Bivariate Regression

Joel S Steele

Bivariate example (Regression)

Within the regression framework, we are most interested in using a linear combination of parameters and variables to explain variance in our outcome of interest. The basic model takes the form of a line.

$$
y=a x+b
$$

or a more common expression in regression,

$$
y_{i}=b_{0}+b_{1} x_{i}+\epsilon_{i}
$$

Where b_{0} and b_{1} represent the intercept and slope respectively.

Parameter estimation

As you may remember from an earlier statistics course, we can use the least squares criteria to find the optimal estimates of both the intercept and slope. However, it may be instructive to see a small example of exactly such a function is minimized.

Hand computation with Calculus

Example:

Say that you are interested in whether or not a mother's level of education relates to her child's high school GPA.

The data:

- Mother's education: $X=[0,1,3,4]$
- HS GPA: $Y=[3.0,3.2,3.3,3.7]$
- point $1=(0,3.0)$
- point $2=(1,3.2)$
- point $3=(3,3.3)$
- point $4=(4,3.7)$

We know that the equation for a line is $y=a x+b$ Thus, we need to define the error term, we will use expected, $a x+b$, minus observed y.

The error equation: $\epsilon=a x+b-y$
To minimize the sum of squared error we take this function and square it

$$
\sum_{i} \epsilon_{i}^{2}=\sum_{i}\left(a x_{i}+b-y_{i}\right)^{2}
$$

Using our data this sum of squared errors can now be expressed as:

$$
\begin{array}{rll}
S S_{e} & =\left[(0 a+b-3.0)^{2}\right. & \\
& +(1 a+b-3.2)^{2} & \text { values from point 1 } \\
& +(3 a+b-3.3)^{2} & \text { values from point 2 } \\
& \left.+(4 a+b-3.7)^{2}\right] & \\
\text { values from point } 3 \\
& \text { values point 4 } 4
\end{array}
$$

Simplify and expand

$$
\begin{aligned}
S S_{e} & =[(b-3.0)(b-3.0)+ \\
& (a+b-3.2)(a+b-3.2)+ \\
& (3 a+b-3.3)(3 a+b-3.3)+ \\
& (4 a+b-3.7)(4 a+b-3.7)]
\end{aligned}
$$

Multiply through

$$
\begin{aligned}
S S_{e}= & {\left[\left(b^{2}-6 b+9\right)+\right.} \\
& \left(a^{2}+a b-3.2 a+a b+b^{2}-3.2 b-3.2 a-3.2 b+10.24\right)+ \\
& \left(9 a^{2}+3 a b-9.9 a+3 a b+b^{2}-3.3 b-9.9 a-3.3 b+10.89\right)+ \\
& \left.\left(16 a^{2}+4 a b-14.8 a+4 a b+b^{2}-3.7 b-14.8 a-3.7 b+13.69\right)\right]
\end{aligned}
$$

Collect similar terms within each subexpression

$$
\begin{aligned}
S S_{e} & =\left[\left(b^{2}-6 b+9\right)+\right. \\
& \left(a^{2}+2 a b-6.4 a+b^{2}-6.4 b+10.24\right)+ \\
& \left(9 a^{2}+6 a b-19.8 a+b^{2}-6.6 b+10.89\right)+ \\
& \left.\left(16 a^{2}+8 a b-29.6 a+b^{2}-7.4 b+13.69\right)\right]
\end{aligned}
$$

Combine all subexpressions and collect common terms

$$
\begin{aligned}
S S_{e} & =a^{2}+9 a^{2}+16 a^{2} \\
& +b^{2}+b^{2}+b^{2}+b^{2} \\
& -6.4 a-19.8 a-29.6 a \\
& -6 b-6.4 b-6.6 b-7.4 b \\
& +2 a b+6 a b+8 a b \\
& +9+10.24+10.89+13.69
\end{aligned}
$$

Simplify common terms

$$
\begin{aligned}
S S_{e} & =26 a^{2} \\
& +4 b^{2} \\
& -55.8 a \\
& -26.4 b \\
& +16 a b \\
& +43.82
\end{aligned}
$$

This is the equation for the sum of squared errors for our four observed points

$$
S S_{e}=26 a^{2}+4 b^{2}-55.8 a-26.4 b+16 a b+43.82
$$

Take the partial derivative of this equation with respect to each parameter. For example, taking the partial derivative of the function $S S_{e}$ with respect to a is presented below. It is important to note that since we are differentiating the equation based on the parameter a we only need to consider those terms that have and a in them. We will be using the power rule, which states $\frac{d}{d x}=\left(x^{n}\right)=n \cdot x^{n-1}$.

$$
\begin{array}{rlll}
\left.S S_{e}\right|_{a} & =26 a^{2} & -55.8 a & +16 a b \\
\frac{\partial S S_{e}}{\partial a} & =26\left(2 \cdot a^{1}\right) & -55.8\left(1 \cdot a^{0}\right) & +16 b\left(1 \cdot a^{0}\right) \\
\frac{\partial S S_{e}}{\partial a}= & 26(2 \cdot a) & -55.8(1 \cdot 1) & +16 b(1 \cdot 1) \\
& \frac{\partial S S_{e}}{\partial a}=52 a-55.8+16 b
\end{array}
$$

We rearrange it to look like our equation for a line and set this equal to zero, this gives us the minimum point for the equation, or where the change stops.

$$
\begin{aligned}
\frac{\partial S S e}{\partial a} & =52 a+16 b-55.8 \\
0 & =52 a+16 b-55.8
\end{aligned}
$$

Repeat for the parameter b

$$
\begin{aligned}
\left.S S_{e}\right|_{b} & =4 b^{2}-26.4 b+16 a b \\
\frac{\partial S S e}{\partial b} & =8 b-26.4+16 a \\
\frac{\partial S S e}{\partial b} & =16 a+8 b-26.4 \\
0 & =16 a+8 b-26.4
\end{aligned}
$$

Equation 1 (how the function changes with respect to a)

$$
0=52 a+16 b-55.8
$$

Equation 2 (how the function changes with respect to b)

$$
0=16 a+8 b-26.4
$$

Solve for a in Equation 1

$$
\frac{(55.8-16 b)}{52}=a
$$

Plug a into Equation 2 and solve for b

$$
\begin{aligned}
& 0=16 \cdot\left(\frac{(55.8-16 b)}{52}\right)+8 b-26.4 \\
& 0=16 \cdot \frac{55.8}{52}-16 \cdot \frac{16 b}{52}+8 b-26.4
\end{aligned}
$$

move all of the b terms to one side of the equation

$$
\begin{aligned}
26.4-16 \cdot \frac{55.8}{52} & =-16 \cdot \frac{16 b}{52}+\frac{416 b}{52} \\
9.23077 & =\frac{160 b}{52} \\
9.23077 \cdot 52 & =160 b \\
480 & =160 b \\
\frac{480}{160} & =b
\end{aligned}
$$

the intercept estimate

$$
3=b
$$

Plug b into our equation for a from above

$$
\begin{aligned}
\frac{(55.8-16.3)}{52} & =a \\
\frac{(55.8-48)}{52} & =a \\
\frac{7.8}{52} & =a \\
0.15 & =a
\end{aligned}
$$

So the best fitting line is

$$
y=0.15 x+3
$$

Let's confirm our findings.

```
lm(HSGPA ~ MomEd)
Call:
lm(formula = HSGPA ~ MomEd)
Coefficients:
(Intercept) MomEd
    3.00 0.15
```

