
1/27/2011

1

* VB Data Structures ArrayList

* Queue, stack, and hashtable

1

System
� Array (index by ordinal values) – not a collection

System.Collections
� Arraylist, Queue, and Stack (indexed by ordinal

values, allows insertion and deletion)
� Hashtable (indexed by key values, allows

insertion and deletion)

System.Collections.Generic
� List (indexed by ordinal values, allows insertion

and deletion)

2

1/27/2011

2

� List of a specified type

List(Of String)

3

4

1/27/2011

3

5

� Sophisticated versions of an array

� Easier to use than an array

� The size of an Array is fixed (you need to resize it),
whereas the capacity of an ArrayList or a List(Of T)
is automatically expanded.

� ArrayList and List(Of T) provide methods that
add, insert, or remove a range of elements.

6

1/27/2011

4

� You can set the lower bound of an Array, but the
lower bound of an ArrayList or a List(Of T) is always
zero.

� An Array can have multiple dimensions, but an
ArrayList or a List(Of T) always has exactly one
dimension.

� An Array of a specific type provides better
performance than an ArrayList.

7

8

1/27/2011

5

9

� Represents a collection of key/value pairs that

are organized based on the hash code of the key

� Allows users to look up values using keys

� The relationship between key and value could

be:

� 1 to 1

� Many to 1 (many different keys point to the same

value)

10

1/27/2011

6

11

12

1/27/2011

7

13

14

1/27/2011

8

15

� Edge
Public Structure Edge

Public ID As Integer
Public FromNode As Integer
Public ToNode As Integer
Public Length As Double

End Structure

� Neighbor
Public Structure Neighbor

Public NeighborID As Integer
Public Distance As Double

End Structure

16

1/27/2011

9

� Network
� networkEdges (bi-directional) – List (Of Edge) (Class level)
� networkNodes – array (Of Integer) (Class level)

� Solution
� DistanceTab – HashTable (Class level)
▪ Key: Node ID - Integer

▪ Value: Distance from origin node - Double

� RouteTab – HashTable (Class level)
▪ Key: toNode - Integer

▪ Value: fromNode – Integer

(from each toNode, you know where it’s from)

� Cursor/tracker
� unvisitedNodes – List (Of Integer) (procedure level)
� Neighbors – List (Of Neighbor) (procedure level)

17

� Load network
� Read network from file

� Set the values of the edge and node lists

� Add nodes to the from/to comboboxes

� Textbox – display the file name
� From/to comboboxes – let users set the from

and to nodes of the network
� Solve button – solve the shortest path problem
� Save Result button
� Cancel button - Me.Close()

18

1/27/2011

10

� Use notepad.exe to create a file containing
the edge information. It looks something like:

1,1,2,5

2,2,3,8

3,1,4,6

4,2,6,8

…

� Use the code on next slide to set these values
to the networkEdge list. Also on the slide is
the code to extra nodes from edges.

19

20

1/27/2011

11

� Also, you can use the Sort method to sort your node list so
that users can easily find a node on the comboboxes.

21

� Items property – an object representing the

collection of the items contained in the

combobox.
ComoBox.Items.Add(item, key)

ComoBox.Items.Remove(index or key) – 0-based

ComoBox.Items.Clear()

ComoBox.Items(index)

� SelectedItem
ComoBox.SelectedItem = 2

Dim s As String = ComoBox.SelectedItem.ToString)

22

1/27/2011

12

� Initialize distance and route HashTables

� While there are unvisited nodes, do:
� Find the node with the smallest distance value

� Remove the node from the unvisited list

� Find the neighboring unvisited nodes

� For each neighbor:
▪ Assign distance to it if the new distance is smaller than its

original value, meanwhile, update the route if an assignment
occurs

� Repeat until all nodes are visited

23

24

1/27/2011

13

25

26

1/27/2011

14

27

� Get the startNode and endNode values from the

comboboxes (see the combobox slide) and then… see the

pseudo code to complete the procedure.

28

… not finished yet! You need to finish it.

1/27/2011

15

� When the calculation is done, you can use a MsgBox to show

the result.

� The DistanceTab HashTable contains the shortest distance

values from the startNode to all the other nodes on the

network. You can use the endNode as a key to get the value

out of DistanceTab.

� The RouteTab contains the shortest routes (i.e., a list of node

IDs) between the startNode and other nodes in reversed

order. You have to back track the table to find the shortest

route from startNode to endNode.

29

Key

(toNode)

Value

(fromNode)

12 9

11 9

10 9

9 7

8 6

7 4

6 4

5 2

4 1

3 2

2 1

1 Nothing
30

1/27/2011

16

31

1. How does the sample code implement an un-directed network (i.e.,
with bi-directional edges) with the networkEdges data structure?
How does it relate to the implementation of the GetNeighbors
function and the format of the input network file? (Hint: what would
you do differently if there are one-way edges on the network?)

2. Complete the table below.

32

startNode endNode Length Route (list the nodes)

1 12

3 7

10 1

4 5

