1/27/2011

System
= Array (index by ordinal values) — not a collection

System.Collections

= Arraylist, Queue, and Stack (indexed by ordinal
values, allows insertion and deletion)

= Hashtable (indexed by key values, allows
insertion and deletion)

System.Collections.Generic
= List (indexed by ordinal values, allows insertion
and deletion)

1/27/2011

= List of a specified type
List(Of String)

'declaration

Dim dinosaurs As New List (Of String)

'report capacity and count

Console.Writeline ("Dim Capacity: {0}, Count: {1i",
dinosaurs.Capacity, dinosaurs.Count)

dinosaurs.Add ("Tyrannosaurus™)
dinosaurs.Add ("Amargasaurus")
dinosaurs.2dd ("Mamenchisaurus™)
dinosaurs.Add{"Deinonychus"”
dinosaurs.Add ("Compsognathus™)

Console.Writeline ("Add Capacity: {0}, Count: {1i",
dinosaurs.Capacity, dinosaurs.Count)

'trimexcess

dinosaurs.TrimExzcess ()

Console.Writeline ("TrimExcess Capacity: {0}, Count: {1}",
dinosaurs.Capacity, dinosaurs.Count)

'clear

dinosaurs.Clear ()

Console.Writeline ("Clear Capacity: {0}, Count: {1",
dinosaurs.Capacity, dinosaurs.Count)

1/27/2011

'get list items

For i As Integer = 0 To dinosaurs.Count — 1
Console.WritelLine (dinosaurs(i))

Next

'Contalins

Console.WritelLine ("Contains (""Deinonychus™"): {0}", _
dinosaurs.Contains ("Deinonychus"))

'Insert (0-based index)
Console.WriteLine ("Insert (2, ""Compsognathus™")")
dinosaurs.Insert (2, "Compsognathus™)

For Each dinosaur As String In dinosaurs
Console.WritelLine (dinosaur)

Next
'Remove — they die again!
Console.WriteLine (vbLf & "Remove (""Compsognathus™")™)

dinosaurs.Remove ("Compsognathus™)
dinosaurs.Removelht (3)
dinosaurs.RemoveRange (0, dinosaurs.Count) 5

= Sophisticated versions of an array

= Easier to use than an array

» The size of an Array is fixed (you need to resize it),
whereas the capacity of an ArrayList or a List(Of T)
is automatically expanded.

= ArrayList and List(Of T) provide methods that
add, insert, or remove a range of elements.

1/27/2011

= You can set the lower bound of an Array, but the
lower bound of an ArrayList or a List(Of T) is always
zero.

= AnArray can have multiple dimensions, but an
ArrayList or a List(Of T) always has exactly one
dimension.

= An Array of a specific type provides better
performance than an ArrayList.

Public Sub ListgQueue ()

Dim numbers As New Queue (0f String)
'add items to gueue
numbers.Enqueue ("one™)
numbers.Engueue ("two")
numbers.Engueue ("three")

' A gueue can be enumerated without disturbing its contents.
For Each number As String In numbers

Console.Writeline (number)
Next

'Dequeuing... read the itme first inline in the gueue and remove it

Conscle.Writeline ("Degueuing '{0}'", numbers.Degueue(})

'Peek the gueue to see what's coming up next, without removing it

Console.Writeline ("Pecek next item to degueue: '{0}'", _
numbers.Peek ())

'Dequeuing... conce more

Conscle.Writeline ("Degueuing '{0}'", numbers.Degueue(})

' Create a copy of the gueue, using the ToArray method

Dim gueueCopy As New Queue (Of String) (numbers.ToRrray())
'Now you can degueue from the copy

Console.Writeline ("Degueuing '{0}'", gueueCopy.Degueue ()}
'Done with the copy

queueCopy.Clear ()

Conscle.Writeline ("gueueCopy.Count = {0}", gueueCopy.Count)

'trouble maker
queueCopy.Degueue ()
End Sub

End

Public Sub ListStack()

Dim myStack As New Stack()

' add items to Stack. —
'add items to queue

myStack.Push ("one")

myStack.Push ("two")

myStack.Push ("three")

' A stack can be enumerated without disturbing its contents.
For Each number As String In myStack

Console.WritelLine (number)
Next

'Popping... read the itme first inline in the stack and remove it

Console.WritelLine ("Popping '{0}'", myStack.Pop())

'Peek the gueue to see what's coming up next, without removing it

Console.Writeline ("Peek next item to pop: '"{0}'", _
myStack.Peek())

'Popping. .. once more

Console.WriteLine ("Popping '{0}'", myStack.Pop())

'Done with the stack

myStack.Clear ()

Console.Writeline ("mystack.Count = {0}", myStack.Count)
Sub

Represents a collection of key/value pairs that
are organized based on the hash code of the key

Allows users to look up values using keys

The relationship between key and value could
be:
=1to1

» Many to 1 (many different keys point to the same
value)

10

1/27/2011

1/27/2011

' Create a new hash table.
Dim openWith As New Hashtable ()

' Zdd some elements to the hash table. There are no

' duplicate kevys, but some of the values are duplicates.
openWith.2dd ("txt", "notepad.exe")

openWith.Add ("bmp™, "paint.exe")

openWith.Add ("dib", "paint.exe")

openWith.2dd ("rtf", "wordpad.exe")

' The 2Zdd method throws an exception if the new key is
' already in the hash takle.

Try

openWith.Add ("txt", "winword.exe")
Catch

Console.WritelLine ("An element with Rey = ""txt"" already exists.")
End Try

' Use the Remcve method to remove a key/value pair.
Consocle.WriteLine (vbLf + "Remove (""bmp"")")
openWith.Remove ("bmp")

If Not openWith.ContainsKey ("bmp") Then
Console.Writeline ("Eey ""bmp"" is not found.™)
End If

' The Item property is the default property, so you

' can omit its name when accessing elements.

Console.WriteLine ("For key = ""rtf"", walue = {0}.",
openWith ("rtf™))

' The default Item property can be used to change the walue

' associated with a key.

openWith ("rtf") = "winword.exe"

Console.WriteLine ("For key = ""rtf"", walue = {0}.",
cpenWith ("rtf™))

' If a key doss not exist, setting the default Item property
' for that key adds a new kevy/value pair.
openWith ("doc™) = "winword.exes"

1/27/2011

' ContainsKey can be used to test keys before inserting
' them.
If Not openWith.ContainsKey("ht") Then
openWith.2dd ("ht"™, "hypertrm.exe™)
Console . WriteLine ("Value added for key = ""ht""™: {0}:",
openWith ("ht™))

End If

' When you use foreach to enumerate hash table elements,
' the elements are retrieved as EKeyValuePair objects.
Console.WritelLine ()
For Each de As DictionarvEntry In openWith
Console . WritelLine ("RKey = {0}, Value = {1i",
de.Key, de.Value)
Next de

13

' To get the wvalues alone, use the Values property.
Dim walueColl As ICollection = openWith.Values

' The elements of the ValueCollection are strongly typed
' with the type that was specified for hash table wvalues.
Console.WriteLine ()
For Each s As String In valueColl

Console.WritelLine ("Value = {0}!", s)
Next s

' To get the keys alone, use the Keys property.
Dim keyColl As ICollection = openWith.Reys|

' The elements of the KeyCollection are strongly typed
' with the type that was specified for hash table keys.
Conscle.WritelLine ()
For Each s As String In keyColl

Console.WriteLine ("Key = {0}", s)
Next s

14

1/27/2011

= Edge
Public Structure Edge
Public ID As Integer
Public FromNode As Integer
Public ToNode As Integer
Public Length As Double
End Structure

= Neighbor
Public Structure Neighbor
Public NeighborlD As Integer
Public Distance As Double
End Structure

1/27/2011

= Network

» networkEdges (bi-directional) — List (Of Edge) (Class level)
» networkNodes—array (Of Integer) (Class level)

= Solution

= DistanceTab —HashTable (Class level)
= Key: Node ID - Integer
= Value: Distance from origin node - Double
= RouteTab —HashTable (Class level)
= Key: toNode - Integer
= Value: fromNode — Integer
(from each toNode, you know where it's from)

= Cursor/tracker
» unvisitedNodes — List (Of Integer) (procedure level)
» Neighbors — List (Of Neighbor) (procedure level)

17

o) Dijkstra Shortest Path

Load Network

I Solve] I Save Result] [Cancel

= | oad network
* Read network from file
» Set the values of the edge and node lists
* Add nodes to the from/to comboboxes

= Textbox — display the file name

» From/to comboboxes — let users set the from
and to nodes of the network

= Solve button —solve the shortest path problem

= Save Result button

= Cancel button - me.Close()

18

= Use notepad.exe to create a file containing
the edge information. It looks something like:
1,1,2,5
2,2,3,8
3,1,4,6
4,2,6,8

= Use the code on next slide to set these values
to the networkEdge list. Also on the slide is
the code to extra nodes from edges.

'do some erro handlfing here to make sure the data are correctly read

Dim fs As New StreamReader (networkFile, FileMode.Open)
Dim line As String
Dim stringArr As String()
Dim anEdge As New Edge

line = fs.ReadLine

Do While line IsNot Nothing
stringkrr = line.Split(",")
anEdge.ID = CInt(stringarr(0))
anEdge.FromNode = CInt(stringkrr(l))
anEdge.ToNode = CInt(stringirr(2))
anEdge.Length = CDbl(string&rr(3))
networkEdges.aAdd (anEdge)

'"implement undirectioned network
anFEdge.FromNode = CInt(stringirr(2))
anEdge.ToNode = CInt(stringRrr(l))
networkEdges.Add (anEdge)
line = fs.ReadLine

Loop

fs.Close ()

For Each edge As Edge In networkEdges

Next

If Not networkNodes.IndexOf (edge.FromNode) >= 0 Then networkNodes.Add(edge.FromNode)
If Not networkNodes.IndexOf (edge.ToNode) >= 0 Then networkNodes.Rdd (edge.ToNode)

20

1/27/2011

10

Private Sub DumpEdgeRecords ()
For Each edge As Edge In networkEdges
Console.WritelLine ("Edge {0} from ncde {1} to node {2}, length {3}", _
[edge] .ID, [edge].FromMNode, [edge].ToNode, [edge].Length)
Next
End Sub

= Also, you can use the Sort method to sort your node list so
that users can easily find a node on the comboboxes.

= [tems property —an object representing the
collection of the items contained in the

combobox.
ComoBox.Items.Add(item, key)
ComoBox.Items.Remove(index or key) — 0-based
ComoBox.Items.Clear()
ComoBox.Items(index)

= Selectedltem
ComoBox.Selectedlitem =2
Dim s As String = ComoBox.Selectedltem.ToString)

1/27/2011

11

» |nitialize distance and route HashTables

= While there are unvisited nodes, do:
* Find the node with the smallest distance value
* Remove the node from the unvisited list
* Find the neighboring unvisited nodes

* For each neighbor:

= Assign distance to it if the new distance is smaller than its
original value, meanwhile, update the route if an assignment
occurs

» Repeat until all nodes are visited

Private Sub InitScolwver (ByVal startNode As Integer)
'clear the hashtables
DistanceTab.Clear ()
RouteTab.Clear ()

For Each i As Integer In networkNodes
DistanceTab.Add (i, Double.MaxValus)
RouteTab.Add (i, Nothing)

Next

DistanceTab (startNode) = 0
End Sub

1/27/2011

12

'find the next unvisited node that has the shortest distance
Private

Function GetMinNode (ByRef unvisitedList As List (0f Integer)) As Integer
Dim minDistance As Double = Double.MaxValue
Dim minNeode As Integer = -1

For Each 1 As Integer In unvisitedList
If DistanceTab(i) < minDistance Then

minDistance = DistanceTab (i)
minNcde = 1
End If

Next

Return minNode
End Function

25

Private Function GetNeighbors (ByVal fromNode As Integer, _
ByVal unvisitedList As List (0f Integer)) As List (0f Neighbor)
Dim neighbors As New List (0f MNeighbor)
Dim aNeighbor As New Neighbor]

For Each netEdge As Edge In networkEdges
If netEdge.FromNode = fromNode And _
(unvisitedList.BinarySearch(netEdge.ToNode) >= 0) Then
aNeighbor.NeighborID = netEdge.ToNode
aNeighbor.Distance = netEdge.Length
neighbors.Add (aNeighbor)

'Console.WritelLine ("neighbor node: {0}, distance: {1}",

' aNeighbor.NeighborID, aNeighbor.Distance)
End If

Next

Return neighbors
End Function

26

1/27/2011

13

Private Sub AssignDistance (ByVal fromNode ZAs Integer,
ByWVal toNode As Integer, ByVal length As Double)

Dim newDistance As Double = DistanceTab (fromNode) + length
If DistanceTab (toNode) > newDistance Then

DistanceTab (toNode) = newDistance
EREouteTab (toNode) = fromNode
End If
End Sub

27

= Getthe startNode and endNode values from the
comboboxes (see the combobox slide) and then... see the
pseudo code to complete the procedure

'create a copy of the networkNodes

Dim unvisitedNodes Zs List (0f Integer) = networkNodes.ToList ()
Dim currentNode As Integer

Dim nodeNeighbors As List (Of Neighbor)

'initialize the nodegQueus and route
InitSolver (startNode)

While unvisitedNocdes.Count > 0
currentNode = GetMinNode (unvisitedNodes)
unvisitedNodes.Remove (currentNode)

... not finished yet! You need to finish it.

28

1/27/2011

14

1/27/2011

= When the calculation is done, you can use a MsgBox to show
the result.

= The DistanceTab HashTable contains the shortest distance
values from the startNode to all the other nodes on the
network.You can use the endNode as a key to get the value
out of DistanceTab.

= The RouteTab contains the shortest routes (i.e., a list of node
IDs) between the startNode and other nodes in reversed
order.You have to back track the table to find the shortest
route from startNode to endNode.

Key Value
(toNode) (fromNode)

12 9

11 9
10 9

9 7

8 6

7 4

6 4

5 2

4 1

3 2

2 1

1 Nothing o

15

1/27/2011

Priwvate Function BackTrackRoute (ByVal startNode As Integer, _
ByVal endNode As Integer) As String
Dim routeString As String = ""
Dim tempString As String = ""
Dim stringStack As New Stack()
Dim currentNode As Integer = endNode
Dim previousNode As Integer

Do
previcusNode = currentNode
currentNode = RouteTab (currentNode)
tempString = currentNode & " to " & previousNode & wbCrLf
stringStack.Push (tempString)
Loop While currentMode <> startNode

Do While stringStack.Count > 0
routeString = routeString & stringStack.Pop()
Loop

Return routeString
End Function
31

1. How does the sample code implement an un-directed network (i.e.,
with bi-directional edges) with the networkEdges data structure?
How does it relate to the implementation of the GetNeighbors
function and the format of the input network file? (Hint: what would
you do differently if there are one-way edges on the network?)

2. Complete the table below.

startNode | endNode Length Route (list the nodes)
1 12
3 7
10 1
4 5

32

16

