Raster Data Analysis

Raster Data Model

- Cells (Pixels)
- Cell value

- x, y cell sizes
- Geographic coordinates

Attributes
Raster to Vector / Vector to Raster

ArcGIS Spatial Analyst

- Mainly for raster data analysis
 - Arctoolbox: Spatial Analyst Tools
 - Spatial Analyst Toolbar
 - Raster Calculator
Raster Calculator

- Single-line map algebraic expression
- Multiple inputs in a single expression.
- Multiple Spatial Analyst tools in a single expression.

Raster Calculator Syntax

- Operators
 \[\text{inraster1} + \text{inraster2} \]

- Tools & Functions (tool names are case sensitive!)
 \[\text{Aspect("C:/Datat/inraster")} \]

- Tool parameters
 \[\text{Slope("dem", "PERCENT_RISE")} \]
Spatial Analyst Option Menu (ArcGIS 9.x)

Geoprocessing Environment Setting (ArcGIS 10)
Mask & Extent

Raster Calculator Functions

- Arcinfo Workstation / Arcdoc
- > 200 functions
Raster Operations

Local operation (majority) Focal operation (focalmajority) Zonal operation (zonalmajority)

Global operation (costdistance) Application functions

- Spatial Analyst Tools.tbx
 - Conditional
 - Density
 - Distance
 - Extraction
 - Generalization
 - Groundwater
 - Hydrology
 - Interpolation
 - Local
 - Cell Statistics
 - Combine
 - Equal To Frequency
 - Greater Than Frequency
 - Highest Position
 - Less Than Frequency
 - Lowest Position
 - Popularity
 - Rank
 - Map Algebra
 - Math
 - Multivariate
 - Neighborhood
 - Block Statistics
 - Filter
 - Focal Flow
 - Focal Statistics
 - Line Statistics
 - Point Statistics
 - Overlay
 - Raster Creation
 - Reclass
 - Solar Radiation
 - Surface

- Zonal
 - Tabulate Area
 - Zonal Fill
 - Zonal Geometry
 - Zonal Geometry as Table
 - Zonal Histogram
 - Zonal Statistics
 - Zonal Statistics as Table
Local Operator: Combine

\[
\begin{array}{c|c|c}
\text{Value} & \text{Count} & \text{Code} \\
0 & 1 & 2 \\
1 & 1 & 2 \\
2 & 0 & 2 \\
3 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{Value} & \text{Count} & \text{Type} \\
0 & 1 & \text{MIN} \\
1 & 4 & \text{MAX} \\
2 & 3 & \text{WMN} \\
3 & 3 & \text{SUM} \\
\end{array}
\quad
\begin{array}{c|c|c|c}
\text{Value} & \text{Count} & \text{InRas1} & \text{InRas2} \\
1 & 2 & 1 & 0 \\
2 & 1 & 1 & 0 \\
3 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 \\
\end{array}
\]

\[\text{Value - NoData}\]
Working with Nodata in RC

- **ISNULL**: convert Nodata to a value
- **SETNULL**: set cell value to Nodata
- **CON**: conditional function

Examples

- Replace Nodata with 0 in a DEM
 \[
 \text{con(isnull([dem]), 0, [dem])}
 \]

- Set slope > 15 to Nodata on the DEM
 \[
 \text{setnull([slope] > 15, [dem])}
 \]
ISNULL() Function

returns "1" if the input value is NODATA, and "0" if it is not, on a cell-by-cell basis within the analysis window.

ISNULL(<grid>)

Argument

<grid> - an input integer or floating-point grid, or an expression resulting in a grid.

Notes

- Input values can be positive or negative.
- The output value types are always integer. The values are either 0 or 1.
- Valid expressions include:
 - outgrid = isnull(grid1)
 - outgrid = isnull(grid1 * 0.5)
 - outgrid = isnull(grid1 * ingrid1)
 - outgrid = isnull(grid1 + ingrid2)
 - outgrid = isnull(sin(ingrid1) * 4) + (focalsum(ingrid2))

SETNULL() Function

returns NODATA if the evaluation of the input condition is 'TRUE', if it is 'FALSE', returns the value specified by the grid, scalar or number on a cell-by-cell basis within the analysis window.

SETNULL(<condition>, <grid | scalar | number>)

Arguments

- <condition> - input condition to be tested for Boolean 'TRUE' or 'FALSE'. The condition can be a relational expression of a single grid, scalar, number, or expression resulting in a single grid, scalar or number.
- <grid | scalar | number> - defines what the output value will be if the evaluation of the condition is FALSE. If no argument is specified, the output will retain NODATA. Unless the desired result is a grid containing all NODATA, it is advisable to specify an output for this argument.
 - grid - an input integer or floating-point grid, or an expression resulting in a grid.
 - scalar - the current value of the specified scalar variable.
 - number - any integer or floating-point value, or an expression resulting in a number.
CON() Function

CON() Function
Available at: GRID

<table>
<thead>
<tr>
<th>Usage</th>
<th>Notes</th>
<th>Discussion</th>
<th>Related Topics</th>
</tr>
</thead>
</table>

performs one or more conditional if/else evaluations on a cell-by-cell basis within the analysis window.

CON(<condition>, <true_expression>,
 [<condition>, <true_expression>], ...,
 [<condition>, <true_expression>], <false_expression>)

Arguments
- **<condition>** - any valid Boolean or relational expression involving multiple grids, scalars, numbers, or expressions.
- **<true_expression>** - the value or expression that will be used to compute the output value if the evaluation of the **<condition>** is TRUE. The input argument can be a grid, scalar or number, or any valid map algebra expression involving operators and functions that results in a valid input. Another CON function is valid input.
- **<false_expression>** - the value or expression that will be used to compute the output value if none of the evaluations of the conditions is TRUE. The input argument can be a grid, scalar or number, or any valid map algebra expression involving operators and functions that results in a valid input. Another CON function is valid input.

Raster Clip Example

Output A

Output B

Output C
Raster Clip
Raster Buffering

Point Features to Raster

- `Con(isnull(pointg), 0, 1)`
Implementing Ordered Weighted Average in ArcGIS

- Raster Calculator

r1 = rank(1, [factor1], [factor2], [factor3])
 r2 = rank(2, [factor1], [factor2], [factor3])
 r3 = rank(3, [factor1], [factor2], [factor3])
 owavg = [r1] * 0.5 + [r2] * 0.3 + [r3] * 0.2