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Introduction 
 
Simulations of the n-player Prisoner’s Dilemma (PD) in 
populations consisting of multiple groups reveal that 
Simpson’s paradox (1951) can emerge in such game-
theoretic situations. In Simpson’s paradox, as manifest here, 
the relative proportion of cooperators can decrease in each 
separate group, while the proportion of cooperators in the 
total population can nonetheless increase, at least 
transiently. The increase of altruistic behavior exhibited in 
these simulations is not based on reciprocal altruism 
(Trivers 1971), as there are no strategies (e.g. Tit-for-Tat) 
conditional on other players’ past actions, nor does it 
depend on kin selection via inclusive fitness (Hamilton 
1964), as there are no genomes. This model is very general 
in that it can represent both biological and social non-zero 
sum situations in which utility (fitness) depends upon both 
individual and group behavior. The two parameters of the 
PD in this model, which determine the gain in individual 
utility for defection and the dependence of utility on 
collective cooperation, are respectively analogous to 
within-group and between-group selective forces in 
multilevel selection theory. This work is more fully 
described in Fletcher and Zwick (2000). 
 The notion that a system (group) does better when it 
achieves cooperation among its parts (individuals), often 
against the self-interest of those parts, goes beyond just 
biological systems undergoing natural selection. It is 
applicable to hierarchical systems across a variety of fields. 
The non-zero sum nature of aggregation is general and 
optimization by subsystems often results in sub-
optimization at a higher level. The PD is often used to model 
such non-zero sum situations. Like Simpson’s paradox, the 
PD involves an anomaly of composition: individually-
rational strategies, when aggregated, give a deficient 
collective outcome.  
 As Sober and Wilson (1998) have demonstrated, 
Simpson’s paradox (even if not always identified as such) is 
important in understanding multilevel selection. These 
authors show (pp. 18-26) that this paradox can be derived 
from simple fitness functions for altruists and non-altruists 
in two populations. These functions amount to an n-player 

PD (see Appendix A), although Sober and Wilson do not 
call attention to this fact. In this paper and in Fletcher and 
Zwick (2000), we make the connection between the PD and 
Simpson’s paradox explicit. Our main finding is that 
Simpson’s paradox emerges transiently, but for a wide 
range of PD parameter values, when a minimal group 
structure is imposed on an n-player PD. This result is 
produced in a model which involves an implicit competition 
between two groups and a simple n-player PD in each. The 
model is based on only two parameters which correlate with 
the within-group and between-group selection components 
in multilevel selection theory. 

N-Player Prisoner’s Dilemma 
The n-player PD offers a straightforward way of thinking 
about the tension between the individual and group levels 
of selection. In real-world biological and social systems the 
effects of cooperation or defection are often distributed 
diffusely to other members of a group, i.e., they do not 
necessarily arise via pair-wise interactions. When there is a 
common and finite resource, each individual benefits by 
using more than its share of that resource, but when all 
players apply this individual rationality it can lead to 
collective irrationality. For example, each country that fishes 
international waters can increase its utility by taking more 
of the fish in this common resource, but as more and more 
countries overfish, the common stock is depleted beyond 
where it can quickly replenish and so in subsequent years 
all have less. This leads to decreased utility for both 
countries that overfish (defectors) and those that don’t 
(cooperators).  
 An n-player PD involving the exploitation of a common 
resource (e.g., the fisheries example) is also known as the 
“tragedy of the commons” (Hardin 1968). A simple payoff 
scheme for such an n-player PD is illustrated by Figure 1. 
On the horizontal axis is the fraction of individuals 
cooperating for the common good. On the vertical axis is 
the average utility to each individual. For convenience, we 
assume a linear relationship between utility and percent 
cooperators. The upper line denotes the utility for a 
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defector (D) while the lower line is the utility for a 
cooperator (C). The defector’s line dominates the 
cooperator’s line, i.e., selfish individual behavior always 
has a higher utility than cooperating no matter what the 
fraction of cooperators. The resulting dynamic tends to 
decrease the number of cooperators within a group.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Utility lines for defectors and cooperators as a 
function of the fraction of cooperators for a simple n-player 
prisoner’s dilemma (PD). 
 
 The deficient outcome of the PD here inheres in the fact 
that the utility to defectors when there is a minimum number 
of cooperators (point A) is lower than the utility to 
cooperators when there is a maximum number of 
cooperators (point B). So even though for a given state of 
the system an individual benefits more by defection than 
cooperation, still cooperators in a group of cooperators get 
more benefit than defectors in a group of defectors.  
 The “tragedy” (and what makes this a PD) is that 
whatever the current state of the system, individual 
rationality or individual selection favors defection, which 
tends to drive the system to a (boundary) equilibrium state 
less beneficial to all (point A). This state is a non-Pareto 
optimal and irrational collective outcome. To summarize 
algebraically: UD(fC) > UC(fC) for all fC causes fC to decrease 
for all fC, but UC(1.0) > UD(0.0). The co-parallel lines used 
here are the simplest of many cooperator and defector 
utility curves that can satisfy these PD conditions. 
 Note that it may be tempting to think of cooperation as 
selfish rather than altruistic because a group of all 
cooperators gets more utility per individual than a group of 
all defectors, but this would be incorrect and misses the 
crux of the PD. In the 2-player PD, the players would be 
better off if they both cooperate, but defecting is still the 
rational individual strategy because the prisoners have no 
way to coordinate their actions and enforce any agreements 
to cooperate. Cooperating is always disadvantageous no 
matter what the other player does. So in the absence of 

guarantees of cooperation by other players, cooperating is 
truly altruistic—it lowers one’s individual utility (fitness) 
while raising the benefit to others. The same situation holds 
in the n-player game. Given the absence of coordination 
between players, each player is better off to defect, but 
benefits others by not doing so in that the system is kept at 
a state with a higher fraction of cooperators. Of course, this 
is the dynamic for a single set of players, or for a multi-
group system viewed at the intra-group level. As we shall 
see, at the higher level of organization, i.e. that of the total 
population which includes all groups, cooperators can 
thrive, at least for a while, despite their inferior individual 
utility (fitness). 

The Model 
In the simplest form of the model there are two groups with 
no migration between them. These groups initially are the 
same size and vary only in their fraction of cooperators and 
defectors. There are no other strategies besides always-
cooperate (C) and always-defect (D). We follow the 
percentage of cooperators in each group and across the 
whole population. In each group, the n-player PD (see 
Figure 1) is described by utility functions for cooperation 
and defection, which are dependent on the fraction of 
cooperators in each group, i.e.,  
 

UCi = m fCi + bC 

 
UDi = m fCi + bD 

 
where UCi and UDi are the utility for cooperators and 
defector respectively within a group i; m is the slope of 
both the defector and cooperator utility lines; fCi is the 
fraction of cooperators in group i; bC and bD are the 
intercepts for the cooperator’s utility line and the defector’s 
utility line respectively. 
 There are two parameters in these utility functions. The 
first is the slope of the utility lines, which for simplicity are 
linear and parallel. The slope of both lines affects the 
disparity in utility for groups of different composition and 
can be thought of as the magnitude of the group-level 
selective force. At this level groups containing mo re 
cooperators have the advantage. The second parameter is 
the difference in the intercept for the cooperator’s and 
defector’s utility lines. Because UC and UD have the same 
slope, the difference in intercepts is the vertical 
displacement between them at all levels of cooperation. For 
simplicity we always use bC = 0 so the difference is bD (≥ 0 
in our simulations). This disparity in utility for defectors vs. 
cooperators within a group can be thought of as the 
magnitude of the individual-level selective force within each 
group. At this level defectors have the advantage over 
cooperators.  
 From the fact that bC = 0, it follows that here the 
condition for a PD (e.g., point B above point A in Figure 1) 
is m > bD. In all runs reported in this paper this condition is 
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satisfied. 
 In this model, at each timestep the following action is 
implemented: Within each group the number of cooperators 
is increased in proportion to the cooperators’ utility based 
on the group’s composition. Similarly, the number of 
defectors is  increased in proportion to the defectors’ utility 
based on the group’s composition. Specifically, the 
increase of each strategy within a group equals the number 
of individuals utilizing the strategy times its utility payoff 
per individual: 
 

NCi(t+1) = NCi(t) + NCi(t) UCi 
 

NDi(t+1) = NDi(t) + NDi(t) UDi 
 

where NCi and NDi are the number of cooperators and 
defectors respectively in group i. To aid in comparisons 
among runs, the population of each group is proportionally 
scaled back (preserving the ratio of cooperators and 
defectors) so that the total population size matches the 
original total. Scaling does not do anything substantive. 
For convenience we also define NC = NC1 + NC2 and N1 = NC1 
+ ND1, and define ND and N2 similarly. All of our experiments 
included here involve two groups with initial conditions of 
90 defectors and 10 cooperators in group 1 and 90 
cooperators and 10 defectors in group 2, but similar results 
are obtained with other initial distributions. 
 Because the utility for defectors is always higher than 
that for cooperators, in the long run defectors will dominate 
both in each group and across the whole population. Yet 
while the percentage of cooperators decreases within each 
group, the overall percentage of cooperators in the whole 
population can increase. This effect is transient without 
mechanisms for reestablishing variation between groups. 
The effect depends upon initial conditions. Specifically, 
given that in our model N1 = N2 = NC = ND, the condition for 
Simpson’s paradox to emerge is:  
 

m / bD   >  Ni
2  / (NCi – NDi)

2 
 
where i = 1 or 2 (see Fletcher and Zwick, 2000, Appendix A). 
This equation also implies that m must be greater than bD, 
and thus the PD is a necessary (but not sufficient) 
condition for Simpson’s paradox. 

Experiments and Results 
We explore how combinations of our two parameters affect 
the magnitude and longevity of the Simpson’s paradox 
effect. Figure 2 shows the beginning of a typical run with 
two groups where Simpson’s paradox is evident. Here the 
slope of the utility lines are 0.01 and the intercept of the 
defectors’ line is 0.003. Notice that although the percentage 
of cooperators is decreasing in each group monotonically, 
the total percentage of cooperators is increasing until 
timestep 328. Run 1 in Table 1 shows the maximum total 
percent cooperators reached is 66.6% (initially 50%) for this 

same run. The overall increase in percent cooperation, 
despite decreasing within each group, is due to group 2 
(cooperator dominated) expanding, i.e. from 100.0 to 170.9 
players by the time the maximum is reached, while group 1 
(defector dominated) shrinks from 100.0 to 29.1 players. The 
percentage of cooperators in group 2 is continuously 
decreasing (see Figure 2) which after timestep 328 causes 
the overall percentage of cooperators to also decrease. By 
timestep 4,000 (not shown) the overall percentage of 
cooperators is essentially zero (< 0.01%). 
 
 
 

Figure 2. Percentage of cooperators in group 1, group 2, and 
total. (Results of Run1 in Table 1.) 
 

Run Slope Intercept Max 
% C 

Time at 
max 

1 0.01 0.003 66.6 328 
2 0.05 0.003 85.5 121 
3 0.01 0.001 82.4 520 
4 1.0 0.3 70.2 6 
5 0.0001 0.00003 66.6 32,501 
6 0.01 0.008 50.0 0 

 
Table 1. Results of various runs with varied slope and 
intercept.  
 
 Table 1 shows the results of several other runs with 
varying slope (m) and intercept (bD), but all with the same 
initial population sizes. Runs 2 and 3 show the effect of 
increasing the slope and decreasing the intercept 
respectively compared to Run 1. Both changes cause the 
maximum overall cooperation reached to increase, but the 
time it takes to reach these peaks is quite different. 
Increasing the slope in Run 2 causes group 2 to dominate 
sooner and the maximum cooperation is attained at timestep 
121 compared to timestep 328 in Run 1. Increasing the slope 
can be thought of as increasing between-group selection. 
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Decreasing the intercept in Run 3 on the other hand, 
decreases the advantage defectors have over cooperators 
within each group. This also causes the maximum level of 
cooperation reached to be higher than in Run 1 (82.4% vs. 
66.6%), but time to reach this peak is delayed to timestep 
520 as compared to timestep 328 in Run 1. Runs 4 and 5 
demonstrate that the Simpson’s paradox effect can be seen 
across a wide variety of slope and intercept values. Run 6 
demonstrates that a PD, i.e. m > bD, is not a sufficient 
condition for producing Simpson’s paradox. 

Conclusion 
The model described in this paper is simpler than models of 
reciprocal altruism based on the iterated 2-player and n-
player PD in that here there are no actions (e.g. Tit-for-Tat) 
conditioned on past behaviors of other players. It is also 
more abstract than inclusive fitness models in that there are 
no genomes. Although one could interpret the C and D 
strategies as alleles of a single gene and interpret these 
results in terms of inclusive fitness, this would obfuscate 
the tension between individual and group-level selective 
forces that our n-player PD model makes explicit.  
 Although the n-player PD has been utilized in studies of 
reciprocal altruism (see Boyd and Richerson 1988, Joshi 
1987, Motro 1991), its centrality to multilevel selection has 
not, to the best of our knowledge, been explicitly 
acknowledged. An overall increase of altruism (in the n-
player PD) merely requires a suitable higher level of 
organization and appropriate PD parameters values. This is 
consistent with multilevel selection theory. Increasing the 
slope (group selection parameter) increases the disparity 
between group size such that the cooperator-dominated 
group increases and this accounts for the overall increase 
in cooperators. Decreasing the intercept (individual 
selection parameter) causes cooperators within each group 
to be sustained longer and therefore also contributes to an 
increase in overall cooperators. This simple model lets us 
tease out the within-group and between-group components 
of utility (fitness) and is applicable to both biological and 
social systems in which there is competition at multiple 
levels. 

Appendix A 
Sober and Wilson’s fitness functions (1998, p. 20) are: 
 

WA = X – c + [b(np – 1)/(n-1)] 
 

WS = X + [b(np)/(n-1)] 
 
where WA and WS are the fitness of altruists and non-
altruists respectively; X is the base fitness; c is the cost to 
cooperators for providing benefit b (which is distributed to 
all n group members besides themselves); and p is the 
fraction of altruists in the group. 

 In our model we assume the benefit a cooperator 
produces is distributed evenly to all group members, 
including the cooperator. This is consistent with many 
forms of altruism that contribute to the common fitness of a 
group and is not significantly different from the model used 
by Sober and Wilson, especially for reasonably large n. 
Using this assumption, Sober and Wilson’s equations 
become: 

WA = X – c + bp 
 

WS = X + bp 
 
 It is easy to see that these equations represent the same 
n-player PD as in our model where, UC = WA; UD = WS; fC = 
p; m = b; bC = X – c; and bD = X. Note that the difference in 
the intercept (bD - bC) = c is the cost to an individual 
cooperator, and the benefit produced by a cooperator is m, 
which corresponds to the group-level selective force. 
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