Planning a GIS Project

Steps in a GIS Project

- Identify you objectives
- Create a project database
- Analyze the data
- Present the result

Identify Your Objectives

- Problem statement
 - Greenvalley is growing and needs a new wastewater treatment and recycling plant...
- Identify the spatial components in the problem statement
 - Siting or routing
 - Location-allocation
 - Spatial modeling (prediction)
 - System control and data acquisition (SCADA)
 - AM/FM

Regional Equity Atlas Project

(http://www.clfuture.org/projects/atlas/index_html)

- How fair is our regional development approach? How can we make it more fair?
 - Can workers in every community afford to live near their jobs?
 - Which communities have ample access to parks and natural areas?
 - What neighborhoods in our region lack access to grocery stores?
 - Which cities have sufficient resources to provide public services to residents?

What information do you need?

- Decision criteria
- Scenarios
- Assumptions/estimates
- Intended audience/users

Create a Project Database

- Designing
- Automating
- Managing

Criteria	DATASET	Attributes	
Less than 365 meters elevation	ELEVATION	Elevation in meters	
OUTSIDE THE FLOODPLAIN	FLOODPLAIN	N/A	
WITHIN 1,000 METERS OF THE RIVER	River	N/A	
At least 150 meters from residential property	Parcels	Land use	
At least 150 meters from parks	Parks	N/A	
On vacant land	Parcels	Land use	
WITHIN 1,000 METERS OF THE WASTEWATER JUNCTION	WASTEWATER JUNCTION	N/A	
WITHIN 50 METERS OF A ROAD	ROADS	N/A	
At least 150,000 sq meters	PARCELS	Area in square meters	

Hooray!

GIS Analysis

- Visualization
- Querying
 - Attribute querying
 - Location (spatial) querying
- Distance (Proximity)
- Overlay
- Modeling

GIS Tools (ArcGIS)

GIS Tools (ArcGIS)

GIS Tools (Others)

- Landscape pattern analysis FRAGSTATS
- Network analysis
 - ArcGIS Network Analyst Extension (http://www.esri.com/software/arcgis/extensions/networkanalyst/)
- Spatial statistical modeling
 - Spatial Statistics Toolbox for Matlab (http://www.spatial-statistics.com/software_index.htm)
 - S-Plus (http://lib.stat.cmu.edu/S/)
 - R (http://sal.agecon.uiuc.edu/csiss/Rgeo/)
 - Geoda (https://www.geoda.uiuc.edu/)
- Agent-based modeling
 - ArcGIS Agent Analyst Extension
 - Netlogo (<u>http://ccl.northwestern.edu/netlogo/</u>)

GIS Tools (Others)

- Optimization (?)
 - Multi-objective decision-making (IDRISI MOLA)
- Data mining (?)
- Geovisualization (?)
- Coupling with other models (?)

Where to get help?

- ArcGIS Online Help (I:\Students\Data\GIS\ArcGIS Documentation\ArcGIS9.1_documentation\ESRI_Library)
- ArcScripts (<u>http://arcscripts.esri.com/</u>)
- ESRI Developer Network (http://edn.esri.com/)

Software Installation

- Send requests to Geography Lab Manager, David Banis (<u>dbanis@pdx.edu</u>)
- · Provide a copy of or a link to the software
- Indicate which computers to have the software

ArcToolBox: Analysis

ArcToolBox

ArctoolBox is available from both ArcCatalog and ArcMap.

A toolbox can contain tools, toolsets, and scripts and is organized according to the collection of geoprocessing commands it contains.

A toolset can contain tools, toolsets, and scripts and is organized according to the geoprocessing commands it contains.

A script is a set of instructions usually stored in a file and interpreted, or compiled, at run time.

A model consists of one process or, more commonly, multiple processes strung together.

Scripts

S Pythonwn		
<u>File Edit View</u>	Iools Window Help	
D 📽 🗐 🕯	1 1 4 4 2 W 9 9 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
🔕 Interactiv	re Window 📃 🗖 🗙	
PythonWin	2.1 (#15, Apr 16 2001, 18:25:49) [MSC 32 bit (Intel)] on win32.	
Portions Co	ppyright 1994-2001 Mark Hammond (mhammond@skippinet.com.au) - see 'Help/About PythonWin'	
for further o	opyright information.	
>>> 6		
	a MultikingButter.py (read-only)	
	##	~
	## Tool Name: Multiple Ring Buffer	
	## Source Name: Multiringbuffer.py	
	## Version: ArcGIS 9.0	
	## Author: Environmental Systems Research Institute Inc.	
	## Required Argumuments: An input feature class or feature layer	
	## An output feature class	
	## Optional Assumption The same of the field to contain the distance values	
	## "pictonal Alguments. The hand of the default name	
	## Obtion to have the output dissolved, "All" is the default.	
	## which will dissolve all overlapping polygons. "None" will	
	## will maintain all overlaps.	
	## Description: Creates a set of buffers for the set of input features. The buffers	
	## are defined using a set of variable distances. The resulting feature	
	## class has the merged buffer polygons with or without overlapping	
	## polygons maintained as separate features.	
	##	
	Himport required modules	
	import emission.crient, emissapr, sys, os	
	#Greate the Geoprocessor Object	
	GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")	
	GP. Overwriteoutput = 1	
	#Define message constants so they may be translated easily	
	msgDist = "Distances must be provided in ascending size."	
	msgBuffRings = "Buffering ring "	
	msghergekings = "herging rings"	
	megaferor = "Firor in Nulti-ring Buffer function "	
	msgOutputError = "Output workspace is undefined. Please provide a full math."	
		×
		2
teady	NUM	00001 001

Toolsets

• Extract

- Overlay
- Proximity
- Statistics

Extract - clip

P Clip	•Clip
Input Features INPUT	have
Clip Features	geor
Output Feature Class	• Whe
	laye
CLIP FEATURE	the o
	featu the (
OUTPUT	3
OK Cancel Environments << Hide Help	~

- Clip features must have polygon geometry.
- When using ArcMap layers as input, only the currently selected features are used in the CLIP operation.

Extract - split

Extract - select

Extract - table select

Overlay Procedures (for all but spatial join tool)

- Determine the spatial reference for processing. All the input feature classes are projected (on the fly) into this spatial reference.
- Crack and cluster the features.
- Discover geometric relationships (overlap) between the input features and the overlap features.
- · Assign attributes based on the type of overlay.
- Remove features based on the combinations of attributes and overlay types.

Overlay - erase

Overlay - update

Overlay - union

Overlay - intersect

A Intersect	
Input Features	INPUT
Features Ra	INTERSECT
Output Feature Class JoinAttributes (optional)	FEATURE
Cluster Tolerance (optional) Urknown Output Type (optional) [NPUT	OUTPUT
DK Cancel Environments K Hide Hel	

Overlay – symmetrical difference

Overlay – Spatial Join

Spatial Join	
Output Feature Class	Match Option (optional)
Join Operation (optional)	Defines the criteria used to match rows. The match options are:
Prield Map of Join Features (optional) Field Map of Join Features (optional)	 INTERSECTS—Matches join features that intersect target features.
	 CONTAINS—Matches occur when a target feature contains a join feature. Points can't be set as target features and polygons can only be set as join features when the target features are also polygons.
Match Option (optional)	 IS_WITHIN—Target features within join features are matched. Points can't be set as join features and polygons can only be set as target features when the join features are also polygons.
Search Radus (optional) Distance Field Name (optional) V	CLOSEST- The Target features will be matched to the closest join feature
OK Cancel Environments << Hide Help	Tool Help

Proximity - buffer

Proximity – multiple ring buffer

S Multiple Ring Buffer			
Input Features		^	🖸 Help
			Distances
 Output Feature class 			A set of distances in increasing size
			Each distance defines a set of
Distances			polygon feature defines the area from
	+		the input feature and the distance being buffered.
			-
	<u> </u>		
	+		
Buffer Unit (optional)			
Default			
Field Name (optional)			
Discolve Option (optional)			
ALL T		~	
×	>		
OK. Cancel Environments <<	Hide Help		

Proximity - create Thiessen polygons

Proximity - point distance

Both input and near features (layers) must have point geometry.

Statistics – frequency

Statistics – summary statistics

