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The Linear Model

To begin we must define our linear model. This will be used to define our
predictions and errors. In the regression framework we will deal with a line,
specified as,

ŷ = b0 + b1x, (1)

where ŷ is the predicted outcome, x is the predictor and the parameters b0 and
b1 are the intercept and slope respectively.

The estimation of the parameters for this equation are based on minimizing
the sum of square errors (Least Squares). We define errors as the difference
between the model based prediction, ŷ and the actual observed values, y. Using
equation 1 to predict observed data, our errors are specified as,

y = b0 + b1x+ ε
ε = y − (b0 + b1x)

(2)

The slope can be estimated using the least squares criteria as,

b1 =
Covxy
s2
x

=
1
nΣ(yi − ȳ)(xi − x̄)
1
nΣ(xi − x̄)(xi − x̄)

(3)

Since we are using the means of both the outcome (ȳ) and predictor (x̄) to
estimate the slope, we know that the estimated line will pass through the sample
means of both variables. Thus the intercept can be estimated as,

b0 = ȳ − b1x̄. (4)

Standardized Estimates

If we instead standardize each variable such that,

zy =
(yi − ȳ)

sy
(5)
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and use them in the same equation, the estimates are similar,

zy = β0 + β1zx, (6)

however the expected values are based on the standardized variables. For ex-
ample, the model implied estimate of β0 is based on the sample means of both
zy and zx, which by definition are 0, thus β0 = 0. Additionally, the estimate of
the slope, when represented using z scores becomes,

β1 =
1
n Σ(zxi−z̄x)(zyi−z̄y)
1
n Σ(zxi−z̄x)(zxi−z̄x)

=
1
n Σ(zxi−0)(zyi−0)
1
n Σ(zxi−0)(zxi−0)

=
1
n Σzxizyi
1
n Σzxizxi

=
1
n Σzxizyi

1

= rxy

. (7)

Thus, the prediction equation for a line using standardized scores becomes,

ẑy = rxyzx, (8)

with a corresponding error definition of,

εzy = zy − ẑy = zy − rxyzx. (9)

Variance Explained

Using equation 9 above, we can derive the formula for the unexplained variance
resulting form this prediction equation. To accomplish this we will square the
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error term as defined in equation 9.

1
nΣε2zy = 1

nΣ(zy − rxyzx)2

= 1
nΣ(zy − rxyzx)(zy − rxyzx)

= 1
nΣ[z2

y − rxyzxzy − rxyzxzy + r2
xyz

2
x]

= 1
nΣ[z2

y − 2rxyzxzy + r2
xyz

2
x]

= 1
nΣ(z2

y) − 1
nΣ(2rxyzxzy) + 1

nΣ(r2
xyz

2
x)

= (1) − 2rxy
1
nΣ(zxzy) + r2

xy
1
nΣ(z2

x)

= (1) − 2rxyrxy + r2
xy(1)

= (1) − 2r2
xy + r2

xy

= 1 − r2
xy

(10)

This term represent the error variance in zy by using zx as a predictor.

The third variable problem

As seen above, when dealing with 2 variables, regression is equal to correlation.
Problems arise when we are interested in multiple predictors for our regression
equation. Notice that we are still relying on the equation for a line, however
in this case the predictors are multi-variable. Keeping with standardized scores
the equation can be specified as,

ẑy = β1zx1 + β2zx2 + . . .+ βpzxp = Σpj=1βjzxj , (11)

where p is the number of unique predictors in the equation.
In order to isolate the influences of any given predictor, within the context

of the other predictors, we must partial out an shared variance among the
predictors as well as in the outcome. We accomplish this by defining a regression
slope as in equation 3, using the unexplained portions, or errors, of the variables
of interest. For the following we will designate our outcome as y and our two
predictors as x and w. We are interested in deriving the partial regression for y
regressed on x, controlling for w.

Our outcome error is defined as,

εzy = zy − rywzw, (12)

and our predictor error is defined as,

εzx = zx − rxwzw. (13)
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With both of these errors defined relative to the third variable w, we can
proceed to derive the partial regression estimate.

βyx·w =
Covεzy,εzx
S2
εzx

, (14)

where βyx·w represents the regression of y on x controlling for w.
Fortunately, the bottom term has already been derived for us in equation

10, as 1 − r2
xw, thus we turn our attention to the derivation of the covariance

between εzy and εzx as defined in equations 12 and 13.

Covεzy,εzx = 1
nΣεzyεzx

= 1
nΣ(zy − rywzw)(zx − rxwzw)

= 1
nΣ[zyzx − rxwzwzy − rywzwzx + rywzwrxwzw]

= 1
nΣ(zyzx) − 1

nΣ(rxwzwzy) − 1
nΣ(rywzwzx) + 1

nΣ(rywrxwz
2
w)

= 1
nΣ(zyzx) − rxw

1
nΣ(zwzy) − ryw

1
nΣ(zwzx) + rywrxw

1
nΣ(z2

w)

= ryx − rxwryw − rywrxw + rywrxw(1)

= ryx − rywrxw

.

(15)
Substituting our derived values into equation 3 we get,

βyx·w =
ryx − rywrxw

1 − r2
xw

. (16)
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