Canyon Creek, Oregon: 3D Terrain Visualization and Data Preprocessing for Dam Break Analysis Using HEC-RAS

Zoe Bonak and Eric Speakman Digital Terrain Analysis (GEOG 593) 1 December 2011

Study Area

Canyon Creek Meadows Dam: Background

- Built 1963
- Owned and operated by Oregon Department of Fish and Wildlife (ODFW)
- Rockfill (earthen) construction
- Recreational purpose
- "High risk" classification
 - Failure of the dam would likely result in the loss of human life, significant property damage, and extensive environmental damage
 - Outlet gate left open since 1998 to prevent reservoir fill-up

Project Goals

- Process terrain and hydrography for dam failure simulation
 - "Unsteady flow" model
- Determine the downstream community impacts of dam-break flood
- Create 3D visualization of terrain and hydrography

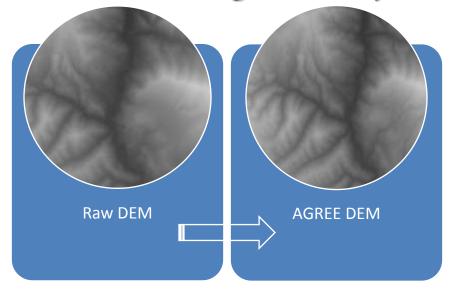
Data and Sources

Dataset	Source	Resolution	Year
Digital Elevation Model (DEM)	US Geological Survey (USGS)	30 meter GRID	1998
Hydrography	Pacific Northwest Hydrography Framework Group	1:24,000 vector	2006
Dams	Oregon Water Resources Department (ORWD)	1:24,000 vector	2010
Cities	Oregon Department of Transportation (ODOT)	1:24,000 vector	2010
Aerial Imagery	National Agriculture Imagery Program (NAIP)	1 meter	2011

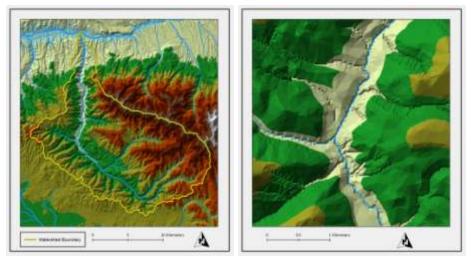
Projection: NAD 1983 UTM Zone 11

Software

- Enivronmental Systems Research Institute (ESRI)
 - ArcMap v. 10
 - ArcScene v. 10
 - ArcHydro plugin v. 2.0


esri

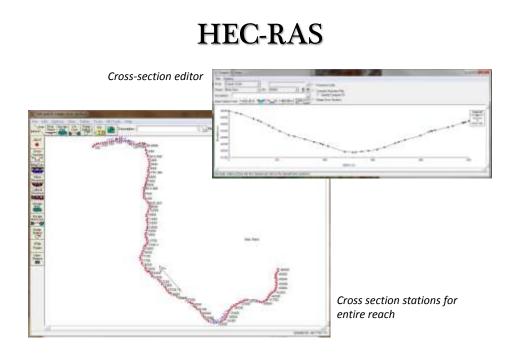
- US Army Corps of Engineers
 - Hydrologic Engineering Centers River Analysis System (HEC-RAS) v. 4.1.0
 - HEC-GeoRAS plugin for ArcMap v. 10


Project Workflow

ArcHydro	 DEM Processing and TIN creation Stream burning (AGREE method) Watershed delineation
HEC-GeoRAS	 Stream network (re-)delineation Cross-sections Storage areas
HEC-RAS	 Import RAS layers Attempt to run unsteady flow simulation Unsuccessful → missing some required data
ArcScene	 Aerial image overlay 3D visualization Flythrough animation

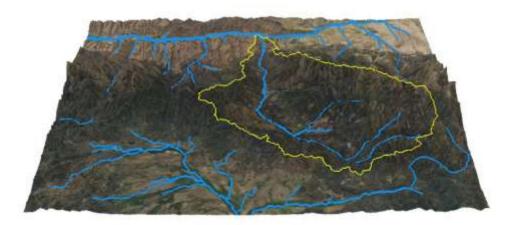
Terrain Processing with ArcHydro

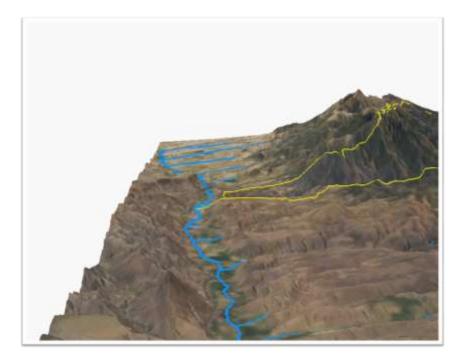
Terrain Processing with ArcHydro


For HEC-GeoRAS, re-digitized stream based on AGREE TIN

Terrain Processing with HEC-GeoRAS




- Cross sections inserted at ~400m intervals
 - Perpendicular to stream
 - Include floodplain area
 - Capture changes in hydrography



3D Visualization in ArcScene

3D Visualization in ArcScene

Limitations

- Low resolution DEM (30m) generalizes terrain
- Insufficient information on dam structure to run HEC-RAS
- No survey data to complement/confirm GIS data

Assumptions

- DEM and hydrography are spatially accurate
- All datasets have been through QA/QC processing
- AGREE DEM is an improvement on raw DEM in representing stream channels

References

- Ackerman, C. T. and G. W. Brunner. 2006. *Dam Failure Analysis Using HEC-RAS and HEC-GeoRAS*. Presented at the Third Federal Interagency Hydrologic Modeling Conference in Reno, NV.
- Brunner, G. W. 2010. *HEC-RAS River Analysis System User's Manual v. 4.1*. US Army Corps of Engineers, Hydrologic Engineering Center.
- Environmental Systems Research Institute (ESRI). 2009. Arc Hydro Tools Tutorial v. 1.3.
- Kraemer, C. and S. S. Panda. 2009. Automating ArcHydro for Watershed Delineation. Proceedings of the 2009 Georgia Water Resources Conference, University of Georgia.
- Merwade, V. 2010. *Tutorial on Using HEC-GeoRAS with ArcGIS 9.3.* School of Civil Engineering, Purdue University, IN.
- Meyer, S. and F. Olivera. 2007. *Floodplain Mapping & Hydraulic Analysis with HEC-GeoRAS* 4.1.1 and ArcGIS 9.1. Texas A&M University, Zachary Department of Civil Engineering.
- WEST Consultants, Inc. 2009. Canyon Creek Meadows Dam and Reservoir dam breach analysis draft appendix A: hydrologic analysis.
- Xiong, Y. (F.) 2011. A dam break analysis using HEC-RAS. *Journal of Water Resources and Protection* 3: 370-379.