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Abstract

Gaussian Likelihood

When data are drawn from a Normal distribution, ∼ N (µ, σ2), we can use the Gaus-
sian distribution function to describe the probability of the data.

f(xi|µ, σ2) = 1√
2πσ2

e

(
− (xi−µ)2

2σ2

)
(1)

This specifications represents how to compute the probability for a single value xi.
That means, we can get the value of the function for any particular input, xi, if we supply
the parameters µ and σ2.

A quick aside

You may be wondering why we have discussed probabilities but we are interested
in likelihoods? Well, the terms are often used interchangeably, which is a shame. In our
application however, we will say that, if we know the parameter values for a distribution, we
can compute a probability of any observation we obtain. The result tells us the probability
(or how likely we are to see) a value like that given the distribution that we have at hand.

If, however, we don’t know the exact parameters or our distribution, but instead we
have a set of observations, we must figure out which values of the parameters would result in
the largest probability. In this case, we are going backwards and using the data along with
the hypothesized shape of the probability distribution, in order to find the parameters that
we believe produced our observations. In this latter case, we are interested in finding the
parameters which maximize the likelihood that our observations are distributed a particular
way.

Likelihood of a set of values

The function specification changes when we are dealing with an entire set of observa-
tions. From basic probability, we know that, if the observations are independent, their joint
probability is the product of their individual probabilities. So, for our set of observations,
we compute the probability value of each point, and then multiply them all together to get
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the probability of the entire sample. What does this mean? Well, we literally multiply each
obtained value from the function. The result is,

f(x1, x2, . . . , xn|µ, σ2) = ∏n
i f(xi|µ, σ2)

= f(x1|µ, σ2)× f(x2|µ, σ2)× . . .× f(xn|µ, σ2) (2)

Using our Gaussian function this translates to,

= ∏n
i

1√
2πσ2 e

(
− (xi−µ)2

2σ2

)
= 1√

2πσ2 e

(
− (x1−µ)2

2σ2

)
× 1√

2πσ2 e

(
− (x2−µ)2

2σ2

)
× . . .× 1√

2πσ2 e

(
− (xn−µ)2

2σ2

)
.

(3)

This product can be simplified somewhat. To help illustrate we will take advantage
of the fact that the product operator, ∏n

i , can be distributed algebraically.

n∏
i

1√
2πσ2

e

(
− (xi−µ)2

2σ2

)
=

n∏
i

[ 1√
2πσ2

]
×

n∏
i

[
e

(
− (xi−µ)2

2σ2

)]
(4)

Thus, we can deal with each portion one at a time.
Quick and dirty Power rules. Raising a number, say a to a power, b, then raising

that quantity to the power c is the same as multiplying the powers together, thus (ab)c = abc.
For example,

(22)3 = 22×3 = 26 = (2× 2)× (2× 2)× (2× 2) = 64.

Also of note, is that the product of the same value, or base, let’s say 2, raised to
different powers is equal to the base raised to the sum of the powers. For example,

22 × 23 = 22+3 = 25 = (2× 2)× (2× 2× 2) = 32.

Okay, back to each portion of equation 4.

First portion

First, we see that the 1√
2πσ2 term does not involve the observation xi, which makes it

a constant. We also know that taking the product of a constant, is equivalent to having the
constant multiplied by itself a number of times. In this case n times. So, we can express
the first portion of the joint probability as,

n∏
i

1√
2πσ2

=
( 1√

2πσ2

)n
. (5)

Alternatively, we can re-express the fraction,

1√
2πσ2

= (2πσ2)−
1
2 . (6)
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This is helpful, since we remember that raising a power to a power is the same as
multiplying the powers together, (ab)c = abc. This means that the product of the first term
can be simplified as the fraction to the power n. Again, this is the same as multiplying the
powers together. The result is,( 1√

2πσ2

)n
=
(
(2πσ2)−

1
2
)n

= (2πσ2)(− 1
2 )×(n) = (2πσ2)(−n2 ). (7)

Second portion

Okay, on to the e
(
− (xi−µ)2

2σ2

)
part. First, we can re-express the entire power portion

as (− 1
2σ2 )× (xi − µ)2, so this can be rewritten as e

(
− 1

2σ2 (xi−µ)2
)
.

It is important to recognize that if we have a base number, raised to a power, multi-
plied by the same base number, raised to a different power, this is equal to the base raised
to the sum of the two powers. For example

22 × 23 = (2× 2)× (2× 2× 2) = 22+3 = 25 = 32. (8)

We can take the product of our exponential part and sum over xi because,

∏n
i e
(
− 1

2σ2 (xi−µ)2
)

= e
(
− 1

2σ2 (x1−µ)2
)
× e

(
− 1

2σ2 (x2−µ)2
)
× . . .× e

(
− 1

2σ2 (xn−µ)2
)

= e
[
− 1

2σ2 (x1−µ)2+− 1
2σ2 (x2−µ)2+...+− 1

2σ2 (xn−µ)2
] (9)

Now, factor out the common multiple − 1
2σ2 to simplify the expression as,

= e
(
− 1

2σ2 [(x1−µ)2+(x2−µ)2+...+(xn−µ)2]
)

= e
(
− 1

2σ2
∑n

i
(xi−µ)2

) (10)

Knowing all of this, we can express the joint probability of all our observations using
the Gaussian distribution function as,

f(x1, x2, . . . , xn|µ, σ2) = ∏n
i (2πσ2)− 1

2 e
(
− 1

2σ2 (xi−µ)2
)

= (2πσ2)−n2 e
(
− 1

2σ2
∑n

i
(xi−µ)2

)
.

(11)

But as you can imagine, if the probabilities are less than 1, then the product of a
bunch of these is going to be SUPER small. It’s not that big of a deal for the math, at
least symbolically, but dealing with repeated multiplication of small things is tedious and
error prone, for both humans and computers alike. Practically speaking, a computer has a
limit on how small it can represent things and still be accurate.

Fortunately, we may, or may not, remember a special property of logs, that the log
function can turn a product into sum—this will be illustrated below. So, by taking the log
of the probability function we can make the computation much easier while still keeping
the same functional relations among the parameter in our original probability function.
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Quick and dirty logs. Just a refresher, logs are meant to show the number of
times a number, the base, is to be multiplied by itself to get a particular value. As the
YouTuber Vihart put it, if we were counting in a “times the base sort of way”,1 how many
steps would we need to go to get to the answer. So, the answer of the log function represents
what power of the base is needed to get the input value. For example, if the base is 10,
and input value is 10, then the answer of the log function is 1, because 101 = 10, and so
log10(10) = 1. Additionally, counting in a “times ten” sort of way, how many steps to get
to 100? The answer is 2.

In order to show some of the other properties of logs we will work with an easy
example. We will use 100, which can be expressed the following equivalent ways.

100 = 102

= 10× 10
= 1000/10

(12)

So, let’s work with log with a base of 10, this means we are interested in what power
to raise 10 to in order to produce the result of 100.

if 102 = 100
then log10(100) = 2 (13)

As we can see, 2 is the answer for base 10. Below we present 3 of the basic properties of
logs. These are not all of the properties, just the ones that are important for our illustration.

We assume base 10 for the following rules:

power rule
log(An) = n× log(A)

• log(102) = 2× log(10) = 2× 1 = 2

product rule
log(A×B) = log(A) + log(B)

• log(10× 10) = log(10) + log(10) = 1 + 1 = 2

quotient rule
log(AB ) = log(A)− log(B)

• log(1000
10 ) = log(1000)− log(10) = 3− 1 = 2

Log likelihood derivation

So, why does this matter? Well, because we are interested in fitting our previous
function of the likelihood of a set of data, but we don’t want to cause our computer to start
to smoke computing very small numbers. If we take the log of the likelihood function we
get another function that preserves our main properties, but that will also turn our product
into a sum.

1Check out Vihart’s video “How I Feel About Logarithms” for a great explanation.

https://youtu.be/N-7tcTIrers
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We will take the log of this joint probability version from above. In this case it
is easiest to use a base of e for the log of the likelihood, or natural log, ln which equals
loge—and remember, this means ln(e) = 1. This makes the exponential part much easier
to understand. Here are the steps for expressing the new log-likelihood function,

ln(f(x1, x2, . . . , xn|µ, σ2)) = ln

[
(2πσ2)−n2 e

(
− 1

2σ2
∑n

i
(xi−µ)2

)]

by the product rule = ln
[
(2πσ2)−n2

]
+ ln

[
e
(
− 1

2σ2
∑n

i
(xi−µ)2

)]

by the power rule =
[(
−n

2
)
ln(2πσ2)

]
+
[(
− 1

2σ2
∑n
i (xi − µ)2

)
ln(e)

]
simplify and we get

L(X|µ, σ2) = −
(
n
2
)
ln(2πσ2)− 1

2σ2
∑n
i (xi − µ)2

(14)

Minus 2 of the log of the likelihood

− 2L(X|µ, σ2) = n(ln(πσ2)) + 1
σ2

n∑
i=1

(xi − µ)2 (15)

Maximum Likelihood

Analytic solution

In this section we will work to solve for the specific parameters that will maximize
our observed data. Again we are basing this on the distribution that we believe generated
our data, in this case the Gaussian probability function. Below we need to solve for the
parameters µ and σ2 in terms of the observed data X ∈ {xi, x2, . . . , xn}.

To do this we will use calculus to find the maximum of the above function with regard
to each parameter. First we will express the function in terms of the specific parameter, then
take the derivative of the function with respect to the parameter to isolate its influence on
the function overall. This step helps us understand how the function changes with respect
to the parameter of interest. We set the partial derivative equal to zero and solve for the
parameter to get where the changes in the function reach a maximum.

A quick note about derivatives. This next section assumes that you have some
familiarity with the ideas of differentiation. If you do not, fear not, the examples below
are pretty simple once you understand what exactly is going on. In short, derivatives
communicate how a funciton changes. So, imagine a line, let’s say defined by the following
equation,

y = 0.15x+ 3.

As we can see, the slope is 0.15 and represents how the overall function—here de-
scribing y—changes for a unit change in x. If we just focused on how the function changes,
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we see that it does not differ no matter what x value we supply, the diffference is always
0.15. In calculus terms, the first derivative of the function above is 0.15.

This is different for a more complex model like,

y = 3x2 + 4.

In this case we have a parabola, and the changes are not the same for every value of
x. In some cases the changes are going in the negative direction, in other they are going
in the positive direction, at the turning point, the changes are flat! The point here is that
if we focus on the changes, we will see that they are dependent on the value of x that you
supply, thus if we are trying to decribe the change, we would expect it to involve the value
or x. As it turns out there is a rule called the power rule that describes how to figure
out the derivative for this sort of equation. In short we take the power of the variable x,
multiply it by the existing coefficient then reduce the power by 1. This would mean that in
our parabola example, the derivative would be

3(2)× x2−1 = 6x,

Notice that the constant 4 was not included, why? Well because it doesn’t influence x in
any direct way. So it can be safely omitted.

Here is the general formula

d

dx
= n(xn−1)

Now, we will see partial derivatives below. In this case we are only intersted in doing
differentiation for terms in our equation that include the parameter of interest.

Admittedly, there is WAY more to differentiation than this, but above is the essential
information for what is to follow.

Partial derivative wrt µ. So, let’s start by restating our loglikelihood specification
in equation 15.

−2L(X|µ, σ2) = n(ln(πσ2)) + 1
σ2

n∑
i=1

(xi − µ)2

Now, only focusing on the terms that involve the µ parameter we get,

L wrt µ = 1
σ2
∑n
i=1(xi − µ)2

= 1
σ2
[∑n

i=1 x
2
i − 2xiµ+ µ2]

= 1
σ2
[∑n

i=1 x
2
i − 2∑n

i=1 xiµ+∑n
i=1 µ

2]
= 1

σ2
[∑n

i=1 x
2
i − 2µ∑n

i=1 xi + nµ2]
∂L
∂µ = 1

σ2 [−2∑n
i=1 xi + 2nµ]

(16)
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Set the result equal to zero and solve

0 = 1
σ2 [−2∑n

i=1 xi + 2nµ]

= −2∑n
i=1 xi + 2nµ

2∑n
i=1 xi = 2nµ∑n

i=1 xi
n = µ

(17)

Partial derivative wrt σ2

Substitute σ2 = u

L wrt u = n(ln(πu)) + 1
u

∑n
i=1(xi − µ)2

= n [ln(π) + ln(u)] + 1
u

∑n
i=1(xi − µ)2

= nln(π) + nln(u) + 1
u

∑n
i=1(xi − µ)2

∂L
∂u = n

(
1
u

)
− 1

u2
∑n
i=1(xi − µ)2

(18)

Set the result equal to zero and solve

0 = n
(

1
u

)
− 1

u2
∑n
i=1(xi − µ)2

1
u2
∑n
i=1(xi − µ)2 = n

(
1
u

)
∑n

i=1(xi−µ)2

u2 = n
u∑n

i=1(xi − µ)2 = nu2

u∑n
i=1(xi − µ)2 = nu∑n

i=1(xi−µ)2

n = u

back substitute for σ2

∑n

i=1(xi−µ)2

n = σ2

(19)

Regression through Calculus with Partial Derivatives

Minimizing a loss function

In this section we will explore the use of this same basic approach to solve for the
parameters in a different equation. In this case we will look to solve for the parameters of
a linear model expressed as,
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y = b0 + b1x, (20)

where b0 is the y intercept and b1 is the slope.
Our goal here is to solve for each of these parameters and express these solutions in

terms of our observed data yi ∈ {y1, y2, . . . , yn} and xi ∈ {x1, x2, . . . , xn}.

Loss function

Now, if we are interested in solving for the parameters in equation 20, we need ob-
servations. If we have as many observations as we have parameters to solve, in our models
there are 2, b0 and b1 respectively, there is assumed to be one unique solution that will
satisfy the equation. This is exactly the same task as solving simultaneous equation from
Algebra, keep in mind that each observation is thought to follow the same model in equation
20. For example if we had two observations (x1, y1) = (0, 3) and (x2, y2) = (1, 3.5) we could
construct the following lines,

3 = b0 + b10
3.5 = b0 + b11 . (21)

Solving for each parameter above we would find that b0 = 3 and b1 = .5.
The situation becomes more difficult when we have more observations than we have

parameters. In practice this is most common, but what we need to do is find a solution
that is “close enough” to the data that we are satisfied. We will call the values that are
computed from this “close enough” solution our estimates and designate them as ŷi. These
values represent a direct application of our model in equations 20,

ŷi = b0 + b1x1i (22)

Our estimates however are not perfect, and most times will be off by some amount.
This amount will be different for each estimate we generate, so it’s helpful to think about
capturing this error. We will define our error term as,

yi = ŷi + εyi
εyi = yi − ŷi

. (23)

Since our goal is to find the parameters, b0 and b1 that are “close enough” we will try
to minimize the errors expressed in equation 23. Specifically, we will look to minimize the
variance of these errors.

Error variance. To compute the variance of the errors we need to start with the
sum of squared errors,

n∑
i=1

ε2i =
n∑
i=1

(yi − ŷi)2. (24)
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Substituting equation 20 for our ŷi term we get,
∑n
i=1 ε

2
i = ∑n

i=1(yi − b0 − b1xi)2

= ∑n
i=1(yi − b0 − b1xi)(yi − b0 − b1xi)

= ∑n
i=1(y2

i − b0yi − b1xiyi)
+ (−yib0 + b2

0 + b0b1xi)
+ (−yib1xi + b0b1xi + b2

1x
2
i )

= ∑n
i=1(y2

i + b2
0 + b2

1x
2
i )

+ (−yib0 − yib0)
+ (−b1xiyi − b1xiyi)
+ (b0b1xi + b0b1xi)

= ∑n
i=1(y2

i + b2
0 + b2

1x
2
i − 2yib0 − 2b1xiyi + 2b0b1xi)

(25)

We distribute the summation operator to get,
∑n
i=1(y2

i + b2
0 + b2

1x
2
i − 2yib0 − 2b1xiyi + 2b0b1xi)∑n

i=1 y
2
i +∑n

i=1 b
2
0 +∑n

i=1 b
2
1x

2
i

−
∑n
i=1 2yib0 −

∑n
i=1 2b1xiyi +∑n

i=1 2b0b1xi∑n
i=1(y2

i ) + nb2
0 + b2

1
∑n
i=1(x2

i )
− 2b0

∑n
i=1(yi)− 2b1

∑n
i=1(xiyi) + 2b0b1

∑n
i=1(xi)

(26)

We will simplify the above expression by making the following substitutions,

• SSy = ∑n
i=1(y2

i )

• SSx = ∑n
i=1(x2

i )

• SCPxy = ∑n
i=1(xiyi)

• SSε = ∑n
i=1 ε

2
i .

Using these definitions our expression in equation 26 becomes,

SSε = SSy + nb2
0 + b2

1SSx − 2b0

n∑
i=1

(yi)− 2b1SCPxy + 2b0b1

n∑
i=1

(xi). (27)

Solving for the parameters

From here we will perform our partial differentiation in order to solve for the param-
eters b0 and b1.
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The Intercept b0.

SSe w.r.t. b0 = nb2
0 − 2b0

n∑
i=1

(yi) + 2b0b1

n∑
i=1

(xi) (28)

Next we take the partial derivative of the above with respect to b0, set it to zero and
solve for b0,

∂SSe
∂b0

= 2nb0 − 2∑n
i=1(yi) + 2b1

∑n
i=1(xi)

0 = 2nb0 − 2∑n
i=1(yi) + 2b1

∑n
i=1(xi)

2nb0 = 2∑n
i=1(yi)− 2b1

∑n
i=1(xi)

b0 = 2
∑n

i=1(yi)−2b1
∑n

i=1(xi)
2n

b0 =
∑n

i=1(yi)
n − b1

∑n

i=1(xi)
n

(29)

We can use the fact that x̄ =
∑n

i=1(xi)
n and ȳ =

∑n

i=1(yi)
n , thus turning the result of

equation 29 into,
b0 = ȳ − b1x̄ (30)

The Slope b1.

SSe w.r.t. b1 = b2
1SSx − 2b1SCPxy + 2b0b1

n∑
i=1

(xi). (31)

Next we take the partial derivative of the above with respect to b1, set it to zero and
solve for b1.

∂SSe
∂b1

= 2b1SSx − 2SCPxy + 2b0

n∑
i=1

(xi) (32)

Before we do the algebra to find the solution, we will take advantage of our solution
for b0 in equation 30 and use this to transform all terms in our expression in equation 32
to be expressed as functions of the b1 parameter,

0 = 2b1SSx − 2SCPxy + 2(
∑n

i=1(yi)
n − b1

∑n

i=1(xi)
n )∑n

i=1(xi)

= 2b1SSx − 2SCPxy + 2
n

∑n
i=1(yixi)− b1

2
n

∑n
i=1(xixi)

= 2b1SSx − 2SCPxy + 2
nSCPxy − b1

2
nSSx

. (33)

Move all common terms to one side

−2b1SSx + b1
2
nSSx = −2SCPxy + 2

nSCPxy . (34)

Next, multiply through by −1
2
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b1SSx − b1
1
nSSx = SCPxy − 1

nSCPxy

b1(SSx − 1
nSSx) = (SCPxy − 1

nSCPxy)

b1[SSx(1− 1
n)] = [SCPxy(1− 1

n)]

b1 = SCPxy(1− 1
n

)
SSx(1− 1

n
)

b1 = SCPxy
SSx

× (1− 1
n

)
(1− 1

n
)

b1 = SCPxy
SSx

(35)

Thus our maximum likelihood estimates for the parameters b0 and b1 from equation
20 are,

b0 = ȳ − b1x̄ (36)

and
b1 = SCPxy

SSx
(37)

Why do we care? Well, another way to think about regression coefficients are as the
partial derivatives with respect to each input. So in the equation,

GPAHS ∼ b0 + b1EDmom + ε

The b1 coefficient is equal to
∂GPAHS
∂EDmom

= b1,

So for an increase of one unit in a mother’s level of education there would be a corresponding
increase of b1 in GPAHS . This type of regression is sometimes referred to as Level-Level
regression, because, a change in the level of the input x results in a change in the level of
the output y, while holding everything else (that is the other inputs) constant. We will see
other types of regression below, but first a bit of a review.

Nonlinear models

From here out, we will be looking at nonlinear trends and some of the ways that we
approach modeling them. It is important to keep in mind that one of the major assumptions
of regression is that the variables are linearly related. For the most part we will be trying
to transform relations of the form,

y = xβ + ε (38)

into something that look more like the lines that we know, specifically y = ax + b. Figure
1 illustrates three possible trajectories for different powers.
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Log-Level regression example

For this model the outcome will be transformed in order to make the model linear.
In particular the hypothesized model takes the the form

y ∼ αeβx. (39)

Based on our knowledge of logs, in particular the power rule from above, we can take the
log of both sides of Equation 39 to get 2,

ln(y) ∼ ln(α) + βx. (40)

Table 1 contains example data that will be used to present this model 3.

Table 1
Log-level example data

x y
1 45.00 33.00
2 99.00 72.00
3 31.00 19.00
4 57.00 27.00
5 37.00 23.00
6 85.00 62.00
7 21.00 24.00
8 64.00 32.00
9 17.00 18.00
10 41.00 36.00
11 103.00 76.00

Table 2
Log-level regression results

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.64 0.12 21.83 0.00

x 0.02 0.00 8.19 0.00

Now the question is how to interpret the resulting estimates. At first glace we are
dealing with log changes in the outcome y for corresponding unit changes in x. This is
where the term Log-Level comes from, and put simply, we can expect a 0.02% change in y
for a 1 unit change in x.

A better understanding, at least in terms of raw scale units can be gained from back
transformation. In particular, we must exponentiate our estimates if we want to get back
to raw score levels. Thus, our equation estimates

ln(y) ∼ 2.64 + 0.02x, (41)
2Here we take the natural log, or log base e.
3These example data, and others from http://www.real-statistics.com/regression/
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would need to be transformed back as

y ∼ e2.64+0.02x

e2.64 × e0.02x (42)

y ∼ 14.0132× 1.0202x (43)

Now, the intercept term is the expected level of ln(y) when x = 0. In our equation
above, the value is 14.0132, however the mean of our outcome is actually 38.3636. Let’s see
what happens when we mean center our predictor.

Table 3
Log-level with mean centered predictor

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.52 0.06 62.55 0.00

x_c 0.02 0.00 8.19 0.00

Based on this model the expected mean of the outcome is 33.7982. This is closer to
our reported mean of 38.3636 but not exact... why? This is because here we are dealing with
what is called the Geometric mean, rather than the mean we normally use. The Geometric
mean is computed as, (

N∏
i=1

xi

)1/N

. (44)

When we compute the geometric mean of y we get 33.7982, which matches our estimate
based on the model. Figure 2 compares the untransformed trajectory and the transformed
trajectory.

Log-Log regression example

In this model, both the outcome and the predictor are log-transformed. That is
because the predictor is raised to the power of a parameter, specifically

y = αxβ (45)

Thus, taking the log of both sides results in,

ln(y) = ln(α) + β ln(x) (46)

Parameter interpretation

Interpretation of the model estimates in Table 5 is pretty straight-forward. We are
dealing with percent changes in both the outcome and the predictor. In economics this
is referred to as elasticity. So, based on the model a 1% change in x would result in an
0.23% change in y. Figure 3 compares the untransformed trajectory and the transformed
trajectory.
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Table 4
Log-Log example data

x y
1 8.10 33.00
2 69.90 49.00
3 4.20 19.00
4 14.10 27.00
5 5.60 23.00
6 52.10 51.00
7 44.60 34.00
8 19.60 32.00
9 33.00 28.00
10 6.70 36.00
11 30.10 43.00

Table 5
Log-Log regression results

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.81 0.21 13.65 0.00

log(x) 0.23 0.07 3.44 0.01

A caution about nonlinear transformations

Above, we’ve discussed power-ish transformations, notice that in Figure 1 the basic
equation was y = xβ. The transformations just illustrated only really make sense if the
ratio of largest to smallest value on the raw scale is large. If it’s not, then something like
the natural log will have little effect on the relation.

Also, if the values are negative, it will be necessary to add a constant before taking
the log of the values.

Lastly, these transformations should only be used when the relationship is mono-
tonic, meaning it passes the horizontal line test, or is a one-to-one function. This means
that quadratic trends or trends that oscillate are not good candidates for transformation.
When relations are monotonic these transformations will not change the rank-order of the
observations, just the spaces in between successive values.

Proportions and the Binomial models

There is a special case involved around binary outcomes. In general power transfor-
mations don’t work well when the data values are near 0 or 1, which is exactly the case for
binary data. Think about coding pass-fail or True-False outcomes. In this case we need to
develop a way in which to transform these 0/1 values into something manageable.

The Logistic curve. We will be using a function called the logistic curve which
has the functional specification of,

y = eθ

1 + eθ
(47)
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Where θ represents all of the possible inputs of interest for predicting y. From our level-level
regression example, theta may be equal to β0 +β1x1 + . . .+βkxk thus making the equation

y = e(β0+β1x1+...+βkxk)

1 + e(β0+β1x1+...+βkxk) (48)

With this approach we are modeling proportions. So, instead of trying to use either
0 or 1 as an outcome directly, we will be looking at the total number of 1s out of all
responses. A little later we will specify this as Pr(Y = 1) or the probability of scoring a 1
on the outcome. For binary data this follows our logistic curve.

However, we can still model proportions directly as well, as shown below.

Dose-Response example

These data are a reproduction of data from:
C.I. Bliss (1935). The calculation of the dosage-mortality curve. Annals of Applied

Biology, 22 (1), 134-167. 4

The Data Beetles were exposed to carbon disulphide at varying concentrations for
5 hours.

• dose = mf/L concentration of CS2

• nexp = number of beetles exposed

• ndied = number of beetles killed

• prop = proportion of dead to exposed beetles

Table 6
Beetle data

dose nexp ndied prop nalive
1 49.10 59.00 6.00 0.10 53.00
2 53.00 60.00 13.00 0.22 47.00
3 56.90 62.00 18.00 0.29 44.00
4 60.80 56.00 28.00 0.50 28.00
5 64.80 63.00 52.00 0.82 11.00
6 68.70 59.00 53.00 0.90 6.00
7 72.60 62.00 61.00 0.98 1.00
8 76.50 60.00 60.00 1.00 0.00

The Logistic Model

Run a logistic regression of the proportion of dead to living beetles as a function of
the dose of CS2 gas. Our model specification is,

ndied
nalive

∼ b0 + b1dose (49)
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Table 7
Logistic model results

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.8230 1.2896 -11.49 0.0000

dose 0.2494 0.0214 11.66 0.0000

we may be interested in finding the concentration of CS2 gas that is lethal 50% of
the time, the LD50.

Note that if we have a function with multiple predictors we can solve for each variable
using something similar. For example if,

y ∼ b0 + b1(x1) + b2(x2) + b3(x3)

is the model. Then to find a specific value for one of the predictors (x1, x2, x3) that
corresponds to a desired probability y.

• x1 = (−b0 − b2 − b3 + log
(
−y

(y−1)

)
)/b1

• x2 = (−b0 − b1 − b3 + log
(
−y

(y−1)

)
)/b2

• x3 = (−b0 − b1 − b2 + log
(
−y

(y−1)

)
)/b3

4 Many thanks to Thaddeus Tarpey at Wright University. Check out his cite for this and more
http://www.wright.edu/ thaddeus.tarpey/
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Figure 1 . Nonlinear trajectories for different powers
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Below is a table to help you understand the different types of transformations available and how to interpret them.

Name Outcome Input Form β1 interpretation
Level-Level Y X y ∼ β0 + β1x+ ε ∆y = β1∆x 1 unit change in x give β1 unit change in y
Level-Log Y ln(X) y ∼ β0 + β1ln(x) + ε ∆y = β1%∆x 1% change in x give β1 unit change in y
Log-Level ln(Y ) X ln(y) ∼ β0 + β1x+ ε %∆y = β1∆x 1 unit change in x gives β1% change in y
Log-Log ln(Y ) ln(X) ln(y) ∼ β0 + β1ln(x) + ε %∆y = β1%∆x 1% change in x give β1% change in y

(50)
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