Determining Optimal Sites for Bioswales in the Richmond Neighborhood, Portland, Oregon

Amy Goodwin and Dolores Weisbaum
GEOG 493/593 - Fall 2012

Impervious Surfaces

- Comprise large percent of urban surface areas
- Increase stormwater runoff
- Increase peak discharge
- Increase pollutant loading and transportation of sediments
- Increase temperature of outflow
Bioswales

- Landscape features designed to collect and partially treat stormwater runoff
- Bioretention of pollutants and sediment from stormwater by substrate and plants
- Mitigates pollutant loading
- Recharges groundwater

Project Overview

Drainage Analysis
- Neighborhood selected at random
- Richmond (southeast Portland)

Criteria for Site Selection
- Slope < 2 degrees
- Land cover consists of shrubs or dirt
- Areas with multiple drainage points

Model Validation
- Use existing bioswales
Methods

• ESRI ArcGIS 10.1
• Raster cell size: 3 x 3 ft
• Projection: NAD 1983 HARN StatePlane Oregon North FIPS 3601 Feet Intl

<table>
<thead>
<tr>
<th>Data Layer</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Cover</td>
<td>Metro</td>
</tr>
<tr>
<td>Digital Elevation Model (DEM) Grid</td>
<td>Center for Spatial Analysis and Research</td>
</tr>
<tr>
<td>Buildings, Neighborhood, Taxlot, Orthophotos</td>
<td>RLIS</td>
</tr>
</tbody>
</table>

Methods

• Manipulate DEM using the Con Tool and Raster Calculator
 • Added average building heights to DEM
 • Digitized sewer inlets using Portland Maps and orthophotos
 • Inlet = -100

• Drainage Line, Drainage Points, and Catchments
 • ArcHydro 10.1 Beta

• Site Selection
 • Weighted Overlay and Kernel Density
DEM Manipulation

Basic Deranged Terrain Processing Workflow

- DEM grid
- Sink Evaluation
- Sink Polygon
- Fill Sinks
- HydroDEM Grid
- Flow Direction with Sinks
- Flow Direction Grid
- Flow Accumulation
- Flow Accumulation Grid
- Stream Definition
- Stream Grid
- Stream Segmentation
- Stream Segmentation Grid
- Catchment Grid Delineation
- Catchment Grid
- Catchment Polygon Processing
- Catchment Polygon Grid
- Drainage Line Processing
- Drainage Line Grid
- Adjoint Catchment Processing
- Adjoint Catchment Grid
- Drainage Point Processing
- Drainage Point Processing Grid
- Longest Flow Path for Catchments
- Longest Flow Path Grid
Drainage Lines

Catchments and Longest Flow Path
Drainage Points

Site Selection

- **Kernel Density**
 - Density of drainage points

- **Weighted Overlay**
 - Slope, landcover, and longest flow path
 - Removed taxlots from above layers
Site Selection - Kernel Density

- Site Selection
- Kernel Density

Weighted Overlay

- Slope
- Land Cover
- Flow Path
- Dissolved Flow Path
- Feature to Raster
- Reclassify
- Reclassified Slope Raster
- Reclassified Land Cover Raster
- Reclassified Flow Path
- Weight Overlay

* Slope = 25%
Land Cover = 50%
Flow Path = 25%
Site Selection - Weighted Overlay

Model Validation

- Digitized bioswale inlet points and area
- Bioswale inlet points and polygons fell along longest flow path
- Bioswales located near areas with a high density of drainage points
Model Evaluation - Kernel Density

Model Evaluation - Weighted Overlay
Model Evaluation - Weighted Overlay

12/6/2012

Model Evaluation

- Weighted Overlay

- Model is fairly accurate in locating sites
 - Only 4 out of 50 bioswales did not fall along a flow path
 - Kernel density is a good way to identify sites
 - Weighted overlay was a weak indicator for a bioswale placement

- Areas for improvement
 - Watershed scale instead of neighborhood
 - Inlet layer from City of Portland
 - On-site validation

Conclusions
Acknowledgements

• Erik Strandhagen – Integral Consulting Inc.
• Jake McDonald – U.S. Army Corps of Engineers; ASPRS
• Mary Bushman – City of Portland-Bureau of Environmental Science
• Geoffrey Duh – Portland State University

Questions?