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Data

These data are a subset of the High school and beyond dataset used by numerous authors. For our
purposes we will be grabbing a copy of these data from UCLA. These data are in Stata format and are
available from http://www.ats.ucla.edu/stat/data/hsbdemo.dta.

Model with Interactions

Here we start with a model in which Reading scores (read) are predicted by Math (math) and Social Studies
(socst) scores, and the interaction between them. For this model we leave each predictor uncentered. This
means that the estimates of the Intercept as well as the influence of the predictors (i.e., math, socst, math ×
socst) on the outcome (read) are conditional on where each predictor is zero.

The model we fit is
readi ∼ mathi + socsti +mathi × socsti + εi

Have a look. Keep in mind that with the interaction included all of the main effects are conditional, thus
they are simple effects and no longer “main” effects.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.843 14.545 2.602 0.010
math -0.111 0.292 -0.379 0.705
socst -0.220 0.272 -0.810 0.419
math:socst 0.011 0.005 2.157 0.032

Table 1: Moderated regression estimates

This model fits the data fairly well with a reported R2 = 0.546. The F-table is below.

Df Sum Sq Mean Sq F value Pr(>F)

math 1 9175.571 9175.571 189.413 0.000
socst 1 2023.769 2023.769 41.777 0.000
math:socst 1 225.422 225.422 4.653 0.032
Residuals 196 9494.658 48.442 NA NA

Table 2: Regression model F-table

Notice something here, according the the F-table all of the predictors are significant in how much variance
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they explain. However, from Table 1, of the predictors, only the interaction was significant. This should strike
you as strange. This results from the fact that we have a model with a continous by continous interaction
in it, which makes the other estimates conditional. We investigate this more below.

Plotting the interaction

Since our interaction is between two continuous variables we need tp decide on which one to select different
levels of. Which one will serve as the moderator? For this example we use socst as the moderator in order
to plot the conditional relationship between the other predictor and the outcome.

We start by selecting socst values that are 1 standard deviation above and below the mean. These will be our
conditional values for when we plot the relation between math and read. We can then use the model fit to
the data to predict using the one standard deviation above and below values. These will be added to the plot
of the points that we create.
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Figure 1: Scatterplot with conditional regression lines +/- 1 standard deviation from the mean on Social
Studies.

Selecting a center point

We will now investigate how centering our continuous variables will effect the estimates from our model.

Here we center each variable by subtracting the mean without dividing by the standard deviation. So, the
results are still in the original metric and are NOT z-scores, they are just mean deviation scores now. These
variables are defined as:

math.ci = mathi − ¯math
socst.ci = socsti − ¯socst

Using our new mean centered variables we can fit the model again. Keep and eye out for differences.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.615 0.569 90.763 0.000
math.c 0.481 0.064 7.545 0.000
socst.c 0.374 0.056 6.730 0.000
math.c:socst.c 0.011 0.005 2.157 0.032

Table 3: Moderated regression with centered variables

Ostensibly, that’s a big difference! And, what’s more, all of the estimates are now significant! It’s worth
mentioning that the fit didn’t change, we still have a reported R2 = 0.546.

The big differences are reflected in the standard errors between the two models. When data are mean centered
the standard errors are much smaller. This is also reflected in the tolerance values, which remember are equal
to 1 over the variance inflation factor. When we mean center the tolerance goes up.

Raw S.E. Centered S.E. Raw tolerance Centered tolerance

(Intercept) 14.545 0.569 NA NA
math 0.292 0.064 0.033 0.684
socst 0.272 0.056 0.029 0.685
math:socst 0.005 0.005 0.010 0.964

Table 4: Raw and Centered model variance comparisons

Result of centering on the parameter estimates

Below we will center each variable in turn to see the differences in the model estimates. Not only does the
value of the (Intercept) change, but so do the estimates of math and socst by themselves. This represents the
conditional influence of these variables when the interaction term is included in the model.

Of course you don’t have to mean center your data. If there is another value that is supported by theory, or
just makes sense to use, you can center on that value. This is the same idea as with centering time. We can
focus on different regions of the data to help interpretation or to reflect our hypotheses.

Raw no intrxn Raw intrxn Centered math Centered socst All Centered

(Intercept) 7.147 37.843 32.025 26.311 51.615
math 0.504 -0.111 -0.111 0.481 0.481
socst 0.354 -0.220 0.374 -0.220 0.374
intrxn 0.000 0.011 0.011 0.011 0.011

Table 5: Model estimate comparisons

Notice that the interaction term did not change. This represents the curvature of the response surface that
results from fitting this model. Notice also that the parameter estimates bounce around depending on if
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the variables are centered or not. This equates to different slopes for the variables based on where on the
response surface we are focusing.

Visualizing the response surface.

Here, We go on to plot the regression surface (using rgl). We first plot the points and then graph a response
surface for a model with no interactions.

Figure 2: Regression response surface.

Graphing the interaction

Next, we move onto graphing the interaction between the two continuous variables. This is done by first
plotting the points as above, but then adding the response surface. Since the interaction is significant, we
should expect to see some curvature due to the interaction.
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Figure 3: Interaction response surface.

This is great, but. . . we are only seeing the surface around the neighborhood of the data that we actually
have. This is not a bad thing, but it doesn’t really illustrate what the surface looks like out of this range.

When we mean center the data we are focusing our estimation around our available data. When predictors
are uncentered or raw, the zero points estimated by the model may reflect regions of the response surface that
are far out of the range of the available data. We may want to see what to expect if we estimated the effects
when each predictor is zero on the original scale. In our case someone who scored zero on both math and
socst. So, when someone has zero for both math and socst, rather than the averages. In order to accomplish
this, we will open up the range of the plot.

Now we can see that the interaction results in a curved surface. The reason the interaction doesn’t change is
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because it represents the curvature, which is constant along the surface. But, depending on where you are on
the surface, the predictor effect lines will have different slopes. Thus the estimates of the other terms are
conditional!

Interpretation in applied terms

What this, hopefully, shows is that, when the model contains an interaction, the magnitude and direction of
the relation between a continous predictor and the outcome depends on the level of the other predictor in
the model. So, for example, we might find that when someone scores a zero on both math and socst, the
relation of either of these values on read is not and different from zero (no relation at all). However, as the
scores in either measure increase, the relation with read changes. We see this in the difference between the
estimates from the raw score model versus the estimates from the model with centered variables. In the first
case the effects of math and socst were non significant. This was because we were focusing on the part of the
curve where these values were zero on the raw scale. By centering the data, and making each predictor into a
mean-deviation score, we move the focus of the model to be within the middle of our cloud of data. As a
result the influence of each predictor on the outcome was worth noting.

The other major result was that the model could be estimated much more precisely, which was reflected in
the smaller standard errors between the two models.
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Figure 4: Expanded interaction response surface with predictor effect lines.
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