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In this demonstration we will be looking at how to solve for the parameters of
a given model using Maximum Likelihood. The models to be included are the
Gaussian or Normal distribution the Bernoulli distribution and the Ordinary
Least Squares loss function.

1 Gaussian Likelihood

When data are drawn from a Normal distribution, ∼ N (µ, σ2), we can use the
Gaussian distribution function to describe the probability of the data.

f(xi|µ, σ2) =
1√

2πσ2
e

(
− (xi−µ)

2

2σ2

)
(1)

This specifications represents how to compute the probability for a single
value xi. That means, we can get the value of the function for any particular
input, xi, if we supply the parameters µ and σ2.

A quick aside

You may be wondering why we have discussed probabilities but we are interested
in likelihoods? Well, the terms are often used interchangeably, which is a shame.
In our application however, we will say that, if we know the parameter values
for a distribution, we can compute a probability of any observation we obtain.
The result tells us the probability (or how likely we are to see) a value like that
given the distribution that we have at hand.

If, however, we don’t know the exact parameters of our distribution, but
instead we have a set of observations, we must figure out which values of the
parameters would result in the largest probability. In essence we are going back-
wards and using the data along with the hypothesized shape of the probability
distribution, in order to find the parameters that we believe produced our ob-
servations. In this latter case, we are interested in finding the parameters which
maximize the likelihood that our observations are distributed a particular way.

1



1.1 Likelihood of a set of values

The specification in equation 1 works for a single observation. However, the
specification changes when we are dealing with an entire set of observations.
From probability theory, we know that, if observations are independent, their
joint probability is the product of their individual probabilities. So, for our set of
observations, we compute the probability value of each point, and then multiply
them all together to get the probability of the entire sample. What does this
mean? Well, we literally multiply each obtained value from the function. The
result is,

f(x1, x2, . . . , xn|µ, σ2) =
∏n
i f(xi|µ, σ2)

= f(x1|µ, σ2)× f(x2|µ, σ2)× . . .× f(xn|µ, σ2)
(2)

Using our Gaussian function this translates to,

=
∏n
i

1√
2πσ2

e

(
− (xi−µ)

2

2σ2

)

= 1√
2πσ2

e

(
− (x1−µ)2

2σ2

)
× 1√

2πσ2
e

(
− (x2−µ)2

2σ2

)
× . . .× 1√

2πσ2
e

(
− (xn−µ)2

2σ2

)
.

(3)

This product can be simplified somewhat. To help illustrate we will take
advantage of the fact that the product operator,

∏n
i , can be distributed alge-

braically.

n∏
i

1√
2πσ2

e

(
− (xi−µ)

2

2σ2

)
=

n∏
i

[
1√

2πσ2

]
×

n∏
i

[
e

(
− (xi−µ)

2

2σ2

)]
(4)

Thus, we can deal with each portion one at a time.

1.1.1 First portion.

First, we see that the 1√
2πσ2

term does not involve the observation xi, which

makes it a constant. We also know that taking the product of a constant, is
equivalent to having the constant multiplied by itself a number of times. In this
case n times. So, we can express the first portion of the joint probability as,

n∏
i

1√
2πσ2

=

(
1√

2πσ2

)n
. (5)

We may remember that a faction can be expressed as some term raised to a
negative power, and that the square root is equal to the raising a term to the
1
2 power. Thus, we can alternatively express the fraction in our first term as
follows,

1√
2πσ2

= (2πσ2)−
1
2 . (6)
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This is helpful, since raising a power to another power is the same as mul-
tiplying the two powers together, (ab)c = abc. This means that the product of
the first term can be simplified as the fraction to the power n. Again, this is
the same as multiplying the powers together. The result is,(

1√
2πσ2

)n
=
(

(2πσ2)−
1
2

)n
= (2πσ2)(−

1
2 )×(n) = (2πσ2)(−

n
2 ). (7)

1.1.2 Second portion

Okay, on to the e

(
− (xi−µ)

2

2σ2

)
part. First, we can re-express the entire power

portion as (− 1
2σ2 )× (xi − µ)2, so this can be rewritten as e(−

1
2σ2

(xi−µ)2).
It is important to recognize that if we have a base number, raised to a power,

multiplied by the same base number, raised to a different power, this is equal
to the base raised to the sum of the two powers. For example

22 × 23 = (2× 2)× (2× 2× 2) = 22+3 = 25 = 32. (8)

What this allows us to do is to express the product of our second portion as
e raised to a summation over − 1

2σ2 (xi − µ)2 as seen below,

∏n
i e

(− 1
2σ2

(xi−µ)2) = e(−
1

2σ2
(x1−µ)2) × e(−

1
2σ2

(x2−µ)2) × . . .× e(−
1

2σ2
(xn−µ)2)

= e[−
1

2σ2
(x1−µ)2+− 1

2σ2
(x2−µ)2+...+− 1

2σ2
(xn−µ)2]

= e(
∑n
i −

1
2σ2

(xi−µ)2)

(9)
Notice that in the exponent the term − 1

2σ2 is a constant relative to the
portion involving xi. This means that it can be moved outside of the summation.
This allows us to simplify the expression as,

e(−
1

2σ2

∑n
i (xi−µ)

2) (10)

Knowing all of this, we can express the joint probability of all our observations
using the Gaussian distribution function as,

f(x1, x2, . . . , xn|µ, σ2) =
∏n
i (2πσ2)−

1
2 e(−

1
2σ2

(xi−µ)2)

= (2πσ2)−
n
2 e(−

1
2σ2

∑n
i (xi−µ)

2).

(11)

But as you can imagine, if the probabilities are less than 1, then the product
of a bunch of these is going to be SUPER small. It’s not that big of a deal
for the math, at least symbolically, but dealing with repeated multiplication of
small things is tedious and error prone, for both humans and computers alike.
Practically speaking, a computer has a limit on how small it can represent things
and still be accurate.

Fortunately, we may, or may not, remember a special property of logs, that
the log function can turn a product into sum—this will be illustrated below. So,

3



by taking the log of the probability function we can make the computation much
easier while still keeping the same functional relations among the parameter in
our original probability function.

1.2 Quick and dirty logs

Just a refresher, logs are meant to show the number of times a number, the
base, is to be multiplied by itself to get a particular value. As the YouTuber
Vihart put it, if we were counting in a “times the base sort of way”,1 how
many steps would we need to go to get to the answer. So, the answer of the
log function represents what power of the base is needed to get the input value.
For example, if the base is 10, and input value is 10, then the answer of the log
function is 1, because 101 = 10, and so log10(10) = 1. Additionally, counting in
a “times ten” sort of way, how many steps to get to 100? The answer is 2.

In order to show some of the other properties of logs we will work with an
easy example. We will use 100, which can be expressed the following equivalent
ways.

100 = 102

= 10× 10
= 1000/10

(12)

So, let’s work with log with a base of 10, this means we are interested in
what power to raise 10 to in order to produce the result of 100.

if 102 = 100
then log10(100) = 2

(13)

As we can see, 2 is the answer for base 10. Below we present 3 of the basic
properties of logs. These are not all of the properties, just the ones that are
important for our illustration.

We assume base 10 for the following rules:

power rule
log(An) = n× log(A)

• log(102) = 2× log(10) = 2× 1 = 2

product rule
log(A×B) = log(A) + log(B)

• log(10× 10) = log(10) + log(10) = 1 + 1 = 2

quotient rule
log(AB ) = log(A)− log(B)

• log( 1000
10 ) = log(1000)− log(10) = 3− 1 = 2

1Check out Vihart’s video “How I Feel About Logarithms” for a great explanation.
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1.3 Log likelihood derivation

So, why does this matter? Well, because we are interested in fitting our previous
function of the likelihood of a set of data, but we don’t want to cause our
computer to start to smoke computing very small numbers. If we take the
log of the likelihood function we get another function that preserves our main
properties, but that will also turn our product into a sum.

We will take the log of our joint probability specification in equation 11
above. In this case it is easiest to use a base of e for the log of the likelihood,
or natural log, ln which equals loge—so remember, this means ln(e) = 1. This
makes the exponential part much easier to understand. Here are the steps for
expressing the new log-likelihood function,

ln(f(x1, x2, ..., xn|µ, σ2)) = ln
[
(2πσ2)−

n
2 e(−

1
2σ2

∑n
i (xi−µ)

2)
]

by the product rule = ln
[
(2πσ2)−

n
2

]
+ ln

[
e(−

1
2σ2

∑n
i (xi−µ)

2)
]

by the power rule =
[(
−n2
)
ln(2πσ2)

]
+
[(
− 1

2σ2

∑n
i (xi − µ)2

)
ln(e)

]
simplify and we get

L(X|µ, σ2) = −
(
n
2

)
ln(2πσ2)− 1

2σ2

∑n
i (xi − µ)2

(14)
Minus 2 of the log of the likelihood

− 2L(X|µ, σ2) = n(ln(2πσ2)) +
1

σ2

n∑
i=1

(xi − µ)2 (15)

2 Maximum Likelihood

2.1 Analytic solution

In this section we will work to solve for the specific parameters that will max-
imize our observed data. Again we are basing this on the distribution that we
believe generated our data, in this case the Gaussian probability function. Be-
low we need to solve for the parameters µ and σ2 in terms of the observed data
X ∈ {xi, x2, . . . , xn}.

To do this we will use calculus to find the maximum of the above function
with regard to each parameter. First we will express the function in terms of
the specific parameter, then take the derivative of the function with respect to
the parameter to isolate its influence on the function overall. This step helps us
understand how the function changes with respect to the parameter of interest.
We set the partial derivative equal to zero and solve for the parameter to get
where the changes in the function reach a maximum.

5



2.1.1 Partial derivative wrt µ

L wrt µ = 1
σ2

∑n
i=1(xi − µ)2

= 1
σ2

[∑n
i=1 x

2
i − 2xiµ+ µ2

]
= 1

σ2

[∑n
i=1 x

2
i − 2

∑n
i=1 xiµ+

∑n
i=1 µ

2
]

= 1
σ2

[∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

]
∂L
∂µ = 1

σ2 [−2
∑n
i=1 xi + 2nµ]

(16)

Set the result equal to zero and solve

0 = 1
σ2 [−2

∑n
i=1 xi + 2nµ]

= −2
∑n
i=1 xi + 2nµ

2
∑n
i=1 xi = 2nµ

∑n
i=1 xi
n = µ

(17)

2.2 Partial derivative wrt σ2

Substitute σ2 = u

L wrt u = n(ln(2πu)) + 1
u

∑n
i=1(xi − µ)2

= n [ln(2π) + ln(u)] + 1
u

∑n
i=1(xi − µ)2

= nln(2π) + nln(u) + 1
u

∑n
i=1(xi − µ)2

∂L
∂u = n

(
1
u

)
− 1

u2

∑n
i=1(xi − µ)2

(18)
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Set the result equal to zero and solve

0 = n
(
1
u

)
− 1

u2

∑n
i=1(xi − µ)2

1
u2

∑n
i=1(xi − µ)2 = n

(
1
u

)
∑n
i=1(xi−µ)

2

u2 = n
u∑n

i=1(xi − µ)2 = nu2

u∑n
i=1(xi − µ)2 = nu

∑n
i=1(xi−µ)

2

n = u

back substitute for σ2

∑n
i=1(xi−µ)

2

n = σ2

(19)

3 Bernoulli Likelihood

Here we will see how to do the same process for a discrete variable. In this case
we assume that this variable follows the Bernoulli distribution in which x can
only take on two values xi ∈ {0, 1} specified as,

p(x|µ) = µx(1− µ)1−x (20)

Joint Bernoulli Likelihood

For a given set of such observations, X = {x1, x2, . . . , xn}, we get the joint
distribution specified as,

p(X|µ) =

n∏
i=1

µxi(1− µ)(1−xi), (21)

which directly translates to,

p(X|µ) =
∏n
i=1 µ

xi(1− µ)(1−xi)

= µx1(1− µ)(1−x1) + µx2(1− µ)(1−x2) + . . .+ µxn(1− µ)(1−xn)
.

(22)

First portion

We can see here, as with the Gaussian likelihood (see equation 10), that we
have a based raised to a variable exponent. Thus, by the rule of exponents in
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equation 8 we can translate this into,∏n
i=1 µ

xi = µx1 × µx2 × . . .× µxn
= µx1+x2+...+xn

= µ
∑n
i=1 xi

(23)

Second portion

Following the same rules as with the first portion, the second portion becomes,

n∏
i=1

(1− µ)(1−xi) = (1− µ)
∑n
i=1(1−xi). (24)

Recombining the two portions into the full joint likelihood for Bernoulli
distributed data can be expressed as,

p(X|µ) = µ
∑n
i=1 xi(1− µ)

∑n
i=1(1−xi) (25)

Loglikelihood of a Bernoulli distribution

As before, we can take the log of this joint distribution to simplify things.

ln(p(X|µ)) = ln[µ
∑n
i=1 xi(1− µ)

∑n
i=1(1−xi)]

by the product rule = ln
[
µ
∑n
i=1 xi

]
+ ln

[
(1− µ)

∑n
i=1(1−xi)

]
by the power rule = [

∑n
i=1 xiln(µ)] + [

∑n
i=1(1− xi)ln(1− µ)]

(26)

Thus the loglikelihood of the joint Bernoulli distribution is expressed as,

L(X|µ) = ln(µ)

n∑
i=1

xi + ln(1− µ)

n∑
i=1

(1− xi) (27)

Partial derivative

From the equation in 27, we can take the partial derivative in order to solve for
our parameter of interest µ.

∂L
∂µ = 1

µ

∑n
i=1 xi + 1

(1−µ) (−1)
∑n
i=1(1− xi)

= 1
µ

∑n
i=1 xi −

1
(1−µ)

∑n
i=1(1− xi)

(28)
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Next we set equation 28 to zero and solve for µ,

0 = 1
µ

∑n
i=1 xi −

1
(1−µ)

∑n
i=1(1− xi)

1
µ

∑n
i=1 xi = 1

(1−µ)
∑n
i=1(1− xi)

(1−µ)
1 × 1

µ =
∑n
i=1(1− xi)×

(
1∑n
i=1 xi

)
(1−µ)
µ =

∑n
i=1(1−xi)∑n
i=1 xi

1
µ − 1 =

∑n
i=1 1∑n
i=1 xi

− 1

1
µ =

∑n
i=1 1∑n
i=1 xi

1
µ = n∑n

i=1 xi

(29)

Thus,

µ =

∑n
i=1 xi
n

(30)

4 Minimizing a loss function

In this section we will explore the use of this same basic approach to solve for
the parameters in a different equation. In this case we will look to solve for the
parameters of a linear model expressed as,

y = b0 + b1x, (31)

where b0 is the y intercept and b1 is the slope.
Our goal here is to solve for each of these parameters and express these solu-

tions in terms of our observed data yi ∈ {y1, y2, . . . , yn} and xi ∈ {x1, x2, . . . , xn}.

4.1 Loss function

Now, if we are interested in solving for the parameters in equation 31, we need
observations. If we have as many observations as we have parameters to solve,
in our models there are 2, b0 and b1 respectively, there is assumed to be one
unique solution that will satisfy the equation. This is exactly the same task as
solving simultaneous equation from Algebra, keep in mind that each observation
is thought to follow the same model in equation 31. For example if we had two
observations (x1, y1) = (0, 3) and (x2, y2) = (1, 3.5) we could construct the
following lines,

3 = b0 + b10
3.5 = b0 + b11

. (32)

Solving for each parameter above we would find that b0 = 3 and b1 = .5.
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The situation becomes more difficult when we have more observations than
we have parameters. In practice this is most common, but what we need to
do is find a solution that is “close enough” to the data that we are satisfied.
We will call the values that are computed from this “close enough” solution our
estimates and designate them as ŷi. These values represent a direct application
of our model in equations 31,

ŷi = b0 + b1x1i (33)

Our estimates however are not perfect, and most times will be off by some
amount. This amount will be different for each estimate we generate, so it’s
helpful to think about capturing this error. We will define our error term as,

yi = ŷi + εyi
εyi = yi − ŷi

. (34)

Since our goal is to find the parameters, b0 and b1 that are “close enough”
we will try to minimize the errors expressed in equation 34. Specifically, we will
look to minimize the variance of these errors.

4.1.1 Error variance

To compute the variance of the errors we need to start with the sum of squared
errors,

n∑
i=1

ε2i =

n∑
i=1

(yi − ŷi)2. (35)

Substituting equation 31 for our ŷi term we get,∑n
i=1 ε

2
i =

∑n
i=1(yi − b0 − b1xi)2

=
∑n
i=1(yi − b0 − b1xi)(yi − b0 − b1xi)

=
∑n
i=1(y2i − b0yi − b1xiyi)
+ (−yib0 + b20 + b0b1xi)
+ (−yib1xi + b0b1xi + b21x

2
i )

=
∑n
i=1(y2i + b20 + b21x

2
i )

+ (−yib0 − yib0)
+ (−b1xiyi − b1xiyi)
+ (b0b1xi + b0b1xi)

=
∑n
i=1(y2i + b20 + b21x

2
i − 2yib0 − 2b1xiyi + 2b0b1xi)

(36)
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We distribute the summation operator to get,∑n
i=1(y2i + b20 + b21x

2
i − 2yib0 − 2b1xiyi + 2b0b1xi)∑n

i=1 y
2
i +

∑n
i=1 b

2
0 +

∑n
i=1 b

2
1x

2
i

−
∑n
i=1 2yib0 −

∑n
i=1 2b1xiyi +

∑n
i=1 2b0b1xi∑n

i=1(y2i ) + nb20 + b21
∑n
i=1(x2i )

− 2b0
∑n
i=1(yi)− 2b1

∑n
i=1(xiyi) + 2b0b1

∑n
i=1(xi)

(37)

We will simplify the above expression by making the following substitutions,

• SSy =
∑n
i=1(y2i )

• SSx =
∑n
i=1(x2i )

• SCPxy =
∑n
i=1(xiyi)

• SSε =
∑n
i=1 ε

2
i .

Using these definitions our expression in equation 37 becomes,

SSε = SSy + nb20 + b21SSx − 2b0

n∑
i=1

(yi)− 2b1SCPxy + 2b0b1

n∑
i=1

(xi). (38)

4.2 Solving for the parameters

From here we will perform our partial differentiation in order to solve for the
parameters b0 and b1.

4.2.1 The Intercept b0

SSe w.r.t. b0 = nb20 − 2b0

n∑
i=1

(yi) + 2b0b1

n∑
i=1

(xi) (39)

Next we take the partial derivative of the above with respect to b0, set it to
zero and solve for b0,

∂SSe
∂b0

= 2nb0 − 2
∑n
i=1(yi) + 2b1

∑n
i=1(xi)

0 = 2nb0 − 2
∑n
i=1(yi) + 2b1

∑n
i=1(xi)

2nb0 = 2
∑n
i=1(yi)− 2b1

∑n
i=1(xi)

b0 =
2
∑n
i=1(yi)−2b1

∑n
i=1(xi)

2n

b0 =
∑n
i=1(yi)

n − b1
∑n
i=1(xi)

n

(40)

We can use the fact that x̄ =
∑n
i=1(xi)

n and ȳ =
∑n
i=1(yi)

n , thus turning the
result of equation 40 into,

b0 = ȳ − b1x̄ (41)
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4.2.2 The Slope b1

SSe w.r.t. b1 = b21SSx − 2b1SCPxy + 2b0b1

n∑
i=1

(xi). (42)

Next we take the partial derivative of the above with respect to b1, set it to
zero and solve for b1.

∂SSe
∂b1

= 2b1SSx − 2SCPxy + 2b0

n∑
i=1

(xi) (43)

Before we do the algebra to find the solution, we will take advantage of
our solution for b0 in equation 41 and use this to transform all terms in our
expression in equation 43 to be expressed as functions of the b1 parameter,

0 = 2b1SSx − 2SCPxy + 2(
∑n
i=1(yi)

n − b1
∑n
i=1(xi)

n )
∑n
i=1(xi)

= 2b1SSx − 2SCPxy + 2
n

∑n
i=1(yixi)− b1 2

n

∑n
i=1(xixi)

= 2b1SSx − 2SCPxy + 2
nSCPxy − b1

2
nSSx

. (44)

Move all common terms to one side

−2b1SSx + b1
2
nSSx = −2SCPxy + 2

nSCPxy . (45)

Next, multiply through by − 1
2

b1SSx − b1 1
nSSx = SCPxy − 1

nSCPxy

b1(SSx − 1
nSSx) = (SCPxy − 1

nSCPxy)

b1[SSx(1− 1
n )] = [SCPxy(1− 1

n )]

b1 =
SCPxy(1− 1

n )

SSx(1− 1
n )

b1 =
SCPxy
SSx

× (1− 1
n )

(1− 1
n )

b1 =
SCPxy
SSx

(46)

Thus our maximum likelihood estimates for the parameters b0 and b1 from
equation 31 are,

b0 = ȳ − b1x̄ (47)

and

b1 =
SCPxy
SSx

(48)
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