Circle Area =
T X712

1/20/2011

Pts density = #pts / Area
When pts density holds constant,
then...

Given that:
Pl = AreaOfCircle,/AreaOfSquare,

We can generate random points in
arby rsquare and see how many
of them fall within a radius of r
from a corner of the square...

1/20/2011

» Class members
Constructors

= Properties
Methods
Inheritance (Inherits BaseClass)

Interfaces

» The base class of all classes in .NET

Methods
Name Description

o X Equals(Object) Determines whether the specified Object is equal to the
current Object.

s X Equals(Chject, Determines whether the specified object instances are

Object) considered equal.

A Finalize Allows an object to try to free resources and perform
other cleanup operations before it is reclaimed by
garbage collection.

@ X GetHashCode Serves as a hash function for a particular type.

4 X GetType Gets the Type of the current instance.

X MemberwiseClone | Creates a shallow copy of the current Object.

45 X ReferenceEquals Determines whether the specified Object instances are the
same instance.

% X ToString Returns a string that represents the current object.

1/20/2011

= objVariable vs. [object]

Option Strict On

[]Public Class Forml

= Private Sub Button2 Click(_
ByVal sender As System.Cbject, _
ByVal e As System.EwventArgs) Handles ButtonZ.Click
Dim objl As New ObJject
Dim obij2 As New Object
Debug.Print (CStr (objl.Equals (obj2)))
Debug.Print (CStr ([Object] .Equals (objl, objZ)))
obj2 = objl
Debug.Print (CStr (cbjl.Equals (ckbj2)))
Debug.Print (CStr ([Object] .Equals (objl, objZ)))

= End Sub

~End Class

= FRANK is a string — a collection of chars
n \\FII’IIRII’IIAII’IINII’IIKII are Chars

Stingcontents [F |R |A |N |K |nul | Null-terminator
ASClicodeinhex |46 |52 |41 |4E | 4B | o0

Index of string |0 |1 |2 |3 |4 OR Index out of range (RTE)

= Inheritance: System.Object
= Namespace: System.String
Imports System.String

= Properties

Public Sub StringProperties()
Dim strl As String = "Test”™
For ctr As Integer = 0 To strl.Length - 1
Console.Write(™4{0} {1} ", strl(ctr), strl.Chars(ctr))
Next
End Sub

Public Sub StringMethods ()
Dim strl As String = "1234567890"
Dim str2 As String = String.Concat (strl, "abede™, strl) 'concatenation

Dim indexfirst, indexlast As Integer

'find the index of first appearance of a char
indexfirst = str2.Index0f("3")

'find the index of the last appearance of a char
indexlast = str2.LastIndexOf("3")

Conscle.WriteLine _
("S first appears at index {0} and last appears at index {1}",
indexfirst, indexlast)

End Sub

1/20/2011

1/20/2011

Public Sub StringCompare ()

Dim lastName As String = "brown"

MsgBox (lastName.ToUpper) 'return “BROWN"”

MsgBox (String.Compare (lastName, "WHITE"™)) 'return -1

MsgBox (String.Compare (lastName.ToUpper, "BROWN")) 'return 0

MsgBox (String.Compare (lastName, "appricot", True)) 'return 1
End Sub

Public Sub StringIsNullOrEmpty ()
Dim strl As String = "abc”
Dim str2 As String = " "
Dim str3 As String = ""
Dim str4 As String = Nothing

Console.WritelLine ("strl is null or empty: {0}. Its length is {1}",
String.IsNullOrEmpty (strl), strl.Length)

Console.Writeline ("strZ is null or empty: {0}. Its length is {1i",
String.IsNullOrEmpty(strZ), str2.Length)

Console.WritelLine ("str3 is null or empty: {0}. Its length is {1}",
String.IsNullOrEmpty (str3), str3.Length)

Console.WritelLine ("str4 is null or empty: {0}. Its length is {1i",
String.IsNullOrEmpty (str4), str4.Length)

End Sub

1/20/2011

Public Sub StringInsert()

" "

Dim one As String one
Dim two As String = " two "

Dim three As String = " three "

Dim strl23 As String = String.Concat (one, three)

Console.WritelLine ("Original string: {0}", strl23)

'insert two into strilZ3
strl23 = strl23.Insert(strl23.IndexOf (three), two.Trim)

Console.Writeline ("Final string: {0}", strl23)
End Sub

Public Sub StringPadSplit ()

Dim strl As String = "abc”
Dim str2 As String = "abcdefg”
Dim str3 As String = "abcdefghijklmn”

'padding strings
Console.WritelLine (" PadLeft (10): {0}, {1}, {2}", _
strl.PadLeft (10), strZ2.PadLeft(10), str3.PadLeft (10))
Console.WriteLine ("PadRight (10): {0}, {1}, {2}", _
strl.PadRight (10), str2.PadRight(10), str3.PadRight(10))

'split strings
Dim strl23 As String = strl & "," & strZ & "," & sStr3
Console.WriteLine ("Before split: {0}", strl23)

'Dim strArray() As String

'strArray = strl23.8plit(",")

For Each i As String In strl23.S8plit(",")
Console.WritelLine (i)

Next
'substring
Console.WriteLine ("Substring after {0},{0}: " & _
strl23.Substring(strl23.Index0f(",") + 1), Chr(34))
End Sub

1/20/2011

Dim correctString As String = errString.Replace("docment", "document")

Public Sub StringRemove ()

Dim name As String = "Michelle Vioclet Banks"
Dim foundSl As Integer = name.IndexOf (" ")
Dim foundSZ2 As Integer = name.IndexOof (" ", foundsl + 1)

' remove the middle name, identified by finding

' the spaces in the middle of the name...
If foundsl »>= 0 And foundsl <> foundsZ Then

name = name.Remove (foundsSl + 1, foundS2 - foundsSl)
Console.WritelLine (name)
End If

End Sub

= Inheritance: System.Object
= Namespace: System.Math
Imports System.Math
Math.Sqrt() ‘all methods are static members

= Properties —none

= Fields

* 1t(Pl)—adouble constant (3.14159265358979323846)
Math.PI

» e (E)—natural logarithmic base (2.7182818284590452354)
Math.E

1/20/2011

Public Sub MathBasic ()
Dim outputValue As Double
Dim inputValue As Double

inputvValue = 2
outputvValue = _
Math.Sgrt (Math.2bs (Math.Pow (inputValue, 3.2) - inputValue ~ 5))

MsgBox (outputValue)
End Sub

Methods Descriptions 4.85 3.14 -1.25 | -3.72

Ceiling Returns the smallest integer 5 4 -1 -3
larger than or equal to a
number

Floor Returns the largest integer 4 3 -2 -4
less than or equal to a
number

Round Rounds a number to the 5 3 -1 -4
nearest integer

Truncate | Returns the integer part of a 4 3 -1 -3
number

CLng, Cint | Same as Round 5 3 -1 -4

Int Same as Floor 4 3 -2 -4

You can also round a number to a decimal place you specified in the method.
outValue = Math.Round(inValue, 2)

1/20/2011

Math.Ceiling(number)
Math.Floor(number)
Math.Round(number + 0.5)
Math.Round(number —o0.5)

> won P

= Quotient and remainder in integer division

Dim quotient As Long = _
Math.DivRem(dividend, divisor, remainder)

guotient = Math.Truncate(dividend / divisor)
remainder = dividend Mod divisor

1/20/2011

= Angle values are in radian
= Convert degree to radian first!

1degree =1/ 180

Dim angle As Double = degrees * Math.PI /180.0
Math.Sin(angle)

= Array declaration
Dim players(9) As String ‘static array
players(0) = “Adam”
players(1) = “Brad”

players(8) = “Henry”
players(9) = “lan”
Console.WriteLine(players.Count)

Dim nextplayer As String = players(5)
Dim scores() As Integer ={1, 4, 5, 8}

10

1/20/2011

Public Sub ArrayAsParameter ()
Dim players(4) As String
players (0) = "A"
players (1) = "B"

players (2) moen

players(3) "o"

players(4) = "E"

PrintArray(players)
End Sub

Private Sub PrintArray(ByVal strArray() As String)
For Each 1 As String In strArray
“onsole.WritelLine (1)
Next
End Sub

= Inheritance: System.Object
= Namespace: System.Array

= Properties:

Mame Description

B IsFixedSize Gets a value indicating whether the Array has a fixed size.

=X IsReadOnly Gets a value indicating whether the Array is read-only.

=X Issynchronized Gets a value indicating whether access to the Array is synchronized (thread safe).

=X Length Gets a 32-bit integer that represents the total number of elements in all the
dimensions of the Array.

= LongLength Gets a 64-bit integer that represents the total number of elements in all the
dimensions of the Array.

=y x Rank Gets the rank (number of dimensions) of the Array.

=X SyncRoot Gets an object that can be used to synchronize access to the Array.

11

1/20/2011

Public Sub ArrayIndexOf ()

Dim dinosaurs() As String = _
{"Tyrannosaurus",
"Emargasaurus", _
"Mamenchisaurus",
"Brachiosaurus"™,
"Deinonychus"™, _
"Tyrannosaurus", _
"Compsognathus™}

Conscle.WriteLine (vbLE & _
"Array.IndexOf (dinosaurs, ""Tyrannosaurus”""): {0:",
Array.IndexOf (dinosaurs, "Tyrannosaurus”))

Conscle.WriteLine (vbLE & _
"Array.IndexOf (dinosaurs, ""Tyrannosaurus"", 3): {0:",
Array.IndexOf (dinosaurs, "Tyrannosaurus", 3))

Conscle.WriteLine (vbLE & _
"Array.IndexOf (dinosaurs, ""Tyrannosaurus"", 2, 2): {0}",
Array.IndexOf (dinosaurs, "Tyrannosaurus"”, 2, 2))
End Sub

Public Sub ArrayResize ()
Dim myRArr As String() = _
gmim, mgm, mgn_ omgm Twgm o omgn owgnomgm o omgmy
Dim i As Integer

' Resize the array to a bigger size (five elements larger).

Array.Resize (myArr, myArr.Length + 5)
For i = 0 To myArr.Length - 1
Console.WriteLine ("[{0}]: {1}", i, myRArr(i))
Next
' Resize the array to a smaller size (four elements).
Array.Resize (myArr, 4)
For i = 0 To myArr.Length - 1
Console.WriteLine ("[{0}]: {1}", i, myRArr(i))
Next

' Reset the elements to empty
Array.Clear (myArr, 0, myArr.Length)
For i = 0 To myArr.Length - 1
Console.WriteLine ("[{0}]: {1}", i, myRArr(i))
Next
End Sub 'Main

12

1/20/2011

Public Sub ArrayDynamic ()
Dim myArr (8) As String 'static array
Dim i As Integer

For i = 0 To myARrr.Length - 1
myArr(i) = i + 1
Next

' Resize the array to a bigger size (five elements larger).
ReDim myArr (myARrr.Length + 5)
'Array.Resize (myArr, myArr.Length + 5)
For i = 0 To myArr.Length - 1
Console.WriteLine("[{0}]: {1}", i, myRrr(i))
Next

For i = 0 To myARrr.Length - 1
myArr(i) = i + 1
Next

' Resize the array to a smaller size (four elements).
ReDim Preserve myArr (4)
For i = 0 To myArr.Length - 1
Console.WriteLine("[{0}]: {1}", i, myRrr(i))
Next
End Sub 'Main

Public Sub ArraySort()

Dim dinosaurs() As String = _
{"Tyrannosaurus"”,
"Amargasaurus",
"Mamenchisaurus",

"Brachiosaurus",
"Deinonychus™,
"Tyrannosaurus"”,

"Compsognathus"}

Array.Sort (dincsaurs) 'sort ascendingly

For Each i1 As String In dinosaurs
Console . WriteLine (i)

Next

Array.Reverse (dinosaurs) 'sort descendingly
For Each 1 As String In dinosaurs
Console.WriteLine (i)
Next
End Sub

13

1/20/2011

Public Sub ArrayPairedSort ()
Dim players() As String = _

{"sid", "ARdam", "Cliff", "Zack", "David", "Gil", "Mica"}

Dim battingorder() As Integer = _
{4, 7, 3, 2, &, 1, 5}

For i As Integer = 0 To players.Length - 1
Console.Writeline (players(i) & " batting number is " & battingorder(i))
Ne=xt

Array.Sort (battingorder, players) 'paired sort using battingorder as a key
For i As Integer = 0 To players.Length — 1
Consocle.Writeline (players(i) & " batting number is " & battingorder (i))
Next
End Sub

Public Sub ArrayMultiD()
Dim diagonal(,) As Single = New Single(,) {{1, 0}, {0, 1}}
'list the total number of elements
Console.WriteLine (diagonal.Length)

Dim matriz (5, 9) As Double
Console.Writeline (matrix.Length)

Dim maxDim0 As Integer = UBound (matrix, 1)
'Dim maxDim0 As Integer = matrix.GetLength (0)
Dim maxDiml As Integer = UBound (matrix, 2)
'Dim maxDiml As Integer = matrix.GetLength(1l)
For i As Integer = 0 To maxDim0

For j As Integer = 0 To maxDiml ol2l2]3lals5]|6|7]8]09

matrix(i, j) = (1 * 10) + 3 JYN VR IO

Next j

Next 1
End Sub
59

14

= Enumerations offer an easy way to work with sets of related
constants and to associate constant values with names
= Member name [=initializer]

E HModule Module2

f—] Public Enum flavorEnum
salty

sweet

zour

bitter

- End Enum

= Public Sub TestMethod()

M=gBox ("My favorite i= " & flavorEnum.=alty)
- End Sub
LEnd Module

» Enumerations make for clearer and more
readable code, particularly when meaningful
names are used.

= Benefits:

Reduces errors caused by transposing or mistyping
numbers

Makes it easy to change values in the future

Makes code easier to read, which means it is less likely
that errors will creep into it

Ensures forward compatibility

1/20/2011

15

Public Structure Systeminfo
Public CPU As String
Public Memory As Long

Public PurchaseDate As Date
End Structure

Public Class Class1

Public Function MyFunction
Dim MySystem, YourSystem As Systeminfo

MySystem.CPU = "486"
Dim TooOld As Boolean

If YourSystem.PurchaseDate < #1/1/1992# Then TooOld =
True

YourSystem = MySystem
End Function
End Class

VB .NET is NOT case sensitive, however...
Names

» A list of identifiers concatenated to form a name
Pascal case

= ErrorLevel
Camel case

» totalNetworkDistance
Uppercase

= System.lO

1/20/2011

16

1/20/2011

= Be consistent!
= Don't use “reserved” terms (e.g,, Double, False)
= Use Pascal casing for namespaces, classes,
members, methods, and constants
Const MapUnits As String = “meters”
= Use Camel casing for variables and parameters
Dim isVisible As Boolean
= Do not use underscores, hyphens, or any other
nonalphanumeric characters

= Array

= Arraylist (queue and stack)
= Hashtable

= Binary (search) tree

= Graph

17

