both iron and manganese are known to regulate the cellular response after 

oxidative challenges, and despite the importance of oxidative damage in mutagenesis and 

cancer, how divalent metals affect replication under these conditions has not been 

examined. Here we investigated the survival, recovery, and mutagenesis phenotypes 

exhibited by wildtype E. coli subjected to acute or chronic exposure to 10 mM H2O2 after 

growth in minimal medium supplemented with 200μM iron, manganese, or no metals.  

We found that neither iron nor manganese availability affects the survival of wildtype 

cells exposed to chronic hydrogen peroxide. However, the presence of manganese was 

found to promote the rapid recovery of DNA synthesis after acute H2O2 exposure whereas 
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iron did not promote the recovery of DNA synthesis. Finally, we found that the replication 

that occurred when manganese was present increased the mutation frequency, and that 

this mutagenic effect was found to be specific to oxidative damage. 
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Materials and Methods 

Bacterial strains 

SR108 is a thyA36 deoC2 derivative of W3110 (Mellon and Hanawalt, 1989). All other 

strains used in this study were derived from SR108. Strains lacking recF (CL579) or polB 

dinB umuDC (CL646) were constructed via P1 transduction and have been reported 

previously (Courcelle et al., 2003; Courcelle et al., 2006).  

Cell Culturing 

All experiments were performed in Davis medium (Davis, 1949) supplemented with 

0.4% glucose, 0.2% casamino acids, and 10 μg/mL thymine (DGCthy) unless noted 

otherwise. Iron-supplemented DGCthy medium contained 200 μM FeSO4·7H2O, while 

manganese-supplemented DGCthy medium contained 200 μM MnCl2. Cells were plated on 

Luria Bertani (LB) agar plates with 10 μg/mL thymine (LBthy) (Bertani, 1951; Sezonov et 

al., 2007). 

H2O2 survival assays 

Chronic exposure to H2O2 is here defined by the addition of 10mM H2O2 to cell culture 

and leaving this concentration in culture for the duration of the experiment. Overnight 

cultures were diluted 1:100 in DGCthy medium supplemented with 200 μM FeSO4·7H2O, 

200 μM MnCl2, or without metals, and grown to OD600 of 0.4 in 37° gyratory water baths. 

One pre-treatment aliquot of 0.1 mL was taken from each culture, before H2O2 addition to 

arrive at a final concentration of 10 mM. 0.1 mL aliquots of each culture were removed at 

the time points indicated, and serially diluted in 10 fold increments. Each dilution was 

spotted onto LBthy plates in triplicate and allowed to incubate at 37° overnight. Viable 

colonies were counted the following day.  
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Recovery of DNA synthesis 

Acute exposure to H2O2 is here defined by the addition of 10mM H2O2 to cell culture 

for a five minute duration in 37° gyratory water bath, at which point cells were then filtered 

on 0.45 μM nitrocellulose membranes (Fisherbrand) and resuspended in fresh medium 

containing the indicated metal supplements.  To measure the recovery of DNA synthesis, 

overnight cultures were diluted 1:100 in DGCthy medium supplemented with respective 

metals and 0.1 μCi/mL 14C-thymine, then grown at 37° in gyratory water baths. At OD600 of 

0.4 (t = -5 minutes) cultures were split in half and 0.1 mL pre-treatment aliquots were 

removed from culture and placed in 5 mL PP tubes containing 0.5 μCi/mL 3H-thymidine. 10 

mM H2O2 was added to half of the split cultures, while an equal volume of deionized water 

was added to the other half for control. After five minutes’ incubation at 37° cultures were 

filtered and resuspended as described above. Aliquots were taken and labeled with 3H-

thymidine (as before) immediately following resuspension (t = 0 minutes) and at the 

indicated time points following. Samples were then filtered on glass fiber filters and 

radioactive labels were quantified using liquid scintillation. 

Mutagenesis 

Overnight cultures were diluted 1:100 in DGCthy medium supplemented with 

respective metals. At OD600 of 0.4 (t = -5 minutes) cultures were split in half, then either 

treated with 10 mM H2O2 or an equal volume of deionized water. After five minutes’ 

incubation cultures were filtered and resuspended in fresh medium containing respective 

metals, then allowed to grow overnight. The following day, 0.1 mL from each culture was 

serially diluted in 10 fold increments and plated in triplicate 10 μL spots on LBthy plates. 

An additional 1 mL or 0.1 mL was removed from each culture and plated on LBthy plates 
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with 0.1 mg/mL rifampicin. Plates were incubated at 37° overnight and colonies were 

counted the following day. 
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Results 

Replication recovery is stimulated in cells grown in manganese rich medium.  

An earlier study in the lab noted that the ability of cultures to recover replication after 

H2O2 challenge depended on the medium in which they were grown (Brandy Schalow, 

unpublished data). Whereas cultures grown in LB rapidly restored replication after a 5 

minute incubation with 10mm H2O2, cultures grown in a supplemented Davis medium 

failed to recover replication after this same challenge. We noted that one significant 

difference between these two media is that LB medium contains significant amounts 

manganese and iron, whereas the supplemented Davis media had relatively low amounts of 

either metal (Table 1). To examine whether these metals affected the ability to recover 

from H2O2-induced DNA damage, we measured DNA synthesis and accumulation over time 

via radioactive DNA label following 5-minute incubation with and subsequent removal 

from H2O2 in Davis medium that was supplemented with either iron or manganese. To this 

end, cells grown in 14C-thymine medium containing no metal supplements, 200 μM 

FeSO4·7H2O, or 200 μM MnCl2 were treated with 10mm H2O2 for 5 minutes before the drug 

was removed. Cultures were then allowed to recover for the duration of the experiment. At 

various times during the recovery period, duplicate aliquots from each culture were pulse 

labeled for 2 minutes with 3H-thymidine. The amount of 14C and 3H incorporated into the 

DNA was then determined at each time point to determine the relative rate of DNA 

synthesis (3H incorporation) and total accumulation of DNA (14C incorporation) 

throughout the recovery period. Results showed that H2O2-exposed cultures in all 

conditions reduced DNA synthesis by nearly 1000X within the first 10 minutes following 

exposure. Cultures in either non-supplemented medium or iron-containing medium did not 
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recover DNA synthesis for the duration of the experiment. In contrast, cultures 

supplemented with manganese recovered DNA synthesis around 20 to 30 minutes post-

resuspension. DNA accumulation was positively correlated with rate of DNA synthesis in all 

cases, indicating that the newly made DNA was stable and likely represents genomic 

replication rather than repair synthesis (Fig. 1). We interpret these results to indicate that 

manganese promotes the recovery of DNA synthesis after acute exposure to H2O2. 

Excess iron or manganese does not affect cell survival during chronic exposure 

to H2O2. 

To determine whether the manganese dependent DNA synthesis is beneficial or 

detrimental to survival in the presence of H2O2, wildtype cultures were grown in minimal 

medium containing no supplemented metals, 200 μM iron, or 200 μM manganese before 10 

mM H2O2 was added to the cultures. The fraction of cells surviving to form colonies was 

followed over time. Unexpectedly, we observed that the survival of cells from each metal 

condition was similar (Fig. 2) over time. From these results, we infer that the manganese 

dependent recovery of DNA synthesis following oxidative damage does not significantly 

improve survival of cells in culture.  

Manganese dependent recovery of DNA replication after oxidative challenge is 

associated with increased mutagenesis. 

The results above demonstrate that although manganese allows DNA replication to 

resume after H2O2 treatment, it does not affect viability. We next examined the fidelity of 

the replication occurring during recovery from oxidative challenge. To do this, we 

measured the frequency at which mutations arose conferring resistance to rifampicin after 

oxidative challenge. Replicating cultures containing no metal supplements, 200 μM iron, or 
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200 μM manganese were treated with either 10 mM H2O2 or were mock-treated for 5 

minutes and then allowed to recover overnight. The following morning the number of 

viable and rifampicin resistant cells in each culture were determined. We found that 

manganese medium was associated with elevated levels of mutagenesis compared with 

media containing either iron or no additional metals (Fig. 3A). In medium containing no 

metal supplements, or in iron-supplemented medium, we observed that H2O2 challenge 

results in ~3 fold more rifampicin resistant mutations than mock treatment. By 

comparison, in the presence of manganese, the frequency of rifampicin resistant mutations 

increases by ~10 fold. As a control, we repeated this experiment treating the cells with 40 

J/m2 UVC radiation instead of H2O2. In this case, the mutation rate increased ~20 fold in 

each of the medium conditions examined. Thus although UV irradiation was a more potent 

mutagen at this dose, no manganese-specific mutagenesis was observed. We interpret these 

results to indicate that the manganese associated mutagenesis we observed is specific to 

oxidative damage (Fig. 3B). Further, the mutagenesis observed correlates with the ability of 

manganese to promote the recovery of replication under these conditions. 

RecF is not responsible for the mutagenic recovery of replication in cultures 

containing manganese, whereas mutation in polymerases II, IV and V modestly 

reduce the mutation frequency in cultures. 

RecF plays an important role in the recovery of replication when it is disrupted by UV-

induced DNA damage (Courcelle et al., 1997; Courcelle et al., 2003). To examine if the 

manganese-dependent mutagenesis involved RecF after oxidative damage, we repeated the 

mutational assays described above repeated using a recF mutant. We reasoned that if the 

observed manganese-dependent recovery of replication depended on RecF, then the 
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mutagenesis that was occurring would be diminished in the absence of RecF. However, we 

observed that the manganese dependent mutagenesis was unaffected in the absence of 

RecF and occurred at a rate similar to those seen in wild type cultures (Fig. 4). We interpret 

these observations to be consistent with the idea that the recovery promoted by 

manganese does not involve RecF. 

Following specific forms of DNA damage in E.coli, mutagenesis requires specialized 

polymerases that are capable of replicating across DNA lesions with lower fidelity 

(Napolitano et al., 2000). E.coli contains three translesion DNA polymerases, Pol II, Pol IV, 

and Pol V (Napolitano et al., 2000). We hypothesized that the mutagenic replication 

occurring after H2O2 may be due to a manganese dependent translesion polymerase. To 

address this, we examined the frequency at which rifampicin resistance mutations arose as 

before, now in an E.coli strain that lacked polymerases II, IV and V for each metal condition. 

We found that the absence of translesion DNA polymerases only modestly reduced the 

manganese dependent mutagenesis that occurred following oxidative challenges (Fig. 5). 

We interpret these results to indicate that the translesion polymerases are partially 

responsible for the mutagenesis occurring after oxidative damage in the presence of 

manganese. 

Discussion 

Taken together, the data would be consistent with a model wherein manganese 

restores function to iron dependent replication proteins that have been inactivated by 

oxidation. Manganese does not react with H2O2 and is capable of substituting for iron in 

several proteins which use iron as a cofactor (Anjem and Imlay, 2012). Using manganese as 

an alternative cofactor, we believe these proteins may be protected from inactivation. An 
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alternative possibility would be that the presence of manganese activates the transcription 

of proteins that promote the recovery of replication after H2O2.  This possibility seems less 

likely, given the resistance of recF mutants to H2O2.  To the best of our knowledge, recF 

mutants are required for the recovery of replication whenever it is disrupted by DNA 

lesions (Courcelle et al., 1997; Courcelle et al., 2003; Courcelle and Hanawalt, 2003).  Yet, 

we observe that replication arrests and recovers similarly to wild type cells in the recF 

mutants. This argues that the arrest of replication is caused not by DNA lesions, but more 

likely because iron dependent replication proteins have been inactivated by the H2O2 

treatment.  Thus the data implicate a post-translational response. With manganese present, 

replication resumes at 20 minutes after removal. This would be consistent with the idea 

that manganese can substitute for the iron in these inactivated proteins, allowing 

replication to be restored.  

Candidates that may be responsible for this phenotype include iron-dependent 

enzymes such as glycosylases, helicases, and cytochromes. During the iron sequestration 

step of the oxidative stress response in E. coli, iron may be stripped from any of these 

enzymes, resulting in either non-function or function through replacement by a similar 

divalent metal (such as manganese). Glycosylases are essential to the base excision repair 

pathway, the main method by which oxidative lesions are removed from the chromosome. 

Like other proteins of the oxidative stress response, several glycosylases are activated by 

the oxidation of iron in Fe-S clusters (Outten, 2007). If this iron was sequestered without 

replacement by another divalent metal, there could be no base excision repair, potentially 

delaying the resumption of DNA replication. Previous studies have shown, however, that 

deletion of glycosylases does not affect the ability of E. coli to resume DNA replication after 
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oxidative challenge (Schalow et al., 2011). This suggests that the manganese dependent 

resumption of replication does not occur through glycosylase activity. 

Helicases have a more direct role in DNA synthesis. Specifically, DinG is a damage 

inducible helicase in E. coli with a Fe-S cluster that serves to activate the enzyme upon 

oxidation (Ren et al., 2009). It is possible that in the absence of iron, DinG cannot be 

activated, and so is incapable of unwinding DNA for replication during periods of oxidative 

stress. Manganese may serve to substitute for iron in this case, enabling the activity of DinG 

and the processivity of DNA replication through oxidative stress conditions. The helicase 

normally implicated in resumption of DNA replication after DNA damage, RecQ (Courcelle 

and Hanawalt, 1999) has not been reported to contain a Fe-S cluster. 

Cytochromes are hemeproteins responsible for ATP production. DNA replication is an 

ATP-dependent process, and so is limited by the availability of ATP. If cytochromes are 

inactivated by the sequestration of their iron cofactors during periods of oxidative stress, 

then the available ATP pool in the cell would drop. This may result in the cell’s inability to 

resume DNA replication in a timely manner. Under manganese rich conditions, however, 

the missing iron cofactor might be replaced by manganese, allowing for the restoration of 

ATP synthesis. 

It has been observed by Mansour et al that iron complexes with ATP under iron rich 

conditions (Mansour et al., 1985). Given the similar conformations of iron and manganese, 

it is possible that manganese may also complex with NTPs. Additionally, it is speculated by 

Mansour et al that such complexes may alter the available pool of nucleotide triphosphates 

(NTPs). Incorporation of these modified NTPs by Pol I or Pol III may contribute to the 
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mutagenic phenotype observed during manganese dependent DNA replication after 

oxidative challenge.  
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Tables 

 

 

  

Table 1. Concentrations of metals in components of DGCthy and LB media 
(Analysis from Oregon Health & Science University Core Services) 
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Figures 
 
  Figure 1. Replication recovery 

is stimulated in cells grown in 
manganese medium. 14C-
thymine prelabeled cultures 
were treated with 10 mM H2O2. 
Between -5 and 0 minutes cells 
were incubating with 10 mM 
H2O2. At t=0 cells were filtered 
and resuspended in fresh 
medium containing 14C-thymine 
and the respective metal. 
Aliquots were then pulse-labeled 
with 3H-thymidine for 2 minutes 
before cells were lysed and the 
amount of radioactivity 
incorporated into the DNA was 
determined. (A) Relative 3H 
incorporated into DNA/2 
minutes pulse at each time point 
in the recovery period is plotted. 
(B) Total 14C incorporated into 
DNA at each time point in the 
recovery period is plotted. (Open 
shapes) mock-treated controls, 
(closed shapes) H2O2-treated.  
(Red) manganese. (Green) iron. 
(Grey) no additional metals. 

A 

B 
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Figure 2. Neither iron nor manganese affects the survival of wild type cultures 
during chronic exposure to H2O2. The percentage of cells surviving to form colonies 
following exposure to H2O2 for the indicated amount of time is plotted. (Red) cultures 
grown in manganese-rich conditions. (Green) cultures grown in iron-rich conditions. 
(Black) cultures grown without added metals. 10 mM H2O2 was added to cultures and 
aliquots were taken at the time points indicated on the X axis, serially diluted, then 
plated in triplicate 10 µl spots and allowed to grow overnight. Colonies were counted 
the following day. 
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A 

B 

Figure 3. The manganese-dependent, 
recovery of replication is mutagenic and 
specific to oxidative damage. (A) Cultures 
grown in manganese, iron, or 
unsupplemented medium were either 
mock-treated or exposed to 10mm H2O2 for 
5 minutes and allowed to recover 
overnight. The number of cells/mL of 
culture that mutated and could form RifR 
colonies were then determined. (B) Unlike 
oxidative challenges, no manganese-
dependent mutagenesis is observed when 
cultures are challenged with UV radiation. 
Cultures grown in manganese, iron, or 
unsupplemented medium were either 
mock-treated or irradiated with 25 J/m2 
UVC and allowed to recover overnight. The 
number of cells/mL of culture that mutated 
and could form RifR colonies were then 
determined. 
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Figure 4. The absence of RecF does 
not affect the mutagenesis that 
occurs during the manganese-
dependent recovery of replication 
from oxidative challenges. RecF 
cultures were grown, exposed and 
allowed to recover as in Fig 3. Red 
bars indicate manganese-
supplemented cultures. Green bars 
indicate iron-supplemented cultures. 
Dark grey bars indicate 
unsupplemented cultures.  
 
 
 
 
Figure 5. The absence of 
polymerases II, IV and V modestly 
reduces the mutagenesis that 
occurs following oxidative 
challenge in the presence of 
manganese. PolB dinB umuCD 
cultures were grown, exposed and 
allowed to recover as in Fig 3. Red 
bars indicate manganese-
supplemented wildtype cultures. 
Blue bars indicate unsupplemented 
cultures lacking translesion 
polymerases. Brown bars indicate 
manganese supplemented cultures 
lacking translesion polymerases. 
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