
Least Squares Solutions for Overdetermined Systems
Joel S Steele

Overdetermined systems

When we want to solve systems of linear equations, ŷ = Xβ, we need as many equations as unknowns. We
also hope that each equation give unique information, or that it is independent of the other equations. When
the number of unknowns is equal to the number of equations there may exist a single unique solution. In the
case where there are more unknowns than equations we say that the system is underdetermined since we
have no way to uniquely solve for every unknown.

A more common case is when there are more equations than unknowns, in this case the system is overdetermined
and we have many possible solutions, but no single unique one. The problem then becomes, how to identify
satisfactory solutions. This leads to the development of the concept of error and cost. We typically define
error as the difference between expected (ŷ) and observed (y) values,

ε = Xβ − y.

In the majority of situations we define a cost function as the sum of all of squared errors that a given candidate
solution produces. We then hope to minimize this cost function.

minβ ||Xβ − y||

Example data

Below are some example data from the High-School & Beyond dataset that we will be using for these
examples.

mls = data.frame(
read = c(63, 55, 60, 73, 37, 68, 76, 66, 63, 60,

52, 50, 36, 57, 50, 42, 73, 47, 68, 50),
write = c(57, 39, 62, 67, 44, 60, 63, 67, 57, 46,

49, 41, 57, 52, 49, 49, 62, 62, 65, 52),
science = c(58, 53, 50, 58, 39, 69, 67, 61, 58, 53,

44, 44, 50, 61, 47, 50, 69, 53, 55, 39),
math = c(55, 57, 67, 62, 45, 64, 60, 67, 54, 51, 49,

45, 42, 40, 56, 43, 73, 53, 62, 53),
socst = c(41, 46, 56, 66, 46, 66, 66, 66, 51, 61,

61, 56, 41, 56, 46, 56, 66, 61, 61, 56))

The Linear Model

For these data we will be using the following linear model

Scii = β0 + β1Readi + β2Mathi + εi

1

Data preparation and linear modeling in R

To begin, we prepare our data by selecting out our response science into the vector y, and combining our
predictors read and math with a column of 1s as our design matrix.

prepare the data
y = mls$science
x = cbind('(Intercept)'=1,mls[,c('read','math')])
x = as.matrix(x)

For comparison we will estimate the model using R’s built in function lm().

from R
coef(lm(science~read+math,mls))->lma
lma

(Intercept) read math
21.88956117 0.64655253 -0.09174902

Direct Matrix Inversion

The analytic solution to this system using matrix algebra is expressed as

[XTX]−1XT y = β

which can written in R as the following.

the solve() function performs the matrix inversion
solve(t(x) %*% x) %*% t(x) %*% y -> ols
ols

[,1]
(Intercept) 21.88956117
read 0.64655253
math -0.09174902

This produces the same estimates which is nice to see. However, inverting a matrix can be difficult, time
consuming, and overall computationally intensive. Below are other methods that break down the solution
into more manageable parts. Specifically, instead of inverting the full matrix XTX, it can be broken down or
factorized in some way to make the inversion process much less computationally intensive.

QR method

The QR decomposition, or factorization, takes a matrix A and produces two additional matrices Q and R
that represent an orthogonal matrix and a triangular matrix respectively. The form of the decomposition is

A = QR

Where
QTQ = I

because it’s orthogonal and R is upper triangular. The real benefit to this decomposition is that inverting a
triangular matrix is much easier than inverting a full matrix.

2

QR decomposition to solve
qr.Q(qr(x)) -> Q
qr.R(qr(x)) -> R
Make sure Q is orthogonal
kable(as.data.frame(t(Q) %*% Q))

V1 V2 V3
1 0 0
0 1 0
0 0 1

What is in R
R

(Intercept) read math
[1,] -4.472136 -256.25339 -245.52026
[2,] 0.000000 51.24646 30.70651
[3,] 0.000000 0.00000 -26.01750

Using the QR decomposition, the solution to our least squares problem from before becomes

R−1QT y = β

Using QR (Spoiler Alert: this is what the lm() function does on the backend)
solve(R) %*% t(Q) %*% y ->qrs
qrs

[,1]
(Intercept) 21.88956117
read 0.64655253
math -0.09174902

Again, the same results.

Cholesky method

Cholesky (Coal-Ess-Key) decomposition, takes a similar approach, but here the matrix A is factored into two
triangular matrices. In R the factorization produces upper triangular matrices U , such that UTU = A. For
our purposes we will therefore create a sum-of-squares and cross-products matrix A = XTX and use the
Cholesky decomposition on A. Since we want the inverse of A this becomes A−1 = U−1U−1T

Now, we can then solve our least squares problem as

U−1U−1TXT y = β

Cholesky
cv = t(x) %*%x
u = chol(cv)
uinv = solve(u)
uinv %*% t(uinv) %*% t(x) %*% y ->chs
chs

3

[,1]
(Intercept) 21.88956117
read 0.64655253
math -0.09174902

Same results as above.

Singular Value Decomposition

The final matrix based method that I will present is the Singular Value Decomposition or SVD for short.
This decomposition breaks down our matrix A into three new matrices U , D, and V , such that A = UDV T .
In this case both U and V are orthogonal and D is a diagonal matrix containing the singular values such
that D = UTAV .

Inverting diagonal matrices

The fact that D is diagonal makes this a much easier problem since the inverse of a diagonal matrix is equal
to a matrix with each diagonal element inverted (only for non-zero elements of course!)

As a quick example

A = diag(c(2,4,5))
A

[,1] [,2] [,3]
[1,] 2 0 0
[2,] 0 4 0
[3,] 0 0 5

solve(A)

[,1] [,2] [,3]
[1,] 0.5 0.00 0.0
[2,] 0.0 0.25 0.0
[3,] 0.0 0.00 0.2

Now, most of the computational time for this method is not spent with matrix inversion, but rather with the
SVD itself, which can be very time consuming.

Nevertheless, using this decomposition the solution to our least squares problem becomes

V D−1UT y = β

Singular Value Decomposition
dcomp = svd(x)
V = dcomp$v # orthogonal eigenvectors
D = diag(dcomp$d) # diagonal singular values
U = dcomp$u # orthogonal
V %*% solve(D) %*% t(U) %*% y ->svs
svs

4

[,1]
[1,] 21.88956117
[2,] 0.64655253
[3,] -0.09174902

Again, the same results.

How do they compare?

results = data.frame('R'=lma, 'OLS'=ols, 'QR'=qrs, 'Cholesky'=chs, 'SVD'=svs)
kable(results, digits=5)

R OLS QR Cholesky SVD
(Intercept) 21.88956 21.88956 21.88956 21.88956 21.88956
read 0.64655 0.64655 0.64655 0.64655 0.64655
math -0.09175 -0.09175 -0.09175 -0.09175 -0.09175

As expected, the estimates are exact. Now, keep in mind that this is not a new method for solving the
system of equations, but rather for dealing with the messy business of matrix inversion. We are still using
the solution

[XTX]−1XT y = β

but we are using factorization tricks on the [XTX]−1XT part.

Interaction effect estimates?

Here we include an interaction effect between math and read, thus our model becomes,

Scii = β0 + β1Readi + β2Mathi + β3(Readi ×Mathi) + εi

interactions?
x = cbind(x,'intrxn'=mls$read*mls$math)
x = as.matrix(x)
from R
lm0 = lm(science~read*math,mls)
lm0$coef ->beta1
Traditional Least squares
solve(t(x) %*% x) %*% t(x) %*% y -> beta2
QR decomposition to solve
qr.Q(qr(x)) -> Q
qr.R(qr(x)) -> R
solve(R) %*% t(Q) %*% y -> beta3
Cholesky
cv = t(x) %*%x
u = chol(cv)
uinv = solve(u)
uinv %*% t(uinv) %*% t(x) %*% y ->beta4
Singular Value Decomposition

5

dcomp = svd(x)
V = dcomp$v # orthogonal eigenvectors
D = diag(dcomp$d) # diagonal singular values
U = dcomp$u # orthogonal
V %*% solve(D) %*% t(U) %*% y ->beta5

How do they compare?

res = data.frame('R'=beta1, 'OLS'=beta2, 'QR'=beta3, 'Cholesky'=beta4, 'SVD'=beta5)
kable(res, digits=5)

R OLS QR Cholesky SVD
(Intercept) 107.29380 107.29380 107.29380 107.29380 107.29380
read -0.78323 -0.78323 -0.78323 -0.78323 -0.78323
math -1.78291 -1.78291 -1.78291 -1.78291 -1.78291
read:math 0.02772 0.02772 0.02772 0.02772 0.02772

Perfect, as expected!

Standard errors of estimates

Just as a quick aside, we can also use aspects of these matrix methods for model assessment as well. In
particular we may be interested in computing standard errors of the parameters as well as of the estimates.

Looking for standard errors of estimates for QR decomposition it will be helpful to know that errors are
defined as

ε = (I −QQT)y

Also, remember that
MSE = 1

n− p
εT ε

and
SEβ =

√
MSE

SSx
which in the case of QR factorization becomes,

SEβ =
√
MSE

RTR

n = nrow(x)
p = ncol(x)
e = (I - QQ')y
(diag(20) - Q %*% t(Q)) %*% y -> err3
MSE = 1/n-p (e'e)
MSE = 1/(n-p) * t(err3) %*% err3
SEb = (MSE/SSx)^.5
SEb = sqrt(MSE * diag(solve(t(R) %*% R)))
kable(data.frame('Est' = beta3,'Std.Err'=SEb, 't val'=beta3/SEb), digits=c(5,5,3))

6

Est Std.Err t.val
(Intercept) 107.29380 44.13585 2.431
read -0.78323 0.74634 -1.049
math -1.78291 0.88619 -2.012
intrxn 0.02772 0.01411 1.964

with a residual standard error of,

sqrt(MSE)

[,1]
[1,] 5.455545

And by comparison

summary(lm0)

Call:
lm(formula = science ~ read * math, data = mls)

Residuals:
Min 1Q Median 3Q Max

-8.084 -5.258 1.223 2.603 8.454

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 107.29380 44.13585 2.431 0.0272 *
read -0.78323 0.74634 -1.049 0.3096
math -1.78291 0.88619 -2.012 0.0614 .
read:math 0.02772 0.01411 1.964 0.0671 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.456 on 16 degrees of freedom
Multiple R-squared: 0.6858, Adjusted R-squared: 0.6269
F-statistic: 11.64 on 3 and 16 DF, p-value: 0.0002689

7

	Overdetermined systems
	Example data

	The Linear Model
	Data preparation and linear modeling in R
	Direct Matrix Inversion
	QR method
	Cholesky method
	Singular Value Decomposition
	Inverting diagonal matrices
	How do they compare?

	Interaction effect estimates?
	How do they compare?

	Standard errors of estimates

