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Linear Regression via Least Squares

So, in the following we will be computing the least square regression solution to a simple problem. To do this
we will need a little background information about least squares solutions for linear models.

y = Xb (1)

So, if the above is our set up, where y is the vector of outcomes and X is the design matrix of predictors,
then b is another vector of coefficients that we need to solve for. Now, it is important to keep in mind that
the equation above represents mathematical shorthand notation for the following situation

y1
y2
y3
y4

 =


x11 x12
x21 x22
x31 x32
x41 x42

[b0
b1

]

Which is even more, slightly longer, shorthand for,

y1 = b0x11 + b1x12
y2 = b0x21 + b1x22
y3 = b0x31 + b1x32
y4 = b0x41 + b1x42

which represents how we think each observation is generated, given our knowledge about the inputs, and our
choice to use a line as the model of choice.

What we want to solve for are the values in the b vector. You may remember that the estimate of a regression
slope, using least squares, turns out to be,

b = SCPxy

SSx
.

Above, the SCPxy is the Sum of Cross-products between x and y, and the SSx is the Sum of Squares of x. If
we scale these by their degrees of freedom we get,

b = Covxy

V arx
,

or the covariance between x and y over the variance of x. That should look somewhat familiar, but here
we are dealing with matrices and not single columns of data. So, our challenge will be how to translate the
solution into code using the matrix solution. Which, based on our first equation is,

[XTX]−1XT y = b (2)

where [XTX] is the Sum of Squares of x, the [XTX]−1 performs the needed division part (one over Sum of
Squares), and XT y is the Sum of Cross-products between x and y.

Below we generate some fake data to work with. We will be computing not only these steps but many of the
steps to check the statistical significance of our computations as well. I will do my best to provide the needed
background where applicable.
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# regression by hand
# fake data
med = c(0,1,3,4) # mom's education level
cgpa = c(3,3.2,3.3,3.7) # child gpa
x = cbind('int'=1,med) # design matrix
x

int med
[1,] 1 0
[2,] 1 1
[3,] 1 3
[4,] 1 4
t(x) %*% x # sum of squares and cross products

int med
int 4 8
med 8 26
t(x) %*% cgpa # sum of cross products for outcome and predictors

[,1]
int 13.2
med 27.9

Side note!

Something worth knowing. . . I hope. In equation 2, we see that instead of dividing by our matrix of XTX
we instead multiplied by the matrix inverse. This is necessary because you can’t directly divide by a matrix.
Instead you compute the equivalent of 1 over the matrix, aka the inverse. So, how does this work? Well
in a simple case, like with a diagonal matrix (see below) it requires that you take 1 over each value on the
diagonal. It get’s unreasonably more complicated if the matrix has entries in the off-diagonal, but for now
let’s illustrate the simple case.
test = diag(c(2,4))
test # diagonal matrix, stuff just on the diagonal

[,1] [,2]
[1,] 2 0
[2,] 0 4
solve(test) # one over the matrix

[,1] [,2]
[1,] 0.5 0.00
[2,] 0.0 0.25
# the matrix times the matrix inverse... give us the matrix equivalent of 1
solve(test) %*% test # cool.. moving on

[,1] [,2]
[1,] 1 0
[2,] 0 1
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Back to our regularly scheduled program

We have all the parts. Let’s combine them. Just a reminder the equation is,

[XTX]−1XT y = b.

# estimate params
bs = solve(t(x) %*% x) %*% t(x) %*% cgpa
bs

[,1]
int 3.00
med 0.15

Great! So, now we have the estimates for the intercept and slope of our best fit line through these data. Next
we will start working out the statistical tests for these estimates.

Predictions based on our model estimates

Now that we have our linear model, with parameter estimates tuned to our data, we can use it to predict what
the model would expect our outcomes to be based on the inputs we have. Remember that this prediction is
performed by running the inputs through our model

ŷ = b0 + b1x1

Or in our case
ˆcgpa = b0(1) + b1(med).

We can accomplish this in one step using matrix multiplication.
# check predictions
pred1 = x %*% bs
pred1

[,1]
[1,] 3.00
[2,] 3.15
[3,] 3.45
[4,] 3.60

Now we can compute error as OBSERVED - EXPECTED.
err = cgpa - pred1
data.frame('obs'=cgpa, 'est'=pred1, 'err'=err) # quick look

obs est err
1 3.0 3.00 0.00
2 3.2 3.15 0.05
3 3.3 3.45 -0.15
4 3.7 3.60 0.10

Recall that degrees of freedom for a linear model are computed as the difference between the number of input
cases n and the number of model estimates p.

df = n− p

# degrees of freedom
# df = n - p
mdf = length(med) - length(bs)
mdf

3



[1] 2

Given that we now have a vector of errors between our predictions and our observations, we can compute the
Residual Standard Error. This is based on the following formula

S.E.resid =
√
MSresid =

√∑
e2

i

df
.

# residual sum of squares
errvar = sum(err^2)/mdf
errvar

[1] 0.0175
sqrt(errvar) # Resid std err

[1] 0.1322876

The residual standard error, or rather the variance of the error (MSresid = S.E.2resid), is also used to compute
the standard errors for the beta estimates, based on the following formula,

S.E.b =
√
MSresid

SSx

# Standard Errors for betas
bvar = errvar * solve(t(x) %*% x)
bvar # we only care about the stuff on the diagonal

int med
int 0.011375 -0.00350
med -0.003500 0.00175
bse = sqrt(diag(bvar))
bse

int med
0.1066536 0.0418330

With our newly computed standard errors for the vector of bs, we can move onto our statistical test of these
estimates. Below we compute a t statistic to test against the null hypothesis that these estimates are actually
equal to zero.

tb = b

S.E.b

# t-value
tcomp = bs/bse
tcomp

[,1]
int 28.128434
med 3.585686

We test these values using a t-distribution with the appropriate degrees of freedom.
# p-values (two-tailed)
pcomp = 2*pt(abs(tcomp),mdf,lower.tail = F)

Let’s pack this all up so it’s easy to see.
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# pack it all up
disp = data.frame(bs,bse,tcomp,pcomp)
disp

bs bse tcomp pcomp
int 3.00 0.1066536 28.128434 0.001261498
med 0.15 0.0418330 3.585686 0.069739491

Model evaluation

Great, so we have the estimates, how precise these estimates are, and how off our predictions would be by
using these estimates. Our next question will be, is it worth it? Does using a linear model provide more
information than just using the mean of the outcome?

For this we are comparing the amount of variance between our predictions and the mean, which is our
explained portion, and comparing this to the difference between our observation and our prediction, which is
our unexplained portion. Added together these equal the total variance of the observations. Have a look at
Figure 1 for a visual of how things break down.

MSmodel = σ2
model =

∑
(ŷ − ȳ)2

p− 1

where, ŷ are the model predictions of y, ȳ is the mean of y (or an uniformed model) and p− 1 are the degrees
of freedom for the model, where p equals the number of predictors.

Figure 1: Model explained variance.

Note that in Figure 1, the red dot (and line) is an observation, the blue dot (and line) represents a prediction
based on the regression model. Lastly, the black line represents the average of all y values or the mean of y.
So, much like how we can split variance up in ANOVA into explained and unexplained, we do the same with
regression predictions. The figure illustrates this breakdown for one observation.
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# F-test
# SS-model/regression sum((yhat-ybar)^2)
ss_mod=sum((pred1 - mean(cgpa))^2)
df_mod = length(bs)-1
# MS-model/reg
ms_mod = ss_mod/df_mod
ms_mod

[1] 0.225

We can now use this value in an F-test, were we see if the amount of variance in our regression is bigger than
the variance of the errors from our model.

Fregression(dfmodel, dfresid) = MSmodel

MSresid

# MS-resid
ms_res = errvar
df_res = mdf
# F value MS_mod/MS_resid
F_val = ms_mod/ms_res
F_val

[1] 12.85714
p_val = pf(F_val,df_mod,mdf,lower.tail=F)
# display using our table from earlier, plus fanciness from knitr::kable()
kable(disp,digits=c(3,5,3,5))

bs bse tcomp pcomp
int 3.00 0.10665 28.128 0.00126
med 0.15 0.04183 3.586 0.06974

# new display
cat(

sprintf("Resid S.E.: %.4f on %d df\nF-value: %.2f on %d and %d df, p-value: %.5f\n"
,sqrt(ms_res), df_res, F_val, df_mod, df_res,p_val))

Resid S.E.: 0.1323 on 2 df
F-value: 12.86 on 1 and 2 df, p-value: 0.06974

Let’s just double check to see if our computations make sense. Here we use the lm() function.
# using the built in R function lm()
lm1 = lm(cgpa ~ med)
summary(lm1)

Call:
lm(formula = cgpa ~ med)

Residuals:
1 2 3 4

-1.596e-16 5.000e-02 -1.500e-01 1.000e-01

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.00000 0.10665 28.128 0.00126 **
med 0.15000 0.04183 3.586 0.06974 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1323 on 2 degrees of freedom
Multiple R-squared: 0.8654, Adjusted R-squared: 0.7981
F-statistic: 12.86 on 1 and 2 DF, p-value: 0.06974

Looks pretty good. Now you know.
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