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Even though the mantra that firms “value diversity” is frequently heard both in business 

and academia, surprisingly little work exists in the academic literature that examines how 

diversity (defined as race, sex, and sexual orientation) impacts financial outcomes and firm 

value. In this paper, we explore whether firms that promote diversity within their organizations 

are rewarded with tangible outcomes in the form of new innovations and new product 

announcements, along with patents and citations on patents. 

We hypothesize that firms that develop a diverse workforce and a culture of inclusion 

will have greater innovative efficiency, ultimately leading to greater innovation output. Pro-

diversity practices enhance innovative efficiency because a more diverse hiring policy increases 

the potential pool from which a firm is able to recruit talented and creative employees. In 

addition, a wider range of views, backgrounds, and expertise can help innovative problem 

solving, and a culture of inclusion may help attract and retain talent. We propose that through the 

channel of corporate innovation, pro-diversity policies can impact firm value. Our null 

hypothesis is that pro-diversity policies are merely designed to make the company look better to 

the outside world, or worse, that such policies are a managerial indulgence and predicts that 

investment in such policies will result in the destruction of shareholder value (Jensen, 1986). 

Our exploration is motivated in part by Hirshleifer, Hsu, and Li (2013), who document a 

link between the ability of the firm to develop and create new technologies and the subsequent 

financial performance of the firm. They measure technological innovation as patents and 

citations generated per research and development (R&D) dollar. This measure of “innovative 

efficiency” is positively related to future stock returns. Our paper is also motivated by work in 

the management literature that shows that diverse teams and organizations tend to be more 
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innovative (see, e.g., Talke, Salomo, and Rost, 2010; Østergaard, Timmermans, and Kristinsson, 

2011).  

Our primary measure of innovation is new product announcements from the Capital IQ’s 

Key Developments database, which capture innovation that does not necessarily lead to patents. 

Prior research links new product development to positive firm financial outcomes (see, e.g., 

Chaney, Devinney, and Winer, 1991, for an early study). As a robustness check, we also use the 

National Bureau of Economic Research (NBER) patent and citation database to create measures 

of innovative efficiency.1 We scale the patent and citation measures by the time series of R&D 

expense and repeat our main tests. All of our tests are subject to extensive controls.  

We use the MSCI ESG STATS database to create measures of a firm’s pro-diversity 

policies. The MSCI ESG STATS data record whether firms have a range of policies and 

characteristics that are either “strengths” in diversity or “concerns.” Such measures include 

whether the Chief Executive Officer (CEO) is a woman, whether women or minorities are 

promoted to key positions, whether minority groups and women are represented on the board, the 

presence of benefits aimed at work–life balance, hiring programs aimed at disabled workers, and 

whether the firm has progressive policies toward lesbian, gay, bisexual, and transgender (LGBT) 

employees.  

We find that pro-diversity policies are positively related to the number of new product 

announcements per R&D dollar spent by a firm. Our results are robust to addressing endogeneity 

using Granger (1969) causality tests. More specifically, we find that lagged changes in diversity 

policies positively and significantly predict future changes in innovative efficiency but not the 

                                                 

1 Prior literature has documented a positive relation between patent innovation and firm value (Pakes 1985; Hall, 
Jaffe, and Trajtenberg, 2005).  
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other way around.2 Further tests show that the positive effect of pro-diversity policies on 

innovative efficiency is stronger during recessions, including the 2008 financial crisis, 

suggesting that building a reputation of pro-diversity and a culture of inclusion pays off 

especially when investors and the economy at large suffer extraordinary uncertainty and risk and 

a severe crisis of trust and confidence, and when the reward for being trustworthy substantially 

increases.3  

We address potential concerns that our results are a “Silicon Valley” effect by explicitly 

excluding California-based firms and still finding that our main results are qualitatively 

unaffected. The positive effect of pro-diversity policies is also more pronounced in more 

innovative firms; firms where intangibles including human capital and employees are more 

valuable; firms with greater growth options; firms in industries with fewer women in the labor 

force and thus have more to gain from attracting and retaining (talented) women and other 

minorities; firms with lower leverage, higher cash flow, and less financial constraints; and firms 

with stronger governance. 

We find that pro-diversity policies enhance firm value (as measured by Tobin’s Q) via 

their positive effect on innovative efficiency, in particular for a sample of firms that actively and 

frequently engage in new product innovation. Therefore, we suggest that the effect of diversity 

on innovation represents a channel through which such policies can create firm value. Our results 

are robust to alternative measures of innovative efficiency and to firm-, industry-, and year-fixed 

effects, and to various model specifications. In addition, when we replace the dependent variable, 

new product announcements, with innovative efficiency measures based on patents and citations, 

our major findings remain qualitatively unchanged. Our results provide an explanation for why 

                                                 

2 We thank the referee for suggesting this important test to control for endogeneity. 
3 We thank the editor for suggesting this test. 
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promoting diverse workforces can result in greater productivity and innovative efficiency from 

those employees, which in turn leads to greater shareholder value.  

Our study makes three major contributions. First, we document a positive effect of 

diversity-related policies on corporate innovation. Second, we show that more favorable 

diversity-related policies enhance the positive effect that innovation has on firm value.4 Finally, 

we demonstrate the positive value of corporate diversity policies during a financial crisis period. 

The remainder of our paper is organized as follows. In the next section, we review the 

literature on workforce diversity and corporate innovative efficiency and develop testable 

hypotheses. In Section II, we describe the data, variable construction, and research methods. 

Section III examines the effects of pro-diversity policies on a firm’s innovative efficiency using 

the new product announcements, while Section IV summarizes our robustness tests using patent 

and citation data. We conclude in Section V. 

I. Literature Review and Hypothesis Development 

A. Diversity Policies 

Evidence exists that diversity and pro-diversity policies may improve corporate 

performance. First, a more pro-diversity hiring policy increases the depth of the potential 

employee pool from which the firm can hire talent. Second, a wider range of views, 

backgrounds, and experiences may contribute directly to more innovative problem solving 

(Horwitz and Horwitz, 2007). Finally, by being more pro-diversity, a firm may attract and retain 
                                                 

4 Previous research has examined the relation between innovation or innovative efficiency and various factors, 
including aggregate stock returns (Hsu, 2009), market liquidity (Fang, Tian, and Tice, 2014), state anti-takeover 
laws (Atanassov, 2013), corporate governance (Chemmanur and Tian, 2014), corporate philanthropy (Bereskin, 
Campbell, and Hsu, 2014), analyst coverage (He and Tian, 2013), institutional ownership (Aghion, Van Reenen, and 
Zingales, 2013), hedge fund ownership and activism (Brav et al., 2015; Wang and Zhao, 2015 ), bank loan 
contracting (Francis et al., 2012), bank competition (Cornaggia et al., 2015), CEO overconfidence (Hirshleifer, Low, 
and Teoh, 2012), and board interlocks (Helmers, Patnam, and Rau, 2015), among others. See Chemmanur and 
Fulghieri (2014) for a comprehensive survey of this literature.  
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talent even if this talent is not among the groups that are typically the focus of diversity policies. 

Being seen to be pro-diversity may create a halo effect for the firm and its brands. 

Addressing the role of diversity in organizations, Richard (2000) finds that in a study of 

the banking industry, racial diversity appeared to add value as measured by productivity, return 

on equity, and market value. Blazovich et al. (2013) consider LGBT measures and corporate 

performance and find that LGBT-friendly policies lead to higher firm value and productivity, and 

furthermore, these relations are stronger for firms that demand more highly skilled labor.5 In a 

recent working paper, Gao and Zhang (2015) find a significant increase in patent production for 

firms located in states that enact anti-discrimination laws. In a meta-analysis, Horwitz and 

Horwitz (2007) report that more diverse workforces are likely to result in more creative solutions 

to problems. This finding is supported by Talke et al. (2010) who find evidence that top 

management diversity increases firm performance by increasing the innovativeness of the new 

product portfolio. Østergaard et al. (2011) show, using survey data, a relation between employee 

diversity and innovation, while Bantel and Jackson (1989) show that more diverse top 

management teams lead to greater innovation in banks.  

At the team level, Van der Vegt and Janssen (2003) show that more heterogeneous teams 

lead to greater levels of innovation. Hewlett, Marshall, and Sherbin (2013), using a combination 

of surveys and case studies, report a correlation between diversity and market share growth. 

Faems, Van Looy, and Debackere (2005) find that firms with diverse networks of 

interorganizational collaboration are better able to commercialize and improve products. 

 

B. New Product Announcements 

                                                 

5 The Blazovich et al. (2013) paper contains a very thorough review of other literature that examines the relation 
between LGBT policies and firm performance. Many of these previous studies rely on employee-level survey data. 
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The creation of new products has been found to be linked to firm value. In an early study, 

Chaney et al. (1991) find that a new product announcement is greeted with a 25 basis point 

abnormal announcement return. New product introductions have been found to have a positive 

impact on firm value (as measured by book to market) (Pauwels et al., 2004) and to increase 

profitability (Bayus, Erickson, and Jacobson, 2003). New product announcements are greeted by 

investors with a positive stock price reaction (Srinivasan et al., 2009) and lead to sustained stock 

market performance (measured using a four-factor model) (Sood and Tellis, 2009). 

In our study, we use a relatively new data set, the Capital IQ Key Developments 

database, that reports numerous types of corporate events, one of which is new product 

announcements. A recent paper by Cohn, Gurun, and Moussawi (2016) uses the product 

announcements from Capital IQ to test whether managerial short termism impacts market 

responses to product announcements.  

 

C. Patents and Citations 

Griliches, Pakes, and Hall (1988) document how patent activity is a measure of 

innovative activity, which can be used to measure “inventive output” and which provides a 

framework for relating firms’ R&D activity to patent creation. Other authors have documented 

the relation between innovation and firm performance (Blundell, Griffith, and van Reenen, 1999; 

Hall, 1999). Hirshleifer et al. (2013) demonstrate a positive relation between innovative 

efficiency, stock returns, and investor attention. Several other studies also find a positive relation 

between patent activity and returns (Deng, Lev, and Narin, 1999; Lanjouw and Schankerman, 

2004; Gu, 2005; Matolcsy and Wyatt, 2008; Pandit, Wasley, and Zach, 2011).  
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D. Hypothesis Development 

The goal of our paper is to examine how pro-diversity policies impact a firm’s innovative 

efficiency and how these policies result in the value creation. We consider pro-diversity policies 

as being a broad range of activities that impact the diversity and the makeup of the workforce 

through the promotion and treatment of minorities, women, the disabled, and LGBT employees. 

These policies could foster greater innovation by garnering more diverse viewpoints resulting in 

creative solutions and innovations. Pro-diversity policies also enable the firm to attract and retain 

higher-quality talent and potentially create a halo effect for the firm with other employees and 

customers. 

We define innovative efficiency as some measure of innovative output (such as new 

product announcements) that is then scaled by some measure of resource inputs (such as R&D). 

We hypothesize that to build greater innovative efficiency, a firm must look to create a culture 

and environment of diversity and inclusion. This focus on diversity will attract and recognize 

talent, regardless of whether that talent is from a minority group. 

Therefore, our main hypothesis is 

H1: Firms that promote a diverse and inclusive workforce will be rewarded with greater 

innovative efficiency. 

Empirically, we will measure innovative efficiency using new product announcements as 

our primary tests. As a robustness test, we will also consider both patents and citations as 

alternative measures of innovative efficiency. 

As discussed earlier, our null hypothesis is that pro-diversity measures have no effect on 

innovative efficiency, although they may serve some other goal of the firm. An alternative 
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hypothesis is that pro-diversity policies are an expensive managerial indulgence that serve to 

harm firm value. 

 

II. Data and Method 

A. Measuring Pro-Diversity Policies 

To measure pro-diversity policies, we use the MSCI ESG STATS data set (described in 

detail by Landier, Nair, and Wulf, 2009). The MSCI ESG STATS database ranks U.S. publicly 

traded firms on eight broad categories, including environment, community, human rights, 

employee relations, diversity, customers, products, and corporate governance. Firms are rated on 

strengths and concerns on individual items within each category. Each firm is assigned a score of 

0 or 1 for each strength or concern based on whether the firm meets the screen criteria. MSCI 

also screens firms based on their business involvement in controversial industries, such as 

alcohol, gambling, firearms, military, nuclear power, and tobacco.  

The data can be used to measure employee-related policies, including diversity policies, 

in a variety of ways. For example, Blazovich et al. (2013) study LGBT policies and use just one 

variable (the presence of gay and lesbian policies) in the data set. Alternatively, for a broad 

measure of employee treatment, a simple index can be created by adding up the scores in a 

particular area or by adding scores across a selection of measures (Fisman, Nair, and Heal, 2005; 

Landier et al. 2009; Ertugrul, 2013). Bae, Kang, and Wang (2011) create a five-measure index 

using union relations, cash profit sharing, employee involvement, retirement benefits, and health 

and safety strength. Turban and Greening (1997) add up the scores in each major category and 
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produce five indices.6 Finally, Chang, Fu, Low, and Zhang (2015) create a binary measure of 

whether the firm is above or below the Bae et al. (2011) employee treatment index.  

The MCSI ESG measures that pertain to diversity are grouped into two broad 

categories—namely, Diversity Strengths and Diversity Concerns. Diversity strengths measure 

female and minority representation in key positions such as the CEO or the board. Also included 

are work–life benefits, contracting with women and minorities, employment of disabled and gay 

and lesbian workers. Diversity concerns cover controversies related to women and minorities and 

lack of women and minorities in leadership positions. In addition to these specific categories, 

each area has a generic “other” grouping. We calculate the net strengths of diversity as the 

difference between Diversity strengths and Diversity concerns (DIV = Diversity strengths – 

Diversity concerns). Full definitions of all these variables are provided in the Appendix.  

Table I reports the summary statistics for the diversity measures. The highest mean 

strength score is for item B—Promotion of Minorities and Women—which has a mean of 0.199, 

indicating that 20% of firms score a 1 on this metric. Employment of Underrepresented Groups 

(item H) also has an average of about 20%, but this variable is much less frequently reported. 

Among the concerns, items B and C, nonrepresentation and Board of Directors composition, 

respectively, are the highest, indicating that 36% of firms have no women in senior positions, 

and 42% have no women on their boards. On average, the net diversity strengths equal 0.038 

(DIV). It should be recognized that our net diversity measure, DIV, is merely an index and does 

not measure per se whether a firm is “pro-diversity”; it does, however, facilitate comparisons 

across firms and with firms. 

 

                                                 

6 These index approaches are similar to other indices used in corporate finance, such as those of Gompers, Ishii, and 
Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009).  
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B. Measuring Innovation 

In measuring innovation, it is important to distinguish between innovative output—for 

example, a raw count industry-scaled new product announcements—and innovative efficiency— 

for example, an industry scaled count of patents, citations, or new products that is also scaled by 

historic R&D expenses. A firm could generate more innovative output simply by being larger or 

by having more labor or R&D costs, but innovative efficiency takes into consideration R&D 

inputs and thus is a measure of how well or efficiently the firm applies its R&D resources. In our 

method, we measure raw innovative output as number of product announcements and innovative 

efficiency as number of product announcements scaled by R&D expense. As a robustness check, 

we use patents and citations of patents in place of new product announcements and construct 

these variables in line with the methods used by prior researchers. 

1. New Product Announcements  

We identify new product information from Capital IQ’s Key Development database on 

new product announcements over 2001–2014. The Key Development database consists of 

information regarding new product development collected from more than 20,000 public news 

sources, company press releases, regulatory filings, call transcripts, investor presentations, stock 

exchanges, regulatory websites, and company websites. These data are then examined and 

filtered by Capital IQ’s analysts to eliminate duplicate and extraneous information, identify the 

companies involved, and then categorize the data based on the type and nature of the event. 

Event categories include new product announcements, new client announcements, executive 

changes, mergers and acquisitions rumors, changes in corporate guidance, delayed filings, and 

U.S. Securities and Exchange Commission inquiries. We obtain only the new product 

announcements as these announcements pertain directly to specific project or product 
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development. For each sample of firms in our MSCI database, we compute the annual number of 

new product announcements for each calendar year over 2001–2014.  

Specifically, Prod is the annual number of new product announcements for a firm in 

calendar year t+1. Ln(1+Prod) is the natural logarithm of one plus Prod and is our innovation 

output measures. We take natural logarithm to control for any skewness. To measure innovative 

efficiency, we construct the following efficiency measure: Ln[(1+Prod)/(1+R&D)], where R&D 

expenses are measured at the fiscal year end prior to calendar year t+1. Note that while our focus 

is on the relation between diversity policies and innovative efficiency, we also report tests using 

the innovative output, in an attempt to facilitate a more complete comparison and picture. 

Table II, Panel A presents the new product announcement measures. The average firm in 

our sample has 3.5 new product announcements per year. The remaining new product output and 

efficiency metrics are constructed as discussed above.  

2. Patents and Citations 

We define Patents as the total count of patents applied for (and ultimately granted) by the 

firm in a calendar year. As noted by Hall, Jaffe, and Trajtenberg (2001) and Griliches et al. 

(1988), the relevant year is patent application year instead of grant year because the former more 

accurately captures the time of the actual innovation being made. Typically, there is a time lag of 

two to three years between the application and the grant date. Following these authors, we create 

the variable Patents_USPTO defined as Patents scaled by the average number of patents filed 

across all firms in the same application year and the same U.S. Patent and Trademark Office 

(USPTO) technological class. Similarly, we create Patents_HJT which equals Patents divided by 

the average number of patents filed across all firms in the same application year and the same 

technological category from Hall et al. (2001; henceforth HJT). 
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Scaling Patents by the industry and technology category measures serves an additional 

purpose in that it mitigates truncation bias that occurs toward the end of the sample. For 

example, a firm might apply for a patent, but because of the two- to three-year delay in getting a 

patent awarded, the patent application will not show up in the data set. Consequently, the raw 

number of patents declines toward the end of the data period because the data records only patent 

applications that are subsequently approved. As the industry or technology category will also 

suffer from this bias, scaling by one of these metrics should result in an unbiased ratio. 

While patents are one measure of the quantity of innovation, a simple count of patents 

does not distinguish breakthrough innovations from more marginal contributions. Future 

citations received on the patent, on the other hand, capture the impact of a patent (Trajtenberg, 

1990; Hall et al., 2001). Therefore, we estimate the variable Citations as citations received in life 

on all patents filed for in a calendar year by a firm. This variable measures the technological 

impact of the firm’s patents—that is, to what degree future creativity depends on them.  

Patent citations also suffer from truncation bias. Thus, a large value of Citations may not 

necessarily represent a more important patent but may simply be an artifact of the measurement 

period chosen. Moreover, different industries may have different patent citation rates. We correct 

for these biases by constructing two additional variables (using an approach similar to the one we 

used for the patent data). Citations_USPTO equals Citations divided by the total number of 

citations received in life on all patents filed in the same USPTO class and the sample application 

year. Citations_HJT equals Citations divided by the HJT technological category for the same 

application year.  

Following the method of Hirshleifer et al. (2013), we scale the patent and citation 

measures discussed above by the five-year cumulative R&D expenditures assuming an annual 



14 

depreciation rate of 20%, because prior literature suggests that R&D expenses over the preceding 

five years all contribute to successful patent applications filed in year t (Chan, Lakonishok, and 

Sougiannis, 2001; Lev, Sarath, and Sougiannis, 2005; Hirshleifer et al., 2013). We assign zero to 

missing R&D when computing the denominator (Hirshleifer et al., 2013). For our regression 

analysis, we take the natural logarithms of one plus one of the patent and citation measures as 

our dependent variables to mitigate the effects of skewness. Table II, Panel A presents summary 

statistics for these measures. The average firm has 31 patents and about 68 citations. Because the 

NBER patent and citation database ends in 2006, our patent and citation measures are available 

during 1996–2006. 

3. Other Firm Data 

We supplement the new product and MSCI data with firm-level financial statement 

information from Compustat, stock return data from the Center for Research in Security Prices 

(CRSP), executive compensation and insider ownership data from Standard & Poor’s 

ExecuComp, and corporate governance and board of directors’ information from Risk Metrics. 

To mitigate any sample selection bias, we follow prior literature (Atanassov, 2013; Chemmanur 

and Tian, 2014; He and Tian, 2013) and assign value zero to firm-years with missing patent and 

citation data, or missing R&D, and include these observations in our analysis.  

In Table II, Panel B, we present firm characteristics. The sample firms are generally quite 

large, and this is a result of the intersection of the Risk Metrics and MSCI ESG data.7 The mean 

firm in our sample has a market value of $8.6 billion and generates $6.6 billion in sales, invests 

about 2.7% of assets in R&D annually, and is quite profitable with an average return of assets 

                                                 

7 The coverage of MSCI was the 500 largest firms from 1991–2000, extended to the 1,000 largest firms from 2001 
to 2002, and since 2003 the data set has included the 3,000 largest firms. However, Risk Metrics data are only 
available for the S&P 1500, so our data are biased toward larger firms. 
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(ROA) of 14%. Overall the average firm has a low level of leverage of about 22% of assets. 

Consistent with firms being by and large growth firms, we observe an average Tobin’s Q of 1.92. 

HI and HI2 are the industry (four-digit Standard Industrial Code [SIC]) sales Herfindahl index 

and squared Herfindahl index, respectively. These variables capture the competitive environment 

in which the firm operates. We also report various measures of capital expenditures and cash on 

hand as the financial health of the company may impact innovative efficiency.  

We present several governance measures to control for possible managerial entrenchment 

motivations for spending on diversity policies. If a firm has poor governance and/or entrenched 

management, then pursing more diversity may be a vanity cause for the CEO and not a value-

creating proposition. These variables are presented in Table II, Panel C. For the average firm, 

insider ownership of top five executives is only 2.6% of shares. Equity/Pay is the proportion of 

the top five executives’ compensation that is in the form of equity awards. This simple measure 

is a proxy for alignment of incentives. G-Index is the Gompers et al. (2003) governance index, 

defined as the sum of 24 anti-takeover provisions. A higher number represents weaker corporate 

governance—that is, less shareholder rights and more CEO power. The BCF-Index is the 

Bebchuck et al.  (2009) entrenchment index, which consists of the six most effective anti-

takeover measures. Finally, we also include board size and the percentage of independents on the 

board. Full definitions of all variables used in the analysis are presented in the Appendix. 

Table II, Panel D provides the mean and median values of the product announcements 

and net diversity strengths by Fama and French (1997) 48 industries. As would be expected, we 

see substantial variation by industry. Most striking from this table is the wide distribution of new 

product announcement across these industry groups. “Chips”–Electronic Equipment and 

“LabEq” have the highest number of new product announcements, with both more than 11 per 
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firm per year. Next in order of announcement frequency are Precious Metals, Business Supplies, 

and Personal Services. Clearly, while tech firms have frequent product announcements, such 

activity is found across a wide range of industries, and these results show that innovation is not a 

subject merely of interest to Silicon Valley or biotech firms but is a pervasive force across the 

economy. We will, however, explicitly control for California-based firms in our later analysis. 

DIV also exhibits considerable variations across industries. Specifically, industries that favor 

pro-diversity policies the most include Candy and Soda, Tobacco Products, Personal Services, 

and Electronic Equipment. Those industries with the lowest net DIV measures are Mining, 

Defense, and Precious Metals. 

 

III. Results and Analysis for New Product Announcements 

In this section, we examine the effects of net diversity strengths on innovative efficiency 

based on the new product announcement data. We present the results of our main tests that 

include the baseline regressions with firm fixed effects, Granger causality tests to control for 

endogeneity, and subsample analyses excluding California firms to test for a “Silicon Valley” 

effect. We explore the underlying mechanism by conducting additional analyses based on 

various subsamples and, finally, examine the effect of diversity policies and innovation on firm 

value. 

A. Research Design  

To test the effects of pro-diversity policies on corporate innovative efficiency, we employ 

the following multivariate regression analysis: 

𝐼𝐸௉௥௢ௗ,௜,௧ାଵ = 𝛽ଵ𝐷𝐼𝑉௜,௧ + 𝛽ଶ𝑋௜,௧ + 𝛾௜ + 𝛿௧+ 𝜀௜,௧ାଵ       (1) 
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where IEProd,i,t+1 is either Ln(1+Prodi,t+1) or Ln(1+Prodi,t+1)/(1+R&Di,t), Prodi,t+1 is the number 

of new product announcements made by firm i in year t+1 and R&Di,t is the research and 

development expense in the prior year, DIVi,t represents the measures related to diversity that we 

construct for firm i in year t, Xi,t contains control variables shown in prior literature to affect 

corporate innovation, 𝛿௧ is year fixed effects, and 𝛾௜ is firm fixed effects.8 Following Atanassov 

(2013) and Chemmanur and Tian (2014), we include firm fixed effects to test how the variation 

of diversity-related policies within a firm is related to future variation in innovative efficiency or 

output. In addition, firm fixed effects can mitigate this endogeneity concern arising from 

unobservable, firm-specific, time-invariant, omitted variables. In addition, we report t-statistics 

based on standard errors adjusted by the Huber-While sandwich estimate of variances and 

clustered at the firm level. 

 

B. Diversity and New Product Announcements 

In Table III, we examine the impact of diversity on innovative output and efficiency as 

measured by new product announcements. The columns of the table present dependent variables: 

the number of annual product announcements and the number of announcements divided by 

R&D expense. In each of these regressions, we find that diversity (DIV) is positively related to 

the measures of both innovation output and innovative efficiency, suggesting that pro-diversity 

policies may enhance innovative efficiency, ultimately leading to increased productivity or 

                                                 

8 To ensure that industry effects do not drive our results, we also perform regression analyses using industry mean-
adjusted values for all variables in the regressions, where industry is defined as Fama-French 12 industry 
classifications. We also use the raw variables and include industry dummies in the regressions. Our findings remain 
qualitatively unchanged.  
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innovation output.9 In these regressions, other variables might affect innovation. For example, 

we control for size, R&D, and capital expenditures, as greater investment may lead to higher 

innovative efficiency—perhaps through economies of scale.10 We also control for profitability, 

leverage, and cash, as firms with more resources and less risky cash flows may be able to 

provide more consistent R&D funding through time. We control for the number of employees in 

the firm with the variable Ln(Sales/Employees)—the intuition being that firms with more 

employees may have a vested interest in treating their workers more favorably. Alternatively, 

firms with few employees may have most of their intellectual capital concentrated in a relatively 

small number of individuals that will motivate the firm to treat these employees well. We are 

agnostic about the sign of this variable, but in Table III regressions, it is not significant.  

We control for Tobin’s Q and find a positive relation between Q and innovative 

efficiency. This result is consistent with the notion that higher growth firms are likely to be more 

efficient innovators.  

We control for a range of the strength of the firm’s corporate governance. These variables 

include the percentage of shares owned by insiders, equity compensation structure, the G-Index, 

the BCF-Index, board size, and board independence, as defined in the Appendix. We find board 

independence is positively related to future innovative efficiency.  

In terms of economic significance, the coefficient on DIV of 0.0239 implies that if a firm 

made significant improvements in its diversity level, say by increasing DIV by 7 points, the 

                                                 

9 In untabulated tests, we do not find consistent effects of DIV on innovation input including R&D-to-assets and 
R&D-to-sales ratio. This finding is consistent with pro-diversity policies altering future innovation output via their 
impact on innovation efficiency rather than on innovation input. 
10 Note that current R&D is the denominator of our dependent variable, thus rendering an ambiguous coefficient on 
R&D: on the one hand, greater R&D should lead to greater innovation outcome (as confirmed in the first column 
when our dependent variable is innovative output) everything else equal; on the other hand, greater R&D results in 
lower innovative efficiency measure simply due to the artificial effect that R&D enters the denominator. 
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average firm will see about two additional new product announcements over a 10-year period.11 

Clearly, just adding 1 point to DIV (i.e., by perhaps adding policies to encourage work–life 

benefits) is unlikely to have an instant impact on new product development. But a sustained 

effort to improve diversity across the organization will, in time, be rewarded with greater 

innovation. 

These results provide preliminary support for our hypothesis—that pro-diversity policies 

are positively related to a firm’s innovative efficiency. However, concerns remain, not least of 

which is the impact of endogeneity on our results. The next sections attempt to tackle this issue. 

 

C. Addressing Causality Round One: Granger Causality 

In Table IV, we examine the direction of causality between diversity and innovative 

efficiency using Granger causality regressions. Panel A regresses the change in new product 

announcements on the lagged change in diversity policies. In both models, we find a positive and 

significant coefficient. In Panel B, we reverse the model and regress the change in diversity on 

the lagged change in product announcements. Panel B shows that neither of the regression 

coefficients on the change in new product innovative efficiency measures are significant. These 

results are consistent with diversity Granger causing innovative efficiency but not the other way 

around, thus lending further credence to our conclusion.  

 

D. Addressing Causality Round Two: 2008 Financial Crisis 

In this section, we examine the impact of an economic downturn, in particular the 2008 

financial crisis period on the relation between diversity policies and innovation. The purpose of 

                                                 

11 ∆𝑃𝑟𝑜𝑑 = [𝑒଴.଴ଶଷଽ×଻] × 10 = 1.821 
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the test is twofold. First, this test enables us to investigate whether firms with more pro-diversity 

policies are better able to recover from an economic downturn, when the investors and economy 

at large suffer uncertainty and risk. Evidence from this test can further our understanding on the 

role of corporate diversity practices in affecting innovation. Second, the financial crisis analysis 

can serve as an identification strategy to address endogeneity issue. The exogenous shock of the 

2008 financial crisis is not likely to induce changes in the firms’ diversity culture immediately, 

and thus we can potentially infer the causal effect of diversity on innovation during and 

following the crisis.12 

In Table V, we interact diversity with a crisis dummy that captures the two recessions in 

our sample: the 2001–2002 recession and the economic crisis of 2008–2009.13 In addition, we 

interact this dummy with all the other firm-specific variables in order to fully allow for different 

slope coefficients in response to the recessionary environment. The results show a positive and 

significant coefficient on this interaction term in both regressions. In untabulated tests, we 

interact only the crisis dummy with diversity but not the control variables; we find robust results. 

These results indicate that pro-diversity policies had a positive impact on the firm’s ability to 

create new products even during and following the crisis, thereby helping the firms navigate the 

financial crisis. Our results are consistent with those of Lins, Servaes, and Tamayo (2017) who 

find that high corporate social responsibility firms performed better during the 2008 financial 

crisis.  

While our tests do not fully uncover the mechanism at work here, a possible explanation 

is that a more diverse workforce is more resilient and able to respond to a shock to the economy. 

                                                 

12 We thank the referee for suggesting this approach. 
13 Results are robust if we use alternative definitions for crisis period including (1) only years of 2001 and 2008 are 
considered the recession/crisis years, and (2) only years of 2008–2009 are considered, etc. 
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Alternatively, firms with more pro-diversity policies are better able to retain and attract talented 

employees and get rewarded especially during the uncertain, risky crisis period when the trust in 

corporations, institutions, and the whole economy deteriorated. 

 

E. Location Effects: California versus Non-California Firms 

A valid concern surrounding our tests is that we may just be capturing a location-based 

effect. For example, firms that are located in a state that has both high levels of innovation and 

progressive policies may be driving a correlation rather than causation effect. The obvious 

candidate for such a state is California, home to Silicon Valley and progressive workplace 

policies. As a simple test of the potential California effect, we rerun our Table III tests for 

California only and all states except California. The results (presented in Table VI) show that the 

main findings of Table III appear to exist in both California firms and also non-California firms, 

although in the case of the Product Announcements scaled by R&D for CA firms (first column) 

the effect of DIV is positive but insignificant. It therefore seems reasonable to conclude that our 

basic result is not being driven entirely by Silicon Valley firms. 

 

F. Investigating the Mechanism  

In this section, we attempt to uncover the mechanism through which workforce diversity 

impacts innovative efficiency. In particular, we analyze cross-sectional heterogeneity in the 

relation between diversity and innovative efficiency. We conjecture that the positive effect of 

diversity on innovative efficiency may behave differently depending on a firm’s level of 

innovation, importance of intangibles or human capital including employees for a company’s 

success, firms’ growth options, proportion of women in the industry, leverage, free cash flow and 
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financial constraints, and corporate governance. 

1. Importance of Innovative Efficiency 

If pro-diversity practices enhance innovative efficiency, we expect this positive effect to 

be more pronounced in firms with greater levels of innovation, where R&D productivity and 

innovative efficiency are more critical for their long-term viability and success. Therefore, in 

Table VII, we create a partitioning variable—an indicator variable—that we interact with our 

diversity measure and include in the regression specifications. This partitioning variable 

represents those firms in the top (or bottom) quartile of firms on the specific measure being 

partitioned.  

The first panel (Panel A) of Table VII shows the effect of this partitioning dummy on 

innovative efficiency.14 Ln(1+Prod)_H equals one (zero) if a firm-year has Ln(1+Prod) greater 

than (equal to) zero—that is, having at least one (none) annual new product announcement.15 For 

both models, the interaction term between diversity and Ln(1+Prod)_H (Ln(1+Prod)_H*DIV) is 

significant and positive, indicating that the impact of diversity is more pronounced for more 

innovative firms that actively and frequently engage in new product innovation.  

2. Asset Intangibility 

We condition our analysis on the importance of intangible assets, which often include 

human capital. If more favorable diversity treatment fosters innovation, then we expect this 

positive effect to be stronger for firms where human capital is more important relative to fixed 

assets. We use PPE/Assets as our proxy for the importance of fixed (tangible) assets, which is the 

                                                 

14 We display only the variables of interest in the regression results to save space. 
15 Results are qualitatively similar if we use the innovative efficiency metric, Ln[(1+Prod)/(1+R&D)], to define the 
partitioning indicator variable.  
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opposite of intangible assets such as employees: the higher PPE/Assets, the less crucial 

intangible assets (such as human capital) are to the success of the firm. We then create an 

indicator variable, PPE/Assets_H, which equals one (zero) if a firm has PPE/Assets in (below) 

the top quartile of the sample. Table VII, Panel B shows that the positive effect of diversity on 

innovative efficiency is weaker for firms that value intangible assets such as their (talented) 

employees less (negative and significant coefficient on PPE/Assets_H*DIV). In fact, for firms 

facing lower degree of human capital/employee importance, the effect of diversity on innovative 

efficiency is negative (the sum of coefficients on PPE/Assets_H, DIV, and the interaction term). 

This evidence suggests that not all investments in workforce diversity foster innovative 

efficiency: only those in firms where intangible assets including employees are most important 

for the performance of the firms.  

3. Growth Opportunities 

In Table VII, Panel C, we study the effect of diversity on innovation conditioning on 

firms’ growth opportunities. If pro-diversity policies foster corporate innovation, we expect this 

effect to be stronger for firms with greater growth opportunities whose long-term success is more 

dependent on creativity and innovation. Following convention in prior literature, we use Tobin’s 

Q to measure a firm’s future growth opportunities. We then create an indicator variable, Q_L, 

which equals one (zero) if the q ratio of a firm is in (above) the bottom quartile of the sample. 

Panel C shows that indeed, the positive effect of pro-diversity policies substantially attenuates 

for firms with lower growth potential (the coefficient on the interaction term Q_L*DIV is 

significant and negative). In fact, the positive relation between DIV and innovation efficiency 

exists only in high-growth firms (the coefficient on DIV is significant and positive) but turns 

negative for firms with low-growth opportunities (the sum of coefficients on Q_L, DIV, and the 
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interaction term is negative). This result is consistent with the notion that firms with greater 

growth opportunities have more to gain from promoting pro-diversity policies. This long-term 

orientation of firms is especially beneficial for innovation, as innovation is also a long-term 

investment. 

4. Proportion of Women Employed in the Industry 

Table VII, Panel D examines the partitioning effect of industry women ratio. We find a 

negative effect of diversity on innovative efficiency for firms in industries with a larger 

proportion of women. This result is consistent with the notion that firms in industries with fewer 

women in the labor force actually have more to gain from promoting pro-diversity policies, 

attracting and retaining more (talented) women (as well as other minority) employees. This 

benefit is in particular critical for innovation, as creativity often arises from diverse experiences, 

perspectives, and backgrounds. 

5. Financial Leverage, Free Cash Flow, and Financial Distress 

Table VII, Panels E and F show that for low leverage or high cash flow firms, diversity 

effects on innovation are stronger. To the extent that firms with low leverage or high cash flow 

might be less financially constrained, this finding is consistent with the following explanation. 

Maksimovic and Titman (1991) predict that firms that value highly their reputation for treating 

employees well will limit their use of debt. This is because a highly levered firm (or a firm with 

low free cash flows) might be more likely to face financial constraints and distress risk and 

therefore could have strong incentives to increase cash flows by reducing costs associated with 

employee benefits or deployment of pro-diversity policies. That is, the inability of a firm to 

maintain its reputation for treating its employees fairly could impose significant ex ante costs on 
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its employees, and these costs can comprise an important part of indirect bankruptcy costs. Thus, 

according to the theoretical model of Maksimovic and Titman, firms with more favorable 

diversity policies are more likely to maintain low leverage or high cash flow. The low leverage 

and high cash flow may enable a firm to invest more in long-term, risky, intangible assets such 

as R&D and innovation (which have low salvage values in bankruptcy) now that the firm faces 

less financial constraints and distress risk. This might contribute to the evidence in Panels E and 

F that more pro-diversity firms with low leverage and high cash flow are related to greater 

innovative efficiency.16 

The evidence in Table VII, Panel F also suggests that pro-diversity policies do not 

represent managerial indulgence and the agency problem of free cash flow as described in Jensen 

(1986). Jensen argues that managers in firms with greater free cash flow may be more motivated 

to overinvest beyond the optimal level. Because firms with more free cash flow are likely to have 

more resources to spend in employee- or diversity-related benefits, managers in these firms are 

more motivated to treat their employees more generously (e.g., for personal or agency reasons) 

even if such an investment does not increase employee productivity or create shareholder value. 

Therefore, our result that pro-diversity policies enhance corporate innovation in high cash flow 

firms indicates that these policies are less likely to be subject to managerial agency motives. This 

is perhaps partly due to the fact that the implementation of diversity policies, unlike other types 

of employee treatment practices, does not require an explicit, large amount of monetary 

expenses.  

                                                 

16 We thank the referee for suggesting these explanations. 
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6. Corporate Governance 

Finally, in Table VII, Panel G, we show the partitioning effect of corporate governance in 

terms of the BCF index. In these tests, diversity policies for firms with weaker governance (high 

BCF index) have a more negative effect on innovative efficiency. We think that this result in 

some ways disentangles the managerial indulgence effect (Masulis and Reza, 2015). Specifically, 

the evidence shows that only for firms that are well governed does building a pro-diversity 

culture drive innovative efficiency. In firms with weaker governance, investments in workforce 

diversity actually reduces innovative efficiency, presumably reflecting managerial indulgence 

and agency investments—for example, to boost managers’ personal reputation or halo as socially 

responsible at the costs of shareholders. 

 

G. Diversity, New Product Announcements, and Firm Value 

In Table VIII, we consider the effect of diversity on firm value through its interaction 

with innovative efficiency measures (based on new product announcements). We now run the 

following regression model: 

𝑄௜,௧ାଵ = 𝛽ଵ𝐼𝐸௉௥௢ௗ,௜,௧ + 𝛽ଶ𝐷𝐼𝑉௜,௧ିଵ + 𝛽ଷ𝐼𝐸௉௥௢ௗ,௜,௧ × 𝐷𝐼𝑉௜,௧ିଵ + 𝛽ସ𝑋௜,௧ିଵ + 𝛾௜ + 𝛿௧+ 𝜀௜,௧ାଵ (2) 

where Qi,t+1 is the market-to-book ratio (Tobin’s Q) measured in time t+1 for firm i minus 

industry (the Fama-French 12 industries) median Q17, IEProd,i,t is one of the two new product 

announcement measures at time t for firm i—used as the dependent variable in the previous 

sections, DIVi,t-1 is measured in time t-1 for firm i, and Xi,t-1 contains the full set of controls at 

time t-1, 𝛾௜ is firm fixed effects, and 𝛿௧ is year fixed effects. All regressions contain firm and 

                                                 

17 Using industry mean adjusted Q or raw Q as the dependent variable produces qualitatively similar results. 
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year fixed effects. Importantly, controls include the firm’s market-to-book ratio (Q) at time t-1; 

but our results remain unchanged if lagged Q is excluded from the control variables.  

Table VIII shows that for a subsample of firm-years with at least one annual new product 

announcement (i.e., excluding firm-years with zero Prod), we observe a significant and positive 

coefficient on the interaction between DIV and the innovation efficiency measure in the second 

regression.18 This evidence is consistent with diversity having a positive effect on firm value, 

through its stimulating effect on the number of new product announcements per R&D dollar 

spent. We note that this value effect is only salient for more innovative firms that actively and 

frequently engage in new product innovation. This evidence in fact lends more credence to our 

hypothesis and findings in that pro-diversity policies do not create value for all types of 

companies via stimulating innovative efficiency—they only do so for more innovative firms. 

 

IV. Robustness Tests Using Patents and Citations 

As a robustness check on our main results, we test our hypothesis using patents and 

citations of patents as a measure of innovative efficiency. This approach allows us to conduct our 

analysis in a different time period, using a different dependent variable. As discussed earlier, we 

use four measures of innovative activity based on patents and citations. These are the patent 

variable scaled by the average patent count for the USPTO technology classification and then 

further scaled by the weighted time series of past R&D expenses. The second model scales 

patents by the HJT classification. The third and fourth models use future citations for a patent 

and measure the quality or impact of the patent.  

                                                 

18 Results are insignificant for our full sample including firm-years with zero Prod. 
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For both the USPTO and HJT classification-adjusted patents and citations, we compute 

innovation efficiency (IE) measures using the NBER patent and citation data as follows: 

𝐼𝐸௉஺் =
௉௔௧௘௡௧௦೔,೟శభ

ோ&஽೔,೟ା଴.଼×ோ&஽೔,೟షభା଴.଺×ோ&஽೔,೟షమା଴.ସ×ோ&஽೔,೟షయା଴.ଶ×ோ&஽೔,೟షర
   (3) 

𝐼𝐸஼ூ்ா =
஼௜௧௔௧௜௢௡௦೔,೟శభ

ோ&஽೔,೟ା଴.଼×ோ&஽೔,೟షభା଴.଺×ோ&஽೔,೟షమା଴.ସ×ோ&஽೔,೟షయା଴.ଶ×ோ&஽೔,೟షర
    (4) 

We then use IEPAT and IECITE as dependent variables in our tests and repeat the key tests 

performed on the product announcement data. Again, to control for any skewness, we take 

natural logarithms of one plus one of the four efficiency measures as our dependent variables.  

 

A. Baseline Regressions 

In Table IX, we present our results. Panel A presents the baseline regressions using the 

same setup as in Table III. Our variable of interest is diversity strengths net of diversity concerns 

(DIV). All four regressions show a significant positive relation between innovative efficiency 

and DIV—in other words, firms that have higher scores for diversity policies (net of concerns) 

see greater innovative efficiency in terms of patent production and also patent citations per R&D 

dollar input. Recall that the dependent variables are adjusted for industry or technology class, 

and so these results should not be driven by a simple industry or technology effect.19 In the 

regression models, we explicitly control for all the variables included in the Table III. In the 

interest of space, we do not report these variable coefficients.  

 

B. Addressing Causality  

                                                 

19 In untabulated tests, we also examine the effects of DIV on patent and citation output measures without scaling 
them by R&D expenses, as well as on R&D intensity (input) variables including R&D-to-assets ratio, R&D-to-sales 
ratio, and their respective industry-adjusted ratios. We find no significant or consistent effects of DIV on innovation 
output or R&D input measures. It appears that DIV affects innovative efficiency rather than output or input only. 



29 

In Table IX, Panels B-1 and B-2, we run Granger causality tests. In Panel B-1, we report 

the results of regressing changes in the various patent and citation innovative efficiency 

measures on lagged changes in DIV (the net diversity measure), along with lagged changes in the 

controls. In the first and fourth model (USPTO Patents and HJT Citations), the coefficient on the 

change in DIV is positive and significant. In the other two regressions, while the coefficient is 

positive, the statistical significance is below the 10% level. In Panel B-2 we repeat the setup but, 

this time, regress the changes in DIV on lagged changes in the innovative efficiency measures. In 

none of these regressions are the coefficients on changes in the innovation measures significant. 

These results support the conclusion that in at least two cases, DIV Granger causes innovative 

efficiency but not the other way around. 

 

C. Diversity, Innovative Efficiency, and Firm Value 

In Table IX, Panel C, we examine the impact of diversity on firm value (via its effect on 

innovative efficiency), using a model similar to regression Equation (2). The dependent variable 

is the firm’s industry median adjusted market-to-book ratio (Tobin’s Q) at time t+1. The 

innovative efficiency variables of interest are the four innovative efficiency measures at time t: 

patents and citations per R&D dollar, each bias-adjusted by the HJT and USPTO technology 

class and application year—the dependent variables used in the earlier analysis. The diversity 

measure and control variables are measured at year t-1. Our regression model is the following: 

𝑄௜,௧ାଵ = 𝛽ଵ𝐼𝐸௜,௧ + 𝛽ଶ𝐷𝐼𝑉௜,௧ିଵ + 𝛽ଷ𝐼𝐸௜,௧ × 𝐷𝐼𝑉௜,௧ିଵ + 𝛽ସ𝑋௜,௧ିଵ + 𝛾௜ + 𝛿௧+ 𝜀௜,௧ାଵ  (5) 

where all variables are defined the same as in Equation (2), except IEi,t is the natural logarithm of 

one plus one of the four patent and citation innovative efficiency measures in time t for firm i—

used as the dependent variable in the previous sections.  
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Table IX is arranged so that each column uses one of the four IE measures, but in each 

regression the dependent variable is the same: Qt+1. The interaction between the IE measures and 

diversity captures the impact of diversity on firm value through its effects on innovative 

efficiency.  

Consistent with our hypothesis, we find evidence that pro-diversity policies enhance firm 

value through its stimulating effect on innovative efficiency (positive and significant coefficients 

on the interaction terms for three out of four models). Interestingly, diversity policies do not add 

firm value other than through the effect of enhancing innovative efficiency (as indicated by the 

negative coefficients on DIV).  

V. Conclusions 

We examine the impact that firms’ diversity-focused policies have on innovation. We 

hypothesize that firms that promote greater workforce diversity will see more innovative 

efficiency as a culture of inclusion and diversity may serve to attract and motivate better talent 

from a larger and more diverse pool of job candidates. Diverse teams and workforces may also 

lead to more creative problem solving and innovation. Our alternative hypothesis states that at 

best, diversity policies amount to corporate green washing and will have no effect, and at worst, 

these activities are value destroying. 

We measure diversity practices using the MSCI ESG STATS database. Innovative 

efficiency is measured using new product announcements and patents and citations scaled by 

research and development expense. 

We find that firms that promote a pro-diversity workplace are rewarded by greater 

innovative efficiency. Our tests are robust to a wide battery of control variables as well as 

Granger causality tests. We control for R&D intensity; a range of financial measures; industry, 
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firm, and year fixed effects; and corporate governance effects. Including governance controls is 

important in case diversity policies are merely negative net present value indulgences by 

entrenched managers, a possibility not supported by the data. We also address potential concerns 

that our results are a “Silicon Valley” effect by explicitly excluding California-based firms and 

finding that our main results are unaffected. 

Investigation of the underlying mechanism shows that the positive effect of employee 

treatment and pro-diversity policies on innovative efficiency is stronger in firms that are more 

innovative; firms that value more dearly intangibles or human capital such as (talented) 

employees; firms with greater growth options; firms in industries with fewer women; firms with 

lower leverage, more free cash flow, and less financial constraints; and firms with more effective 

corporate governance.  

We find that pro-diversity policies increase future firm value via a positive effect on 

innovative efficiency, in particular for a subsample of more innovative firms that actively 

generate new products. Finally, pro-diversity policies and a culture of inclusion especially pay 

off during periods of economic downturns when investors, the financial markets, and the 

economy at large, suffer a severe crisis of trust.  
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Appendix. Variable Definitions 
Variable Definition 
Panel A: Diversity Measures 
A. CEO  The company’s chief executive officer is a woman or a member of a minority 

group. 
B. Promotion  The company has made notable progress in the promotion of women and 

minorities, particularly to line positions with profit-and-loss responsibilities in 
the corporation. 

C. Board of Directors Women, minorities, and/or the disabled hold four seats or more (with no 
double counting) on the board of directors, or one-third or more of the board 
seats if the board numbers fewer than 12. 

D. Work–Life Benefits The company has outstanding employee benefits or other programs addressing 
work–life concerns, e.g., childcare, elder care, or flextime. 

E. Women and Minority 
Contracting  

The company does at least 5% of its subcontracting, or otherwise has a 
demonstrably strong record on purchasing or contracting, with women- and/or 
minority-owned businesses. 

F. Employment of the Disabled  The company has implemented innovative hiring programs; other innovative 
human resource programs for the disabled, or otherwise has a superior 
reputation as an employer of the disabled. 

G. Gay and Lesbian Policies  The company has implemented notably progressive policies toward its gay and 
lesbian employees. In particular, it provides benefits to the domestic partners 
of its employees. 

H. Employment of 
Underrepresented Groups 

Factors affecting this evaluation include, but are not limited to, its effort to 
recruit women and minorities, and its participation in multi stakeholder 
diversity initiatives. 

X. Other Strength  The company has made a notable commitment to diversity that is not covered 
by other ESG ratings. 

Diversity Concerns 

A. Controversies  The company has either paid substantial fines or civil penalties as a result of 
affirmative action controversies, or has otherwise been involved in major 
controversies related to affirmative action issues. 

B. Nonrepresentation: The company has no women on its board of directors or among its senior line 
managers. 

C. Board of Directors—Gender This indicator identifies companies with no women on their board of directors. 
Split off from Diversity Concerns B. 

D. Board of Directors—Minorities This indicator identifies companies with no minorities on their board of 
directors. 

X. Other Concern  The company is involved in diversity controversies not covered by other ESG 
ratings. 

Panel B: Innovation Proxies in Application Year t 
Prod Annual number of new product announcements for a firm in a calendar year  
ProdIndAdj Industry-adjusted Prod, defined as Prod divided by the industry average 

number of new product announcements for the same year, where industry is 
the Fama-French 12 industry 

Ln(1+Prod) Innovation output measure defined as the natural logarithm of one plus Prod 
Ln(1+ProdIndAdj) Innovation output measure defined as the natural logarithm of one plus 

ProdIndAdj 
Ln[(1+Prod)/(1+R&D)] Innovative efficiency defined as output variables divided by R&D expense  
Ln[(1+ProdIndAdj)/(1+R&D)] Innovative efficiency defined as industry mean adjusted output variables 

divided by R&D expense 
Patents The total number of patents filed for by (and ultimately granted to) firm i in 

year t 
Patents_USPTO The total number of patents filed for by firm i in year t (and ultimately 

granted) scaled by the average number of patents filed across all firms in the 
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same USPTO class and application year t 
Patents_HJT The total number of patents filed by firm i in year t (and ultimately granted) 

scaled by the average number of patents filed across all firms in the same HJT 
technology field and year t 

Citations The number of citations received on all patents applied for (and ultimately 
granted) in year t for firm i 

Citations_USPTO The number of citations received on all patents filed for (and ultimately 
granted) in year t for firm i, where the number of citations is scaled by the 
total number of citations received for all patents filed in the same USPTO 
class with the same application year t 

Citations_HJT The number of citations received on all patents filed for (and ultimately 
granted) in year t for firm i, where the number of citations is scaled by the 
total number of citations received for all patents filed in the same HJT 
technology field with the same application year t 

IEPAT  Innovative efficiency for firm i in year t, defined as 
Patentsi,t/(R&Di,t+0.8*R&Di,t–1+0.6*R&Di,t–2+0.4*R&Di,t–3+0.2*R&Di,t–4) 

IEPAT_USPTO Innovative efficiency for firm i in year t adjusted for application year and 
USPTO technology class, defined as Patents_USPTOi,t/(R&Di,t+0.8*R&Di,t–

1+0.6*R&Di,t–2+0.4*R&Di,t–3+0.2*R&Di,t–4) 
IEPAT_HJT Innovative efficiency for firm i in year t adjusted for application year and HJT 

technology field, defined as Patents_HJTi,t/(R&Di,t+0.8*R&Di,t–1+0.6*R&Di,t–

2+0.4*R&Di,t–3+0.2*R&Di,t–4) 
IECITE Innovative efficiency for firm i in year t, defined as 

Citationsi,t/(R&Di,t+0.8*R&Di,t–1+0.6*R&Di,t–2+0.4*R&Di,t–3+0.2*R&Di,t–4) 
IECITE_USPTO Innovative efficiency for firm i in year t adjusted for application year and 

USPTO technology class, defined as Citations_USPTOi,t/(R&Di,t+0.8*R&Di,t–

1+0.6*R&Di,t–2+0.4*R&Di,t–3+0.2*R&Di,t–4) 
IECITE_HJT Innovative efficiency for firm i in year t adjusted for application year and HJT 

technology filed, defined as Citations_HJTi,t/(R&Di,t+0.8*R&Di,t–

1+0.6*R&Di,t–2+0.4*R&Di,t–3+0.2*R&Di,t–4) 
Panel C: Control Variables Measured at the Fiscal Year End 
Ln (MV) Natural logarithm of market value of equity [#25*#199] 
Ln (Assets) Natural logarithm of total assets [#6] 
Ln (Sales) Natural logarithm of total sales [#12] 
R&D/Assets Research and development expenditure over assets [#46/#6] 
Ln (Sales/Employee) Natural logarithm of total sales [#12] scaled by the total number of employees 

[#39] 
CapX/Assets Capital expenditure over assets [#128/#6] 
PPE/Assets Net property, plant, and equipment to assets [#8/#6] 
ROA Return on assets defined as operating income before depreciation over assets 

[#13/#6] 
Debt/Assets Book value of debts over book value of total assets [(#34+#9)/#6] 
Cash/Assets Cash to assets [#1/#6] 
Q Tobin’s q defined as market value of assets over book value of assets [(#6–

#60+abs(#25*#199))/#6] 
SICC Herfindahl Herfindahl index of sales of four-digit SIC industry where the firm belongs  
SICC Herfindahl2 The square of HI 
Ln (Age) Natural logarithm of one plus firm age, measured as the number of years listed 

on CRSP 
Insider Ownership The percentage of the company’s shares owned by top five executives 
Equity/Total Pay The total value of new restricted stocks and stock options granted as a 

percentage of annual total pay for the top five executives 
G-Index The anti-takeover provisions index from Gompers et al. (2003). For years 

beyond 2006, we apply the 2006 G-Index levels as the ISS (formerly Risk 
Metrics) does not track the aggregate G-Index subsequent to 2006 

BCF-Index An index based on six anti-takeover provisions as in Bebchuk et al. (2009), 
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including staggered board, poison pill, supermajority to approve mergers, 
limits to amend bylaws, limits to amend charters, and golden parachutes  

Board Size The number of directors on the board.  
Board Independence The percentage of independent directors, defined as the number of 

independent directors over board size 
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Table I. Summary Statistics for Diversity Measures  
This table reports the diversity-related measures over 2000–2013. _str is strength, _con is concern. Each measure is 
either scored as a 0 or 1. DIV is the net diversity strengths defined as the total diversity strengths subtracted by total 
diversity concerns. All except binary variables are winsorized at the upper and lower 1% levels. 
 Observations Mean S.D. Median 
DIV_str_A CEO Is Women/Minority 8,395 0.037 0.189 0.000 
DIV_str_B Promotion of Women/Minorities 9,239 0.199 0.399 0.000 
DIV_str_C Board of Directors Has Minorities 10,807 0.08 0.272 0.000 
DIV_str_D Work–Life Benefits 9,021 0.076 0.265 0.000 
DIV_str_E Women & Minority Contracting 9,571 0.068 0.252 0.000 
DIV_str_F Employment of the Disabled 8,395 0.02 0.141 0.000 
DIV_str_G Gay & Lesbian Policies 9,239 0.187 0.39 0.000 
DIV_str_H Employment of Underrepresented Groups 1,600 0.199 0.400 0.000 
DIV_str_X Other Strengths 10,066 0.008 0.088 0.000 
DIV_con_A Controversies 11,643 0.072 0.259 0.000 
DIV_con_B Nonrepresentation Concern 10,066 0.359 0.48 0.000 
DIV_con_C Board of Directors—Gender 3,248 0.424 0.494 0.000 
DIV_con_D Board of Directors—Minorities 1,577 0.201 0.401 0.000 
DIV_con_X Other Concerns 8,395 0.007 0.086 0.000 
DIV  Net strengths = total diversity strengths minus 

total diversity concerns 
11,643 0.038 1.358 0.000 
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Table II. Summary Statistics for Innovative Efficiency Measures and Firm Characteristics 
Panel A reports the innovative efficiency metrics. New product announcement innovative metrics include 11,643 firm-
year observations over 2001–2014. Patent innovation metrics contain 3,249 observations over 1996–2006. Panels B and 
C report firm characteristics and governance measures respectively over 2000–2013. Full variable definitions are 
contained in the Appendix. Panel D reports the distribution of the new product innovative metrics data and the net 
diversity strengths (DIV) across the Fama and French 48 industry classifications. The number of observations varies by 
industry. All except binary variables are winsorized at the upper and lower 1% levels. 
Panel A. Innovative Efficiency  Mean S.D. Min Median Max 
New Product Announcements      
Annual # of new product announcements 
(Prod) 3.831 7.517 0.000 0.000 30.000 

Ln(1+Prod) 0.828 1.087 0.000 0.000 3.434 

Ln[(1+Prod)/(1+R&D)] –1.264 1.893 –4.931 0.000 1.946 

Patents and Citations      

Patents 30.911 55.130 0.000 3.000 184.000 
Patents_USPTO 7.698 12.682 0.000 1.054 41.171 
Patents_HJT 2.228 3.744 0.000 0.335 12.298 
Citations 67.687 152.329 0.000 0.000 543.000 

Citations_USPTO 34.648 64.745 0.000 0.000 212.780 
Citations_HJT 35.059 66.715 0.000 0.000 222.550 
IEPAT_USPTO 0.020 0.055 0.000 0.004 2.310 
IEPAT_HJT 0.005 0.014 0.000 0.001 0.514 
IECITE_USPTO 0.074 0.323 0.000 0.000 16.109 
IECITE_HJT 0.072 0.186 0.000 0.000 3.159 
Panel B. Firm Characteristics Mean S.D. Min Median Max 

MV ($million) 9,915.675 27,000.000 10.942 2,565.004 500,000.000 

Sales ($million) 7,755.819 22,000.000 14.127 2,136.212 470,000.000 

Assets ($million) 8,978.073 23,000.000 52.242 2,412.499 480,000.000 

R&D ($million) 172.807 722.248 0.000 0.000 12,000.000 

R&D/Assets 0.027 0.047 0.000 0.000 0.341 

CapX/Assets 0.051 0.048 0.001 0.037 0.329 

PPE/Assets 0.291 0.229 0.002 0.218 0.883 

ROA 0.141 0.084 –0.644 0.134 0.432 

Leverage 0.223 0.166 0.000 0.220 0.927 

Cash/Assets 0.141 0.155 0.001 0.082 0.911 

Q 1.919 1.113 0.752 1.569 8.901 

HI 0.244 0.198 0.032 0.192 1.000 

Age 29.360 20.559 1.000 23.000 88.000 

Panel C. Governance Measures Mean S.D. Min Median Max 

Insider Ownership 0.026 0.059 0.000 0.006 0.393 

Equity/Pay 0.201 0.273 0.000 0.000 0.875 

G Index 9.357 2.458 4.000 9.000 15.000 

BCF Index 1.547 1.073 0.000 2.000 4.000 

Board Independence 0.746 0.141 0.308 0.778 0.923 
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Board Size 9.415 2.196 5.000 9.000 25.000 
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Table II (Continued) 
Panel D. New Product Innovation and DIV by Industry Prod 

 
 DIV 

(Fama-French 48 Industry) N Mean Median 
 

 Mean Median 

1 Agric: Agriculture 25 1.760 0.000   0.240 –1.000 

2 Food:  Food Products 304 1.539 0.000   0.095 0.000 

3 Soda:  Candy & Soda 34 0.441 0.000   0.765 1.000 

4 Beer:  Beer & Liquor 58 3.914 2.000   0.207 0.000 

5 Smoke: Tobacco Products 31 0.161 0.000   0.645 0.000 

6 Toys:  Recreation 78 4.538 3.000   0.192 0.000 

7 Fun:  Entertainment 88 1.375 0.000   0.318 0.000 

9 Hshld: Consumer Goods 84 6.286 2.000   0.143 0.000 

10 Clths: Apparel 114 0.430 0.000   0.333 0.000 

11 Hlth:  Healthcare 232 0.642 0.000   0.129 0.000 

12 MedEq: Medical Equipment 336 5.792 2.000   0.107 0.000 

16 Txtls: Textiles 30 0.633 0.000   0.333 0.000 

17 BldMt: Construction Materials 1,551 3.584 1.000   0.197 0.000 

18 Cnstr: Construction 209 0.766 0.000   –0.239 0.000 

19 Steel: Steel Works, Etc. 212 0.495 0.000   –0.524 –0.500 

20 FabPr: Fabricated Products 23 0.000 0.000   –0.609 –1.000 

21 Mach:  Machinery 538 1.725 0.000   –0.299 0.000 

22 ElcEq: Electrical Equipment 176 2.432 0.000   –0.386 0.000 

23 Autos: Automobiles and Trucks 51 0.941 0.000   –0.490 0.000 

24 Aero:  Aircraft 208 3.240 1.000   –0.216 0.000 

25 Ships: Shipbuilding, Railroad Equipment 107 4.570 0.000   –0.393 –1.000 

26 Guns:  Defense 25 0.320 0.000   –0.800 –1.000 

27 Gold:  Precious Metals 47 8.128 2.000   –0.723 –1.000 

28 Mines: Non-Metallic & Industrial Metal Mining 15 0.533 0.000   –1.000 –1.000 

29 Coal:  Coal 62 0.290 0.000   –0.081 0.000 

30 Oil:  Petroleum and Natural Gas 27 0.370 0.000   –0.185 0.000 

31 Util:  Utilities 514 1.109 0.000   –0.574 –1.000 

32 Telcm: Communication 950 0.140 0.000   –0.248 0.000 

33 PerSv: Personal Services 206 6.922 1.000   1.024 1.000 

34 BusSv: Business Services 113 0.159 0.000   –0.027 0.000 

35 Comps: Computers 1,199 6.642 2.000   0.280 0.000 

36 Chips: Electronic Equipment 420 12.845 11.000   0.517 0.000 

37 LabEq: Measuring and Control Equipment 874 12.531 9.000   –0.192 0.000 

38 Paper: Business Supplies 299 6.873 3.000   –0.027 0.000 

39 Boxes: Shipping Containers 240 2.467 0.000   –0.142 0.000 

40 Trans: Transportation 68 0.632 0.000   –0.412 0.000 

41 Whlsl: Wholesale 365 2.208 0.000   –0.230 0.000 

42 Rtail: Retail 429 1.242 0.000   –0.037 0.000 

43 Meals: Restaurants, Hotels, Motels 943 0.928 0.000   0.468 0.000 

44 Banks: Banking 257 1.525 0.000   0.385 0.000 

45 Insur: Insurance 4 0.500 0.500   0.250 0.500 
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46 RlEst: Real Estate 74 0.730 0.000   0.514 0.000 

48 Other: Almost Nothing 23 2.478 1.000   –0.174 0.000 
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Table III. The Effect of Diversity on Product Innovation 
The dependent variables are natural logarithms of one plus the annual number of new product announcements, 
Ln[(1+Prod), and of one plus the annual number of new product announcements divided by one plus R&D 
expenses, Ln[(1+Prod)/(1+R&D)]. All regressions contain firm and year fixed effects. All except binary variables 
are winsorized at the upper and lower 1% levels. Full variable definitions are provided in the Appendix. T-statistics 
are reported in parentheses. Standard errors are adjusted based on the Huber-White sandwich estimate of variances 
and are clustered by firm. *** indicates significance at the 1% level, ** 5%, and * 10%. 

Ln(1+Prod) Ln[(1+Prod)/(1+R&D)] 
DIV 0.0239*** 0.0187** 

(3.49) (2.34) 
Ln(mv)  0.0519** –0.2173*** 

(2.44) (–7.04) 
R&D/Assets  1.2635*** –7.0301*** 

(2.76) (–9.49) 
Ln(Sales/Employee) 0.0355 0.0397 

(0.95) (0.73) 
CapX/Assets –0.0047 –0.2591 

(–0.02) (–0.90) 
PPE/Assets –0.4259*** 0.0706 

(–2.82) (0.34) 
ROA 0.0606 –0.2133 

(0.43) (–1.23) 
Debt/Assets 0.1064 –0.3174*** 

(1.32) (–3.07) 
Cash/Assets –0.0191 0.3464*** 

(–0.18) (2.72) 
Q –0.0939*** 0.0729*** 

(–6.18) (3.98) 
SICC Herfindahl 0.3351 0.3405 

(1.29) (0.91) 
SICC Herfindahl2 –0.4275* –0.5010 

(–1.81) (–1.34) 
Ln(Age) –0.1166* –0.0760 

(–1.71) (–0.85) 
Insider Ownership –0.0872 0.0284 

(–0.35) (0.09) 
Equity/Total Pay –0.0074 0.0961* 

(–0.19) (1.92) 
G Index  0.0283 –0.0210 

(1.27) (–0.85) 
BCF Index –0.0360 0.0025 

(–0.93) (0.04) 
Board Independence  0.1005 0.2300** 

(1.32) (2.31) 
Board Size 0.0046 0.0046 

(0.75) (0.41) 
Constant 0.5288 0.4941 

(1.26) (0.97) 
Observations 11,636 11,636 
R-squared 0.156 0.104 
Firm and Year FE Yes Yes 
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Table IV. Addressing Causality: Change on Change Regressions Using Product Innovation 
Measures 
In Panel A, the dependent variables are changes in product innovative efficiency measures in year t. The 
independent variables are changes in net diversity strengths in year t-1, along with the changes in controls in year t-
1. Product innovative efficiency measures include the natural logarithms of one plus the annual number of new 
product announcements, Ln[(1+Prod), and of one plus the annual number of new product announcements divided 
by one plus R&D expenses, Ln[(1+Prod)/(1+R&D)]. In Panel B, the dependent variables are changes in net 
diversity strengths in year t. The independent variables are changes in product innovative efficiency measures in 
year t-1, and changes in controls in year t-1. Constants are omitted in Panel A, and controls are included but omitted 
in Panel B for brevity. All regressions contain year fixed effects. All except binary variables are winsorized at the 
upper and lower 1% levels. Full variable definitions are provided in the Appendix. T-statistics are reported in 
parentheses. Standard errors are adjusted based on the Huber-White sandwich estimate of variances and are 
clustered by firm. *** indicates significance at the 1% level, ** 5%, and * 10%. 
Panel A: Regressions of Change in Product Innovative Efficiency in Year t on Change in Diversity in Year t-

1 
Dep. Var. =  ΔLn(1+Prod)t ΔLn[(1+Prod)/(1+R&D)]t 
ΔDIVt-1  0.0187*** 0.0193*** 

(3.24) (3.14) 
ΔLn(mv)t-1 0.0628*** –0.0695*** 

(3.33) (–3.15) 
ΔR&D/Assetst-1 1.6662*** –7.8849*** 

(2.84) (–10.84) 
ΔLn(Sales/Employee)t-1 –0.0068 –0.0333 

(–0.18) (–0.78) 
ΔCapX/Assetst-1 –0.1403 –0.0933 

(–0.63) (–0.39) 
ΔPPE/Assetst-1 0.0391 0.3086* 

(0.24) (1.68) 
ΔROAt-1 0.1430 0.1058 

(1.07) (0.73) 
ΔDebt/Assetst-1 0.0731 –0.2354** 

(0.88) (–2.58) 
ΔCash/Assetst-1 0.0458 0.3345*** 

(0.50) (3.42) 
ΔQt-1 –0.0583*** 0.0022 

(–4.53) (0.15) 
ΔSICC Herfindahlt-1 –0.0141 0.0277 

(–0.06) (0.10) 
ΔSICC Herfindahl2t-1 –0.0032 –0.0334 

(–0.01) (–0.13) 
ΔLn(Age)t-1 –0.0878 –0.1995** 

(–1.11) (–2.09) 
ΔInsider Ownershipt-1 0.5624 0.5332 

(1.52) (1.37) 
ΔEquity/Total Payt-1 0.0479 0.0392 

(1.53) (1.21) 
ΔG–Indext-1 –0.0161 –0.0176 

(–1.01) (–1.00) 
ΔBCF Indext-1 0.0746*** 0.0579* 

(2.65) (1.90) 
ΔBoard Independencet-1 0.0416 0.0422 

(0.54) (0.52) 
ΔBoard Sizet-1 0.0038 0.0002 

(0.82) (0.04) 
Observations 9,958 9,958 
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R-squared 0.061 0.088 
Year FE Yes Yes 
 
Panel B: Regressions of Change in Diversity in Year t on Change in Product Innovative Efficiency in Year t-1 
Dependent Var. = ΔDIVt ΔLn(1+Prod)t-1 ΔLn[(1+Prod)/(1+R&D)]t-1 
ΔProd.t-1 –0.0032 0.0057 

(–0.13) (0.26) 

Observations 8,564 8,564 
R-squared 0.214 0.214 
Year FE Yes Yes 
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Table V. Financial Crisis Analysis 
The dependent variables are changes in product innovative efficiency measures in year t. The independent variables 
are changes in net diversity strengths in year t-1, along with the changes in controls in year t-1. Product innovative 
efficiency measures include the natural logarithms of one plus the annual number of new product announcements, 
Ln[(1+Prod), and of one plus the annual number of new product announcements divided by one plus R&D 
expenses, Ln[(1+Prod)/(1+R&D)]. Crisis is an indicator variable equal to one for years of 2008–2009 and of 2001–
2002, and zero otherwise. Constants are omitted for brevity. All regressions contain year fixed effects. All except 
binary variables are winsorized at the upper and lower 1% levels. Full variable definitions are provided in the 
Appendix. T-statistics are reported in parentheses. Standard errors are adjusted based on the Huber-White sandwich 
estimate of variances and are clustered by firm. *** indicates significance at the 1% level, ** 5%, and * 10%. 

ΔLn[(1+Prod)] ΔLn[(1+Prod)/(1+R&D)] 
Crisis –0.0617* –0.1296*** 

(–1.67) (–3.12) 
DIV 0.0109* 0.0128** 

(1.83) (2.06) 
Crisis*DIV 0.0704*** 0.0649*** 

(4.00) (3.08) 
Crisis*Ln(mv) 0.0002 0.0209 

(0.00) (0.42) 
Crisis*R&D/Assets –0.5756 1.4272 
 (–0.45) (1.00) 
Crisis*Ln(Sales/Employee) 0.0005 –0.0249 
 (0.01) (–0.23) 
Crisis*CapX/Assets –0.6093 –0.4250 
 (–1.05) (–0.70) 
Crisis*PPE/Assets 0.8643** 0.9848** 
 (2.15) (2.22) 
Crisis*ROA –0.4823 –0.5637 
 (–1.47) (–1.64) 
Crisis*Debt/Assets –0.0839 –0.1374 
 (–0.40) (–0.56) 
Crisis*Cash/Assets 0.5336** 0.6239** 
 (2.25) (2.42) 
Crisis*Q –0.1153*** –0.1563*** 
 (–4.47) (–5.30) 
Crisis*SICC Herfindahl 0.9145 0.7767 
 (1.17) (0.91) 
Crisis*SICC Herfindahl2 –0.7905 –0.7209 
 (–1.06) (–0.86) 
Crisis*Ln(Age) 0.4632 0.7909** 
 (1.34) (1.96) 
Crisis*Insider Ownership 2.2355* 2.7057* 
 (1.68) (1.91) 
Crisis*Equity/Total Pay –0.0575 –0.0786 
 (–0.65) (–0.84) 
Crisis*G Index –0.0490 –0.0714* 
 (–1.20) (–1.68) 
Crisis*BCF Index 0.0943 0.1566** 
 (1.31) (1.97) 
Crisis*Board Independence 0.2575 0.2774 
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 (1.35) (1.34) 
Crisis*Board Size –0.0031 –0.0014 
 (–0.25) (–0.10) 
Ln(mv)  0.0585*** –0.0812*** 

(2.72) (–3.27) 
R&D/Assets  1.7578*** –8.2177*** 

(2.67) (–10.43) 
Ln(Sales/Employee) –0.0058 –0.0273 

(–0.14) (–0.62) 
CapX/Assets –0.0150 –0.0048 

(–0.06) (–0.02) 
PPE/Assets –0.1237 0.1238 

(–0.71) (0.64) 
ROA 0.1875 0.1549 

(1.24) (0.98) 
Debt/Assets 0.0749 –0.2199** 

(0.82) (–2.16) 
Cash/Assets –0.0610 0.2081** 

(–0.62) (2.01) 
Q –0.0220 0.0519*** 

(–1.46) (3.10) 
SICC Herfindahl –0.1615 –0.0994 

(–0.63) (–0.34) 
SICC Herfindahl2 0.1261 0.0834 

(0.53) (0.30) 
Ln(Age) –0.1451 –0.3241*** 

(–1.64) (–3.10) 
Insider Ownership 0.2956 0.2001 

(0.74) (0.48) 
Equity/Total Pay 0.0546 0.0485 

(1.64) (1.42) 
G Index  –0.0019 0.0039 

(–0.10) (0.20) 
BCF Index 0.0487 0.0143 

(1.53) (0.44) 
Board Independence  –0.0093 –0.0152 

(–0.11) (–0.17) 
Board Size 0.0045 0.0006 

(0.90) (0.11) 
Observations 9,958 9,958 
R-squared 0.068 0.097 
Year FE Yes Yes 
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Table VI. California versus Non-California Firms 
The dependent variables are natural logarithms of one plus the annual number of new product announcements, Ln[(1+Prod), and of one plus the annual number 
of new product announcements divided by one plus R&D expenses, Ln[(1+Prod)/(1+R&D)]. All regressions contain firm and year fixed effects. All except 
binary variables are winsorized at the upper and lower 1% levels. Full variable definitions are provided in the Appendix. California (Non-California) firms are 
headquartered in (outside) the State of California. T-statistics are reported in parentheses. Standard errors are adjusted based on the Huber-White sandwich 
estimate of variances and are clustered by firm. *** indicates significance at the 1% level, ** 5%, and * 10%. 

California Firms Non-California Firms 
Ln(1+Prod) Ln[(1+Prod)/(1+R&D)] Ln(1+Prod) Ln[(1+Prod)/(1+R&D)] 

DIV 0.0471*** 0.0166 0.0201*** 0.0165* 
(3.02) (1.02) (2.68) (1.87) 

Ln(mv) 0.0126 –0.4109*** 0.0533** –0.1885*** 
(0.17) (–4.64) (2.43) (–5.76) 

R&D/Assets –0.1204 –5.4175*** 1.7137*** –8.0154*** 
(–0.12) (–4.20) (3.26) (–9.22) 

Ln(Sales/Employee) 0.1551 0.0110 0.0222 0.0471 
(1.07) (0.08) (0.59) (0.81) 

CapX/Assets –0.1860 –0.6304 0.0351 –0.3145 
(–0.33) (–0.71) (0.14) (–1.07) 

PPE/Assets 0.0055 –0.0827 –0.4801*** 0.1331 
(0.01) (–0.09) (–3.32) (0.62) 

ROA 0.0040 0.0668 0.0453 –0.2901 
(0.01) (0.14) (0.30) (–1.57) 

Debt/Assets 0.1415 –0.2742 0.0919 –0.3348*** 
(0.64) (–1.08) (1.06) (–3.00) 

Cash/Assets –0.0530 0.0189 –0.0072 0.3416** 
(–0.22) (0.07) (–0.06) (2.39) 

Q –0.0361 0.1474*** –0.0976*** 0.0584*** 
(–1.17) (4.26) (–5.58) (2.73) 

SICC Herfindahl 1.2573 0.2987 0.2547 0.3200 
(1.41) (0.32) (0.94) (0.80) 

SICC Herfindahl2 –1.0887 –0.4788 –0.3778 –0.4695 
(–1.40) (–0.55) (–1.53) (–1.18) 

Ln(Age) –0.0964 –0.1449 –0.1239* –0.0563 
(–0.43) (–0.60) (–1.71) (–0.60) 

Insider Ownership 1.0918 1.6505* –0.1570 –0.0733 
(1.41) (1.88) (–0.62) (–0.23) 

Equity/Total Pay 0.1418 0.2499* –0.0303 0.0668 
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(1.12) (1.77) (–0.76) (1.28) 
G Index 0.0427 0.0388 0.0237 –0.0289 

(0.56) (0.46) (1.04) (–1.18) 
BCF Index 0.0923 0.0841 –0.0365 0.0084 

(0.70) (0.66) (–0.93) (0.14) 
Board Independence –0.3151 0.0982 0.1450* 0.2422** 

(–1.03) (0.30) (1.85) (2.34) 
Board Size 0.0355* 0.0234 0.0020 0.0033 

(1.92) (1.09) (0.31) (0.28) 
Constant 0.2776 0.9877 0.6216 0.3376 

(0.21) (0.79) (1.42) (0.62) 
Observations 1,012 1,012 10,624 10,624 
R-squared 0.285 0.285 0.150 0.097 
Firm and Year FE  Yes Yes  Yes Yes 
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Table VII. Investigating the Mechanism: Cross-Sectional Heterogeneity 
This table reports coefficient estimates on net diversity policies (DIV) and the interactive term between DIV and a 
dummy variable indicating firms with high (or low) partitioning variable in year t (DIV*I) from the following 
regression: 
 

𝐼𝐸௉௥௢ௗ,௜,௧ାଵ = 𝛼௧ + 𝛾௜ + 𝛽ଵ𝐼௜,௧ + 𝛽ଶ𝐷𝐼𝑉௜,௧ + 𝛽ଷ𝐼௜,௧ ∗ 𝐷𝐼𝑉௜,௧ + 𝛿𝑋௜,௧ + 𝜀௜,௧ାଵ, 
 

where I refers to an indicator variable Ln(1+Prod)_H, PPE/Assets_H, Q_L, Ind Women Ratio_H, LEV/Assets_L, 
Cash/Assets_H, Q_H, and BCF_H as defined below; X contains all control variables, 𝛼௧ and 𝛾௜ are year and firm 
fixed effects, respectively. The dependent variables, IEProd,i,t+1 is one of the two new product innovation measures: 
the natural logarithms of one plus the annual number of new product announcements, Ln(1+Prod), and of one plus 
the annual number of new product announcements divided by one plus R&D expenses, Ln[(1+Prod)/(1+R&D)]. 
Ln(1+Prod)_H equals one (zero) if a firm has Ln(1+Prod) greater than (equal to) zero—i.e., having at least one 
(zero) annual new product announcement. PPE/Assets_H equals one (zero) if a firm has PPE/Assets ratio in (below) 
the top quartile. Q_L equals one (zero) if a firm has Tobin’s q in (above) the bottom quartile. Ind Women Ratio_H 
equals one (zero) if a firm’s industry proportion of women employees is in (below) the top quartile of the sample. 
LEV/Assets_L equals one (zero) if a firm’s Debt/Assets ratio is in (above) the bottom quartile of the sample. 
Cash/Assets_H equals one (zero) if a firm has Cash/Assets ratio in (below) the top quartile. BCF_H equals one 
(zero) if a firm has BCF Index in (below) the top quartile. All regressions contain firm and year fixed effects. All 
except binary variables are winsorized at the upper and lower 1% levels. Full variable definitions are provided in the 
Appendix. T-statistics are reported in parentheses. Standard errors are adjusted based on the Huber-White sandwich 
estimate of variances and are clustered by firm. *** indicates significance at the 1% level, ** 5%, and * 10%. 

Ln(1+Prod) Ln[(1+Prod)/(1+R&D)] 
Panel A: High New Product Innovation 
Ln(1+Prod)_H 1.0398*** 0.9304*** 
 (74.91) (47.52) 
DIV –0.0003 –0.0080 
 (–0.06) (–0.98) 
Ln(1+Prod)_H*DIV 0.0190** 0.0252** 

(2.19) (2.25) 
Panel B: High Fixed Assets (Low Intangible Assets) 
PPE/Assets_H –0.0020 –0.0704 
 (–0.05) (–1.49) 
DIV 0.0275*** –0.0042 
 (2.86) (–0.40) 
PPE/Assets_H*DIV 0.0052 –0.0325*** 
 (0.45) (–2.59) 
Panel C: Low Growth Opportunities  
Q_L –0.0377** –0.1069*** 
 (–2.03) (–4.50) 
DIV 0.0233*** 0.0250*** 
 (3.19) (2.84) 
Q_L * DIV 0.0028 –0.0239** 
 (0.26) (–2.09) 
Panel D:High Industry Women Ratio 
Ind Women Ratio_H –0.0830 –0.1394* 

(–1.02) (–1.66) 
DIV –0.0355 –0.0502* 

(–1.09) (–1.85) 
Ind Women Ratio_H * DIV –0.0618* –0.0712** 

(–1.84) (–2.52) 
Panel E: Low Leverage 
LEV/Assets_L –0.0239 0.0327 
 (–0.77) (0.96) 
DIV 0.0235*** 0.0140* 
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 (3.25) (1.69) 
LEV/Assets_L * DIV 0.0028 0.0376** 
 (0.19) (2.12) 
Panel F: High Free Cash Flow 
CASH/Assets_H –0.1047*** –0.0776** 
 (–3.22) (–2.32) 
DIV 0.0481*** 0.0570*** 
 (3.40) (3.41) 
CASH/Assets_H*DIV 0.0279* 0.0441*** 
 (1.95) (2.67) 
Panel G: High BCF Index (Weak Corporate Governance) 
BCF_H 0.0608 –0.0150 
 (0.90) (–0.18) 
DIV 0.0082 0.0068 
 (0.84) (0.55) 
BCF_H * DIV –0.0277** –0.0208 
 (–2.24) (–1.10) 
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Table VIII. Diversity, New Product Announcements, and Firm Value 
This table reports ordinary least squares regression results of the following equation: 
 

𝑄௜,௧ାଵ = 𝛽ଵ𝐼𝐸௉௥௢ௗ,௜,௧ + 𝛽ଶ𝐷𝐼𝑉௜,௧ିଵ + 𝛽ଷ𝐼𝐸௉௥௢ௗ,௜,௧ ∗ 𝐷𝐼𝑉௜,௧ିଵ + 𝛽ସ𝑋௜,௧ିଵ + 𝛾௜ + 𝛿௧+ 𝜀௜,௧ାଵ (2) 

where Qi,t+1 is the market-to-book ratio measured in time t+1 for firm i minus industry (the Fama-French 12 
industries) median Q, IEProd,i,t is one of the two new product innovation measures (defined below) in time t for 
firm i—used as the dependent variable in the previous sections. DIVi,t-1 is measured in time t-1 for firm i, and Xi,t-1 
contains the full set of controls at time t-1, 𝛾௜ is firm fixed effects, and 𝛿௧ is year fixed effects. New product 
innovation measures include the natural logarithms of one plus the annual number of new product 
announcements, Ln[(1+Prod), and of one plus the annual number of new product announcements divided by one 
plus R&D expenses, Ln[(1+Prod)/(1+R&D)]. The sample includes firm-years with at least one annual new 
product announcement made—i.e., excluding firm-years with zero Prod. All regressions contain firm and year 
fixed effects. All except binary variables are winsorized at the upper and lower 1% levels. Full variable 
definitions are provided in the Appendix. T-statistics are reported in parentheses. Standard errors are adjusted 
based on the Huber-White sandwich estimate of variances and are clustered by firm. *** indicates significance at 
the 1% level, ** 5%, and * 10%. 
Dep. Var. = Qt+1 Ln(1+Prod) Ln[(1+Prod)/(1+R&D)] 
Prod 0.0033 0.0384 
 (0.10) (1.16) 
DIV –0.0071 0.0029 
 (–0.28) (0.20) 
Prod * DIV –0.0049 0.0082** 
 (–0.51) (2.02) 
Ln(mv)  –0.2088*** –0.1955*** 
 (–3.99) (–3.43) 
R&D/Assets  1.0715 1.3060 
 (1.12) (1.28) 
Ln(Sales/Employee) 0.1453 0.1420 
 (1.16) (1.14) 
CapX/Assets –1.3039** –1.2914** 
 (–2.23) (–2.21) 
PPE/Assets –0.4750 –0.4721 
 (–1.21) (–1.21) 
ROA 0.5141 0.5412 
 (0.97) (1.02) 
Debt/Assets –0.3452** –0.3285* 
 (–1.98) (–1.90) 
Cash/Assets –0.3209 –0.3317 
 (–1.00) (–1.01) 
Q 0.2379*** 0.2327*** 
 (5.42) (5.22) 
SICC Herfindahl 0.1537 0.1573 
 (0.29) (0.30) 
SICC Herfindahl2 –0.2712 –0.2594 
 (–0.59) (–0.57) 
Ln(Age) –0.0631 –0.0522 
 (–0.37) (–0.31) 
Insider Ownership –0.3652 –0.3979 
 (–0.54) (–0.59) 
Equity/Total Pay 0.0936 0.0921 
 (1.08) (1.08) 
G Index  0.0227 0.0222 
 (0.54) (0.53) 
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BCF Index –0.0033 0.0049 
 (–0.05) (0.08) 
Board Independence  0.0282 0.0225 
 (0.12) (0.10) 
Board Size –0.0151 –0.0152 
 (–1.51) (–1.52) 
Constant 1.3154 0.2427 
 (1.09) (0.22) 
Observations 4,883 4,883 
R-squared 0.182 0.183 
Firm and Year FE Yes Yes 
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Table IX. Robustness Using Patent and Citation Innovative Efficiency Measures 
Panel A reports the baseline regressions of patent innovative efficiency measures on net diversity. The dependent 
variables are natural logarithms of one plus patent innovative efficiency (IE) (Models 1 and 2) and citation 
innovative efficiency (Models 3 and 4). In Models 1 and 3, the IE measures have been adjusted for the US Patent 
Office technology groups, while in Models 2 and 4, we use the Hall et al. (2001) technology classifications. Panel B 
reports causality by running changes on changes regressions. In Panel B-1, the dependent variables are changes in 
patent innovative efficiency (IE) (Models 1 and 2) and citation innovative efficiency (Models 3 and 4) in year t. The 
independent variables are changes in net diversity in year t-1, along with the changes in controls in year t-1. In Panel 
B-2, the dependent variables are changes in respectively net diversity in year t. The independent variables are 
changes in respectively the four innovative efficiency measures in year t-1, along with the changes in controls in 
year t-1. Panel B reports ordinary least squares regression results of the following equation: 
 

𝑄௜,௧ାଵ = 𝛽ଵ𝐼𝐸௜,௧ + 𝛽ଶ𝐷𝐼𝑉௜,௧ିଵ + 𝛽ଷ𝐼𝐸௜,௧ × 𝐷𝐼𝑉௜,௧ିଵ + 𝛽ସ𝑋௜,௧ିଵ + 𝛾௜ + 𝛿௧+ 𝜀௜,௧ାଵ (5) 

where Qi,t+1 is the market-to-book ratio measured in time t+1 for firm i minus industry (the Fama-French 12 
industries) median Q, IEi,t is the natural logarithm of one plus one of the four innovative efficiency measures in time 
t for firm i—used as the dependent variable in the previous sections, DIVi,t-1 is measured in time t-1 for firm i, and 
Xi,t-1 contains the full set of controls at time t-1, 𝛾௜ is firm fixed effects, and 𝛿௧ is year fixed effects. All control 
variables are included but omitted for brevity. All except binary variables are winsorized at the upper and lower 1% 
levels. Full variable definitions are provided in the Appendix. T-statistics are reported in parentheses. Standard 
errors are adjusted based on the Huber-White sandwich estimate of variances and are clustered by firm. *** 
indicates significance at the 1% level, ** 5%, and * 10%. 
Panel A: Baseline Regressions of Patent Innovative Efficiency on Net Diversity 
 Ln(1+IEPAT) Ln(1+IECITE) 
 USPTO HJT USPTO HJT 
DIV 0.0025*** 0.0006** 0.0065* 0.0066** 
 (2.66) (2.06) (1.88) (2.14) 
Firm and Year FE Yes Yes Yes Yes 
Observations 3,239 3,239 3,239 3,239 
R-squared 0.179 0.138 0.212 0.224 
Panel B: Addressing Causality: Change on Change Regressions 

Panel B-1: Regressions of Change in Innovative Efficiency in Year t on Change in Diversity in Year t-1 
 ΔLn(1+IEPAT)t ΔLn(1+IECITE)t 
Dependent Var. = IEt USPTO HJT USPTO HJT 
ΔDIVt-1 0.0016* 0.0004 0.0048 0.0053* 
 (1.65) (1.31) (1.29) (1.72) 
Observations 2,499 2,499 2,499 2,499 
R-squared 0.006 0.008 0.012 0.025 

Panel B-2: Regressions of Change in Diversity in Year t on Change in Innovation in Year t-1 
 Independent Variable 
 ΔLn(1+IEPAT)t-1 ΔLn(1+IECITE)t-1 
Dependent Var. = 
ΔDIVt USPTO HJT USPTO HJT 
ΔInnov. Eff.t-1 0.5906 2.1924 0.1561 0.0458 
 (0.83) (0.79) (1.00) (0.31) 
Observations 1,638 1,638 1,638 1,638 
R-squared 0.020 0.020 0.021 0.020 
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Panel C: Regressions of Firm Value on the Interaction of Diversity and Innovative Efficiency 
 Ln(1+IEPAT) Ln(1+IECITE) 
Dep. Var. = Qt+1 USPTO HJT USPTO HJT 
IE –0.8494 –2.3283 –0.1065 –0.0683 
 (–1.57) (–1.25) (–0.76) (–0.43) 
DIV –0.1135*** –0.1140*** –0.1120*** –0.1112*** 
 (–3.40) (–3.42) (–3.43) (–3.41) 
IE * DIV 1.0815* 3.7117** 0.2583* 0.2312 
 (1.90) (2.00) (1.67) (1.49) 
Firm and Year FE Yes Yes Yes Yes 
Observations 3,046 3,046 3,046 3,046 
R-squared 0.167 0.166 0.166 0.165 

 
 


