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The Common Factor Model

Figure 1: Common factor diagram

Model expectations

Using the tracing rules and our model above in Figure 1, we can analytically specify what the expected
elements of the variance covariance matrix should be made up of,

Σ̂ =

λ1ψλ1 + θ1
λ1ψλ2 λ2ψλ2 + θ2
λ1ψλ3 λ2ψλ3 λ3ψλ3 + θ3

 .
As specified, the model depicted in Figure 1 is not identified (more on this later). If we include a unit variance
identifying constraint, setting ψ = 1, the expected covariance matrix becomes,

Σ̂ =

λ2
1 + θ1
λ1λ2 λ2

2 + θ2
λ1λ3 λ2λ3 λ2

3 + θ3

 .
Below, we will use these expectations to estimate the model implied loadings from the example covariance
matrix in Table 1.

Table 1: Example Covariance Matrix

V1 V2 V3
V1 4.24 2.70 2.16
V2 2.70 3.45 1.80
V3 2.16 1.80 2.84
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With this short 3 item scale we can compute the loadings for items 1, 2, and 3 directly by-hand! This equation
comes directly from our expected matrix Σ̂ above.

λ2
1 = σ21 × σ31

σ23
= λ1λ2 × λ1λ3

λ2λ3

Using our equation above we get:

• λ1 =
√

2.7×2.16
1.8 = 1.8

• λ2 =
√

2.7×1.8
2.16 = 1.5

• λ3 =
√

2.16×1.8
2.7 = 1.2

Using our computed loadings, {1.8, 1.5, 1.2}, we can proceed to estimate the residual or specific variance for
each indicator. It’s crucial to remember that the total variance for an indicator is a combination of how
much the factor(s) explain, and what’s left over. In this case we can compute the specific variance from
the observed variance values on the diagonal of the covariance matrix in Table 1. These diagonal values are
{4.24, 3.45, 2.84}.

• ε1 = σ2
1 − λ2

1 = 4.24− 1.82 = 4.24− 3.24 = 1.0
• ε2 = σ2

2 − λ2
2 = 3.45− 1.52 = 3.45− 2.25 = 1.2

• ε3 = σ2
3 − λ2

3 = 2.84− 1.22 = 2.84− 1.44 = 1.4

So, at this point, we have estimated what the expected loadings and specific variances should be, based on
our model in Figure 1, with a bit of algebra. These estimates are,

λ1: 1.8 ε1: 1.0
λ2: 1.5 ε2: 1.2
λ3: 1.2 ε3: 1.4

Let’s see how our computations compare when we run the model using lavaan in R.
# unit variance constraint
testmod = '

f =~ NA*V1 + V2 + V3
f ~~ 1*f'

fit1 = cfa(testmod,sample.cov=input, sample.nobs=10000)
tab = parameterEstimates(fit1)[,4:6]
rownames(tab) = rnames
kable(tab,digits=3)

est se z
λ1 1.8 0.018 97.384
λ2 1.5 0.017 88.418
λ3 1.2 0.016 76.293
ψ 1.0 0.000 NA
ε1 1.0 0.035 28.489
ε2 1.2 0.028 42.810
ε3 1.4 0.024 57.352

# what fit measures do we want
indices = c('chisq','df','pvalue','cfi','rmsea')
fitMeasures(fit1,indices)

chisq df pvalue cfi rmsea
0 0 NA 1 0
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A few things to note, we included the NA*V1 portion in the model syntax because otherwise lavaan will fix
the loading to the first item at one for a factor model by default, and we wanted it free. The NA makes it a
free estimate. We also included the f ~~ 1*f portion to indicate that we want to fix the variance of the
factor (the ψ) at 1, which reflects our unit variance identifying constraint.

Notice also, that this model is JUST identified. This is reflected in the fact that there are 0 degrees of
freedom and the cfi and rmsea both indicate a perfect fit. Recall that degrees of freedom represent the
difference in the number of parameter estimates made, the number of Greek symbols in Figure 1, and the
number of unique elements (k) in the covariance matrix in Table 1. The number of unique elements is equal
to k(k+1)

2 = 3(4)
2 = 6 and there are 6 estimates being made: 3 loadings + 3 specific variances.1

As can be seen in the estimates table the computed values for the loadings and the specific variances are
exactly what we computed by hand earlier!

Equivalent fit, different scaling

Now, the question often comes up regarding what will happen if the loading to the first item is fixed at one
compared to fixing the variance of the factor at one? Below, we fit such a model, keep in mind that lavaan
imposes the unit loading constraint by default.
# unit loading constraint 1st var
testmod2 = '

f =~ V1 + V2 + V3
f ~~ f'

fit2 = cfa(testmod2,sample.cov=input, sample.nobs=10000)
tab2 = parameterestimates(fit2)[,4:6]
rownames(tab2) = rnames
kable(tab2,digits=3)

est se z
λ1 1.000 0.000 NA
λ2 0.833 0.011 77.602
λ3 0.667 0.009 71.356
ψ 3.240 0.067 48.692
ε1 1.000 0.035 28.489
ε2 1.200 0.028 42.810
ε3 1.400 0.024 57.352

fitMeasures(fit2,indices)

chisq df pvalue cfi rmsea
0 0 NA 1 0

The first thing to note is that the degrees of freedom and model fit are exactly the same. Why? Well because
we’ve just swapped one constraint for another.

Next thing worth noting is that there are some differences in the model parameter estimates. For example
there is now an estimate for the variance of the factor ψ = 3.240 which comes from the fact that we have set
the scale of the factor to be equal to the first item through use of the unit loading constraint. Remember
that in our earlier model where the factor variance was constrained to equal 1, our loadings were estimated
as λ = {1.8, 1.5, 1.2}, well the square of the first loading is, 1.82 = 3.24, which is now the estimate of the
factor variance.

1Remember that we constrained the factor variance ψ = 1.
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Also, notice that the estimates for the other loadings also differ from our earlier model. This is again reflective
of the scaling of the factor that the unit loading constraint provides. Notice that if we divide our earlier
estimates by our constrained loading we get our new rescaled estimates,

λi

λ1
= 1.8, 1.5, 1.2

1.8 = {1.00, 0.833, 0.667},

which match the estimates listed above.

Just to illustrate this scaling again, we will fit the model again but this time we will constrain the last loading
to one.
# unit loading constraint last var
testmod2b = '

f =~ NA*V1 + V2 + 1*V3
f ~~ f'

fit2b = cfa(testmod2b,sample.cov=input, sample.nobs=10000)
tab2b = parameterestimates(fit2b)[,4:6]
rownames(tab2b) = rnames
kable(tab2b,digits=3)

est se z
λ1 1.50 0.021 71.356
λ2 1.25 0.018 71.243
λ3 1.00 0.000 NA
ψ 1.44 0.038 38.147
ε1 1.00 0.035 28.489
ε2 1.20 0.028 42.810
ε3 1.40 0.024 57.352

fitMeasures(fit2b,indices)

chisq df pvalue cfi rmsea
0 0 NA 1 0

Notice again, the χ2 is the same as are the degrees of freedom and other indications of fit. The variance of
the factor is now equal to the square of the last loading 1.22 = 1.44, and the estimated loadings are also
re-scaled by the last indicator,

λi

λ3
= 1.8, 1.5, 1.2

1.2 = {1.50, 1.25, 1.00}.

Hopefully, this helps clear up any ambiguity there may be about setting the scale of the factor with either
the unit loading or unit variance constraints.

Adding non-identifying constraints.

Next we move on to showing how degrees of freedom are impacted by additional constraints. Up to this point
we’ve just been concerned with identifying constraints, namely ones that set the scale of the factor in some
way, and have been looking at JUST identified models, wherein the number of estimated parameters is equal
to the number of unique elements in the covariance matrix.

Below, we will see that by setting parameters in the model equal to each other, through use of labels in
lavaan, we will gain some degrees of freedom.

4



# unit variance constraint
testmod3 = '

f =~ NA*V1 + V2 + V3
f ~~ 1*f
V1 ~~ u*V1
V2 ~~ u*V2
V3 ~~ u*V3'

fit3 = cfa(testmod3,sample.cov=input, sample.nobs=10000)
tab3 = parameterestimates(fit3)[,5:7]
rownames(tab3) = rnames
kable(tab3,digits=3)

est se z
λ1 1.752 0.017 101.946
λ2 1.502 0.016 94.016
λ3 1.238 0.015 83.515
ψ 1.000 0.000 NA
ε1 1.224 0.012 100.000
ε2 1.224 0.012 100.000
ε3 1.224 0.012 100.000

fitMeasures(fit3,indices)

chisq df pvalue cfi rmsea
91.593 2.000 0.000 0.993 0.067

In the model above we retain the unit variance constraint to set the scale of our factor. This is a necessary
step, factors always need a set scale regardless of the number of degrees of freedom. Additionally, we have set
the specific variances among the indicators, or manifest variable, to be equal via the same label u being used
as shown below

V1 ~~ u*V1
V2 ~~ u*V2
V3 ~~ u*V3

What this amounts to is that the model no longer has to estimate three specific variances, instead it estimates
one and sets the other to be equal to it. As can be see in the fit statistics we’ve gained 3− 1 = 2 degrees of
freedom as a result.

Comparisons

m1.est m1.se m2.est m2.se m2b.est m2b.se m3.est m3.se
λ1 1.8 0.018 1.00 0.000 1.50 0.021 1.75 0.017
λ2 1.5 0.017 0.83 0.011 1.25 0.018 1.50 0.016
λ3 1.2 0.016 0.67 0.009 1.00 0.000 1.24 0.015
ψ 1.0 0.000 3.24 0.067 1.44 0.038 1.00 0.000
ε1 1.0 0.035 1.00 0.035 1.00 0.035 1.22 0.012
ε2 1.2 0.028 1.20 0.028 1.20 0.028 1.22 0.012
ε3 1.4 0.024 1.40 0.024 1.40 0.024 1.22 0.012
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