Eagle Creek Post Fire Erosion Hazard Analysis Using the WEPP Model

John Rogers & Lauren McKinney

Columbia River Gorge at Risk: Using LiDAR and GIS-based predictive modeling for regional-scale erosion susceptibility and hazard assessment in the wake of the Eagle Creek Fire, Oregon John Rogers and Lauren McKinney

Portland State University Dept. of Geography

The Columbia River Gorge National Scenic Area is a federally protected area a section of the canyon where the Columbia River has carved through the Cascade Mountains, and is the largest national scenic area in the United States. The natural contrasts between desert and rainforest, sea level and alpine ecosystems, plateaus and massive cliffs, detail a unique natural environment showcasing how preservation has sustained biodiversity, hydrologic processes and , local economies and many more.

When the Eagle Creek Fire was reported on September 2nd,2017 near the town of Cascade Locks, Oregon, suppression began immediately as the persistent dry weather conditions, east winds and excessive heat caused by the fire quickly escalated the spread and burn severity, which would reach nearly 50,000 acres in just three days. Upon early October containment, major immediate safety concerns in the burn area arose such as the threat of landslides, rockslides and debris flow in the steep topography of the area, especially with anticipated heavy winter rainfall in the upcoming winter season.

The Burned Area Emergency Response team (BAER) released a soil burn severity analysis stating that in which is pertinent to slope stability after a severe forest fire. In some areas of this study area, much of the vegetation and underlying root systems that stabilize rocks, logs, soil, boulders, and ultimately entire hillsides, have been consumed by above and below ground fire, and as a result large debris will continue to fall in many areas. The relative risks of ecosystem and infrastructure damage associated with these conditions, especially erosion, are immense. Identifying areas of erosion susceptibility and risk assessment through the use of a LiDAR generated high resolution digital elevation model and predictive models will provide more detailed information for future risk reduction in hazard prone areas. Using the Water Erosion Prediction Project (WEPP) model approach for predicting post-fire erosion, this model will apply the characteristics and parameters of Eagle Creeks' regional landscape, soil composition, climate, and soil burn severity to model how much erosion we can reasonably expect in this next year. With this knowledge, we can identify at risk streams and trails, and plan to mitigate hazards accordingly.

ABSTRACT

TOPICS

BACKGROUND

- The Columbia Gorge
- The Eagle Creek Fire
- The BAER Team and Soil Burn Severity Maps

EROSION MODELING

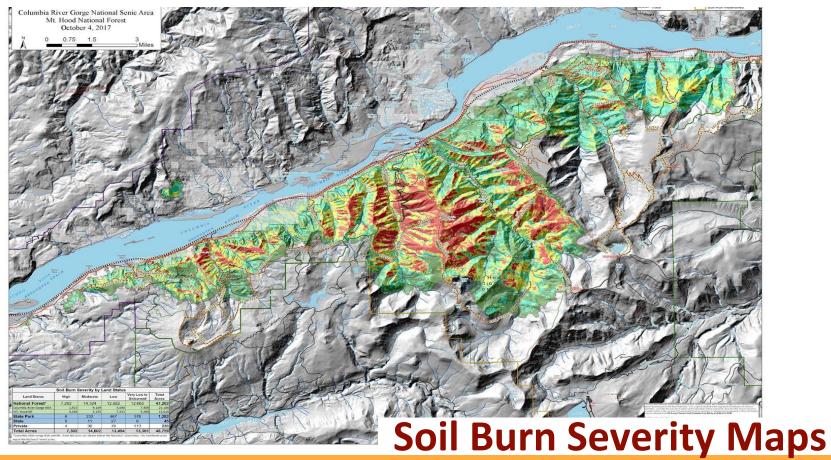
- The Water Erosion Prediction Program (WEPP)
- How to get WEPP data & How to use the tool
- Using WEPP to Model Erosion from the Eagle
 Creek fire

TRAIL AND STREAM DANGER

- Erosion Danger to Trail System and Streams
- Locations of Possible Post Fire Landslides
- Future Analysis Goals

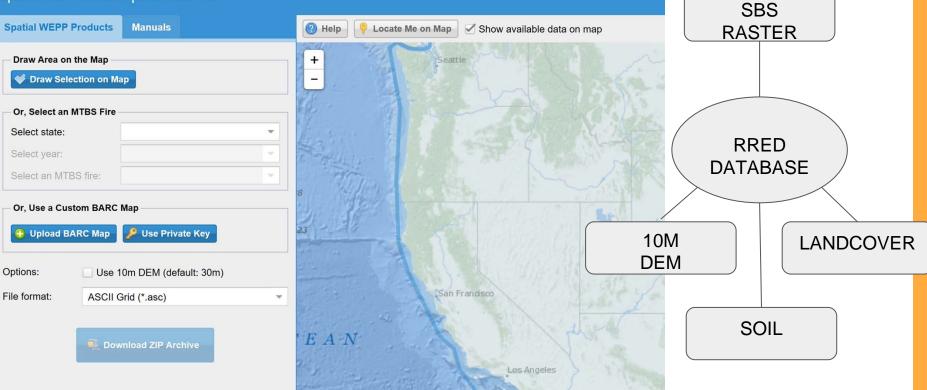
BACKGROUND: The Columbia Gorge

- Federally protected scenic area where the Columbia River carved through the Cascade Mountains
- Ecologically unique environment home to desert and rainforest, sea level and alpine ecosystems, plateaus and massive cliffs
- Preservation has sustained biodiversity, hydrologic processes, and local economies


BACKGROUND: The Eagle Creek Fire

- Eagle Creek Fire was reported on September 2nd,
 2017 near the town of Cascade Locks, Oregon
- Persistent dry weather conditions, east winds and excessive heat quickly escalated the fire spread and burn severity
- As of November 9th, the fire has consumed about 50,000 acres.

BACKGROUND: The BAER Team


The Water Erosion Prediction Project

WEPP INPUTS: REDD DATABASE

Rapid Response Erosion Database

Spatial WEPP Model Inputs Generator

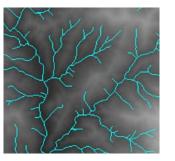
WEPP INPUTS: REDD DATABASE

Rapid Response Erosion Database

Spatial WEPP Model Inputs Generator

Start new GeoWEPP Project

This form allows for you to begin a new GeoWEPP project. The only required input in a digital elevation model in ASCII format. If you have a soil map and land cover map of the area of interest you may upload those file as well. Click on the text fields below to select files for processing.


Start Processing

Cancel

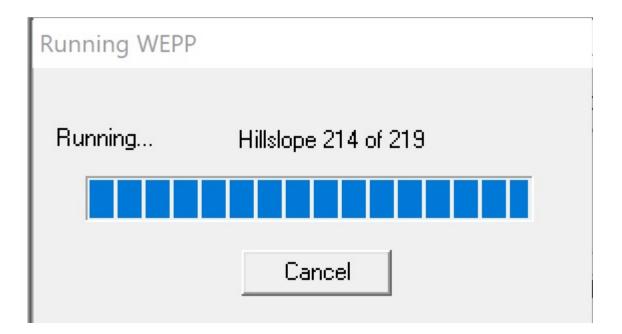
Required Inputs	
Provide a project name. No spaces! (required):	
my_project	
Add a DEM file in ASCII format (required):	
C:\GIS\DATA\593\Final\dem.asc Clear se	election
Soils Option	Land Cover Option
Do you want to add a soil files? If no, default files will be used. Yes	Do you want to add land cover files? If no, default files will be used.
O No	O No
ASCII C:\GIS\DATA\593\Final\landcov_bumed.asc Clear se	election ASCII C:\GIS\DATA\593\Final\soil_burned.asc Clear selection
Description C:\GIS\DATA\593\Final\landcov.txt Clear se	election Description C:\GIS\DATA\593\Final\soilsmap.txt Clear selection
Database C:\GIS\DATA\593\Final\landusedb.txt Clear se	election Database C:\GIS\DATA\593\Final\soilsdb.txt Clear selection

art new GeoWEPP Provect

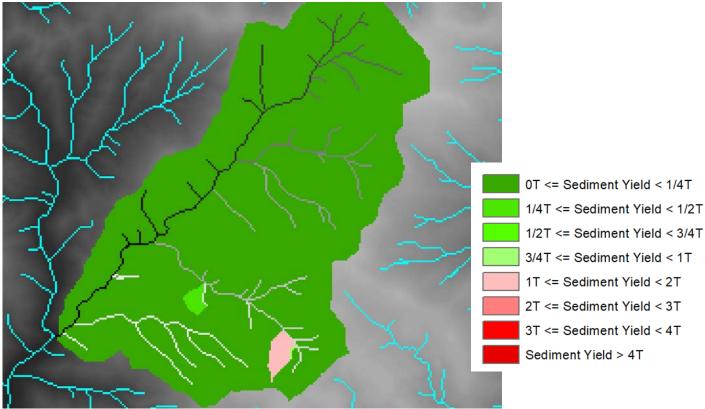
rechor	
Land Cover Option	
Do you want to add land cover lives? If no. defaul	A files will be used.
ASCII C-GG-DATA-550-Final act, burred as	Cearselector
Description C*G25*ZATA-593-Final acianap	the Concurrentian
Database [C=GIS: DXTA:550 Final actindu to	d Constantion
	Do you want to add land cover lives? If no. defau * Yes > No ASCR (C-GIS-DATA: 553 Final and Journed an exercise Denotation (C-GIS-DATA: 553 Final and Journed an exercise

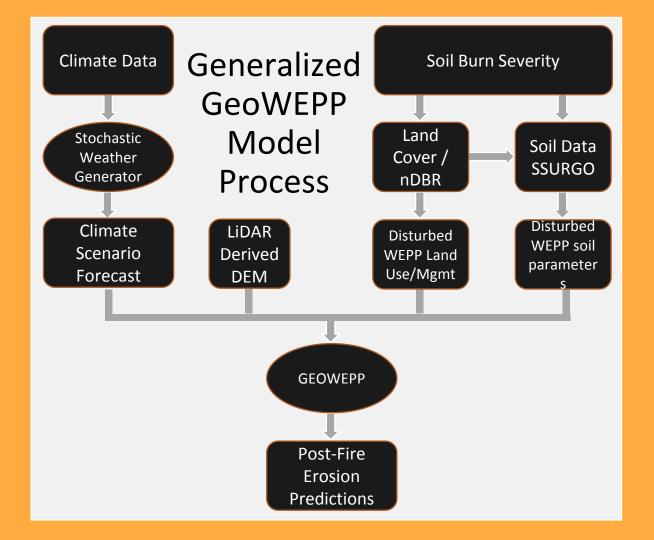
DELINEATED STREAMS

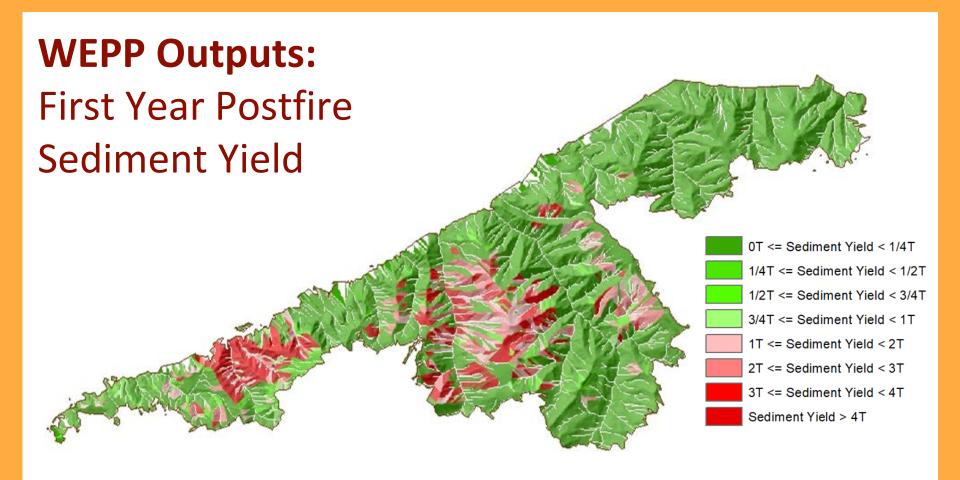
💎 🔺 PRISM 😂 🕑 🖋 🚸 🛈 📽 💞 🧇

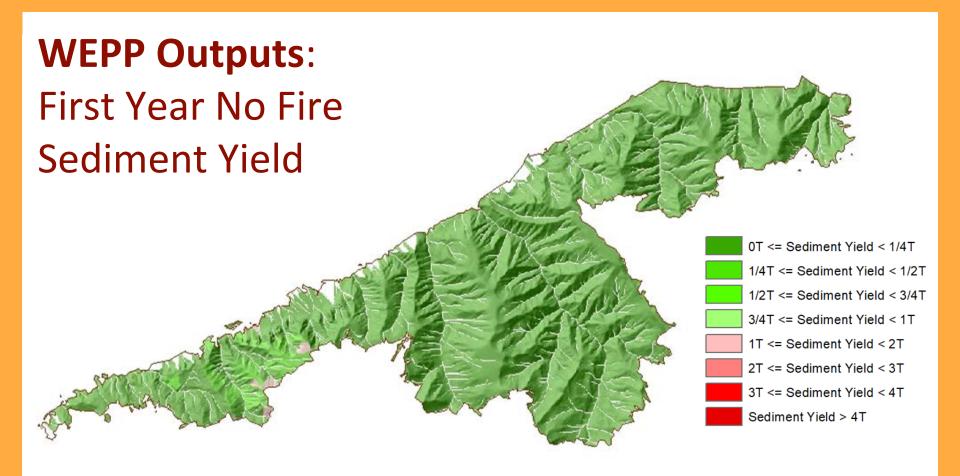

SUBCATCHMENTS

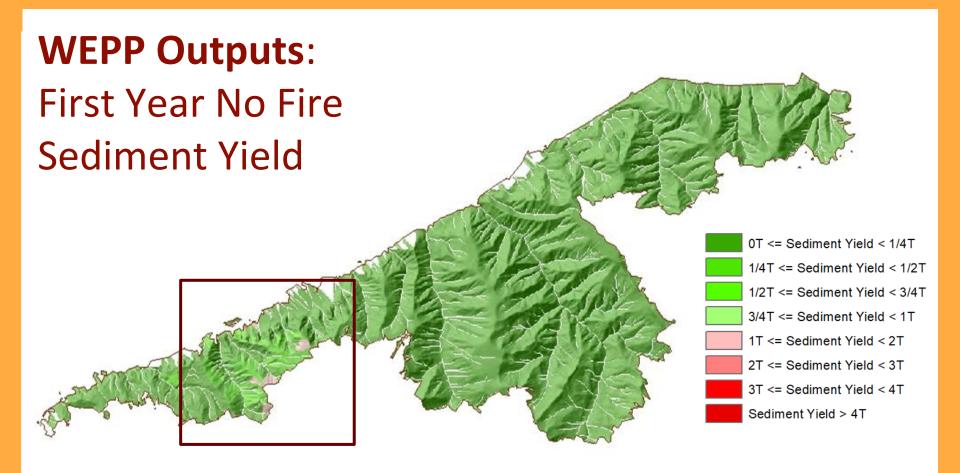
WEPP Clir	nate Selection			1					×
.atitude:	45.6931		Long	jitude:	-122.12	23			
State	Washington	• S	tation	BATTLE	GROUND	WA		•	
Based on the watershed outlet point chosen the selection above is the closest climate station for CLIGEN data which is used in WEPP simulations.									
listance to (Closest Station (r	illes): 20.4 (BAT	TLE GR	OUND W	4)				
Use Existin	g Climate File	Use Select	ed Static	on	Use Clos	sest Static	n	Cancel	1
Simulation	n Method	Watershed				-	E B	eturn Peri	iods
		,			_				
			Ru	n WEPI	2				


Name	Management	Soil	% of Area	
fill_303	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.2%	
Hill 332	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.1%	
fill 322	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.3%	
Hill 313	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.1%	
Hill_333	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.1%	
Hill 341	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.7%	
111_302	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.6%	
1ill 342	Forest\Disturbed WEPP Mana	DisturbedWepp KEY 0e30029	0.0%	
till_221	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.6%	
till 222	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	1.7%	
łill_323	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.4%	
4ill 343	Forest\Disturbed WEPP Mana	DisturbedWepp_KEY-0e30029	0.1%	
fill 292	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.2%	
fill 271	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.6%	
fill 282	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.4%	
lill 293	Forest\Disturbed WEPP Mana	DisturbedWepp KEY-0e30029	0.0%	
11 070	Construction in the distribution is	D'1 1 4/ KEV 0-20020	0.0%	

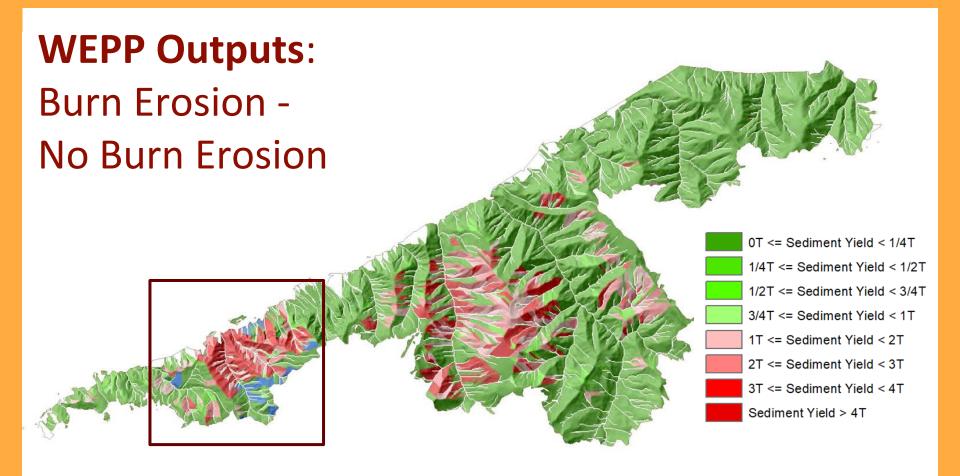

CHOOSE CLIMATE/ SIMULATION METHOD

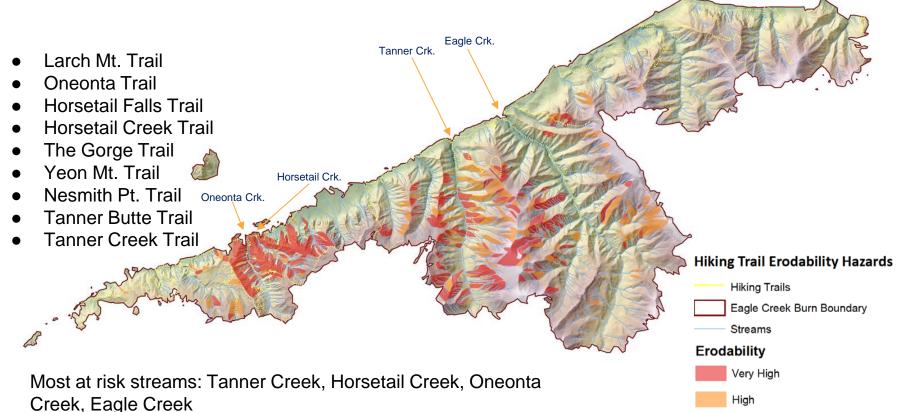




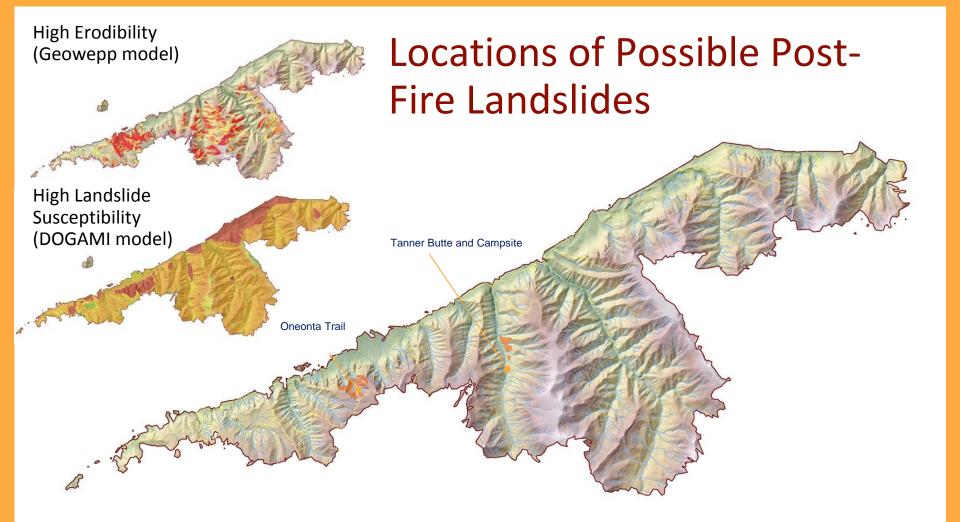


💎 🔺 PRISM 😂 🕑 🖋 🚸 🛈 📽 💞 🧇





Danger to Trail Systems and Streams



Trails in High/Very High Erosion Hazard Areas

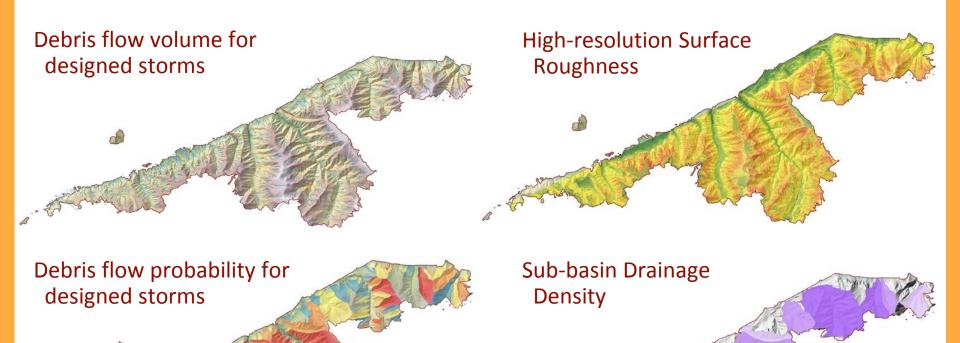
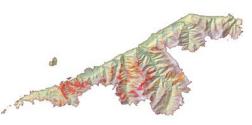


Table 1: Trails intersecting Highest Erosion areas, Trails within 50m of Highest Erosion, and Trail Intersection with Possible Landslide Areas

USFS Trail Name	Length in Highest Erosion Hazard (m)	Length Within 50m of High Erosion	Percentage of Trail Near High Erosion Hazard	Intersection w/ Landslide Hazard?
Larch Mountain	31 meters	594 meters	17%	Less Likely
Oneonta	1,624 meters	8,288 meters	1.5%	Likely
Horsetail Falls	1,150 meters	2,077 meters	100%	Less Likely
Gorge Trail	147 meters	3,193 meters	8.6%	Likely
Horsetail Creek	1,533 meters	7,976 meters	100%	Likely
Yeon Mt.	171 meters	178 meters	96%	Less Likely
Nesmith Point	206 meters	5,076 meters	80%	Less Likely
Franklin Ridge	740 meters	3,516 meters	100%	Likely
Tanner Butte	686 meters	4,457 meters	99%	Less Likely
Tanner Creek	144 meters	611 meters	83%	Likely

Future Analysis Goals:

Conclusions:


WEPP

- WEPP model is a somewhat easy to use tool for modeling erosion (fire based or otherwise).
- According to this model, Eagle Creek's post fire erosion will be significant. We will compare real world data with the outputs when it is available.

Trail/Stream Danger

- According to our model, certain trails have high risk of erosion. These include the Larch Mt. trail, Oneonta trail, and others.
- Overlaying the erosion model with DOGAMI's landslide model shows areas that could have especially high likelihood of landslides.

Continued Analysis:

- These models might be improved upon by including other inputs.
- The PSU and PCC GIS clubs are interested in studying the Eagle Creek Fire burn hazards, effects, and mitigations. If you are interested please contact us!

REFERENCES:

Burns, Scott. PhD in Geology, landslide expert. Portland State University. 2017.

Metro Pilot LiDAR Project. Portland, Oregon 2004. Bare Earth LiDAR DEM.

Mary Ellen Miller, Ph.D, Michigan Tech Research Institute. *Predicting post-fire hillslope erosion for the Eagle Creek fire, OR.* September, 29th, 2017.

Oregon Geospatial Data Library.

Oregon Department of Geology and Mineral Industries (DOGAMI), 2015.

Oregon Geologic Data Compilation, 2015.

Oregon SSURGO STATSGO Soils Compilation, 2016.

Pellicani et al, 2017. GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors.

Holtz, Andres. PhD in Geography, Fire ecology expert. Portland State University. 2017.

USGS, National Map 10 meter DEM.