
1/27/2011

1

* VB Data Structures ArrayList

* Queue, stack, and hashtable
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System
� Array (index by ordinal values) – not a collection

System.Collections
� Arraylist, Queue, and Stack (indexed by ordinal 

values, allows insertion and deletion)
� Hashtable (indexed by key values, allows 

insertion and deletion)

System.Collections.Generic
� List (indexed by ordinal values, allows insertion 

and deletion)
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� List of a specified type

List(Of String)
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� Sophisticated versions of an array

� Easier to use than an array

� The size of an Array is fixed (you need to resize it), 
whereas the capacity of an ArrayList or a List(Of T) 
is automatically expanded.

� ArrayList and List(Of T) provide methods that 
add, insert, or remove a range of elements.
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� You can set the lower bound of an Array, but the 
lower bound of an ArrayList or a List(Of  T) is always 
zero.

� An Array can have multiple dimensions, but an 
ArrayList or a List(Of  T) always has exactly one 
dimension.

� An Array of a specific type provides better 
performance than an ArrayList.
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� Represents a collection of key/value pairs that 

are organized based on the hash code of the key

� Allows users to look up values using keys

� The relationship between key and value could 

be:

� 1 to 1

� Many to 1 (many different keys point to the same 

value)
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� Edge
Public Structure Edge

Public ID As Integer
Public FromNode As Integer
Public ToNode As Integer
Public Length As Double

End Structure

� Neighbor
Public Structure Neighbor

Public NeighborID As Integer
Public Distance As Double

End Structure
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� Network
� networkEdges (bi-directional) – List (Of Edge) (Class level)
� networkNodes – array (Of Integer) (Class level)

� Solution
� DistanceTab – HashTable (Class level)
▪ Key: Node ID - Integer

▪ Value: Distance from origin node - Double

� RouteTab – HashTable (Class level)
▪ Key: toNode - Integer

▪ Value: fromNode – Integer

(from each toNode, you know where it’s from)

� Cursor/tracker
� unvisitedNodes – List (Of Integer) (procedure level)
� Neighbors – List (Of Neighbor) (procedure level)
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� Load network
� Read network from file

� Set the values of the edge and node lists

� Add nodes to the from/to comboboxes

� Textbox – display the file name
� From/to comboboxes – let users set the from 

and to nodes of the network
� Solve button – solve the shortest path problem
� Save Result button
� Cancel button - Me.Close()
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� Use notepad.exe to create a file containing 
the edge information. It looks something like:

1,1,2,5

2,2,3,8

3,1,4,6

4,2,6,8

…

� Use the code on next slide to set these values 
to the networkEdge list. Also on the slide is 
the code to extra nodes from edges.
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� Also, you can use the Sort method to sort your node list so 
that users can easily find a node on the comboboxes.
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� Items property – an object representing the 

collection of the items contained in the 

combobox.
ComoBox.Items.Add(item, key)

ComoBox.Items.Remove(index or key) – 0-based

ComoBox.Items.Clear()

ComoBox.Items(index)

� SelectedItem
ComoBox.SelectedItem = 2

Dim s As String = ComoBox.SelectedItem.ToString)
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� Initialize distance and route HashTables

� While there are unvisited nodes, do:
� Find the node with the smallest distance value

� Remove the node from the unvisited list

� Find the neighboring unvisited nodes

� For each neighbor:
▪ Assign distance to it if the new distance is smaller than its 

original value, meanwhile, update the route if an assignment 
occurs

� Repeat until all nodes are visited
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� Get the startNode and endNode values from the 

comboboxes (see the combobox slide) and then… see the 

pseudo code to complete the procedure.

28

… not finished yet!  You need to finish it.
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� When the calculation is done, you can use a MsgBox to show 

the result.

� The DistanceTab HashTable contains the shortest distance 

values from the startNode to all the other nodes on the 

network. You can use the endNode as a key to get the value 

out of DistanceTab.

� The RouteTab contains the shortest routes (i.e., a list of node 

IDs) between the startNode and other nodes in reversed 

order. You have to back track the table to find the shortest 

route from startNode to endNode.
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Key 

(toNode)

Value 

(fromNode)

12 9

11 9

10 9

9 7

8 6

7 4

6 4

5 2

4 1

3 2

2 1

1 Nothing
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1. How does the sample code implement an un-directed  network (i.e., 
with bi-directional edges) with the networkEdges data structure? 
How does it relate to the implementation of the GetNeighbors
function and the format of the input network file? (Hint: what would 
you do differently if there are one-way edges on the network?)

2. Complete the table below.
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startNode endNode Length Route (list the nodes)

1 12

3 7

10 1

4 5


