Network

- Topology-based features connectivity
 - Intersections (junctions)
 - Junctions
 - Sources and sinks
 - Turns, Turn impedance
 - Overpasses and underpasses
 - Links (edges)
 - Directions
 - Impedance (length, travel time, flow volume)
 - Directional impedance

ArcGIS Network

Network types

- Geodatabase geometric network
- · Shapefile-based network dataset
- · Geodatabase network dataset

Network tools

- Utility Network Analyst
- Network Analyst

Network Analysis & Applications

- Utility (geometric) network
- Transportation network dataset
- ArcInfo (Arcplot network commends)
- ArcGIS: Persistent network dataset
- Network
 - Line (coverage)
 - Edge + junctions (geodatabase)

Utility Network Analysis

- Trace upstream elements
- Trace downstream elements
- · Upstream accumulation cost
- · Find a path upstream
- Find common ancestors of a set of locations on the network
- Find connected elements
- Find disconnected elements
- Find multiple-path loops
- Find all paths between locations

Compiling a Street Network

- 1. Coverage, shapefile, or Geodatabase
- 2. Line features
- 2. Building a network
 - Composite feature (ArcInfo)
 - Geometric network
 - Network dataset (multimodal network)
- 3. Assign link impedance
- 4. Assign link direction
- 5. Create a turn table

Network Analysis in ArcInfo

Arcplot: netcover netcov route1 Arcplot: stops path1.stp order route impedance ~ demand out_order cumul_imped cumul_demand Arcplot: path stops `find minimum path b/w stops Arcplot: mapex netcov `set display extend Arcplot: arcs netcov `display arcs Arcplot: routelines netcov route1 2 `display selected route using line symbol 2 (red solid line)

Attributes of Geometric Network

- Edges
 - Cost: distance
 - Descriptors: weight (diameter)
 - Restrictions: enabled/disabled
 - Flow direction
- Junctions
 - User-defined/orphan
 - Source/sink
- · Connectivity-rules
 - Edge-edge
 - Edge-junction

Attributes of Network Edges (Links)

- Edges
 - Cost: meters, minutes, FT_minutes, TF_minutes
 - Descriptors: speed limit, # lanes
 - Restrictions: one-way (FT, TF, N, etc)
 - Hierarchy: hierarchy, roadclass (1, 2, 3, etc)

Source	Direction	Element	Туре	Value
Metro_Lines	From-To	Edge	Constant	-1
Metro_Lines	To-From	Edge	Constant	-1
Streets	From-To	Edge	Field	FT_Minutes
Streets	To-From	Edge	Field	TF_Minutes
Transfer_Stations	From-To	Edge	Constant	-1
Transfer_Stations	To-From	Edge	Constant	-1
Transfer_Street_Station	From-To	Edge	Constant	-1
Transfer_Street_Station	To-From	Edge	Constant	-1
Metro_Entrances		Junction		
Metro_Stations		Junction		
ParisNet_Junctions		Junction		

Attributes of Network Junctions (Nodes)

- Turn impedance: minutes
- Turn angle: angle
- Turn restriction
- Linked edges (a max of 20)

Connectivity Groups

- · Each edge source is assigned to exactly one connectivity group
- Each junction source can be assigned to one or more connectivity groups.
- Junctions that are assigned to two or more connectivity groups are the only way that edges in different connectivity groups can connect.
- Connectivity rules
 - coincident endpoints
 - coincident vertices
 - Override
 - elevation

Possible turns at an intersection with four street segments. No U turns are allowed in this example.

node#	arc1#	arc2#	angle	minutes
341	503	467	90	0.500
341	503	466	0	0.250
341	503	465	-90	0.250
341	467	503	-90	0.250
341	467	466	90	0.500
341	467	465	0	0.250
341	466	503	0	0.250
341	466	467	-90	0.250
341	466	465	90	0.500
341	465	503	90	0.500
341	465	467	0	0.250
341	465	466	-90	0.250

Possible turns at node 341

265

385

	339			
arc1#	arc2#	angle	minutes	node
339	342	-87.412	0.000	220
 339	340	92.065	0.000	339
339	385	7.899	0.000	339
342	339	87.412	0.500	339
342	340	-0.523	0.250	
342	385	-84.689	0.250	339
 340	339	-92.065	0.250	339
340	342	0.523	0.250	339
340	385	95.834	0.500	339
385	339	-7.899	0.000	
385	342	84.689	0.000	339

-95.834

0.000

node#	arc1#	arc2#	angle	minutes
339	467	501	90.190	0.500
339	467	462	1.152	0.250
339	467	461	-92.197	-1.000
339	462	501	-90.962	0.250
339	462	467	-1.152	0.250
339	462	461	86.651	-1.000
339	461	501	2.386	0.250
339	461	467	92.197	0.500
339	461	462	-86.651	0.250

Node 265 has stop signs for the east-west traffic.

340

Node 339 is an intersection between a southbound one-way street and an east-west two-way street.

Overpasses & Underpasses

First Ave. crosses Oak St. with an overpass. A non-planar representation with no nodes is used at the intersection of Oak St. and First Ave.

First Ave crosses Oak St with an overpass. A planar representation with two nodes is used at the intersection: one for First Ave, and the other for Oak St. The elevation value of 1 shows that the overpass is along First Ave.

Multiedge Turns

- · Divided roads
- Interior edges (a, b, c, d)
- Exterior edges (e, f, g, h, etc)

Network Applications

- Routing: shortest-path analysis b/t 2 points
- Closest facility: shortest-path analysis b/t 1 source and multiple target points
- Service Area: Allocation (proximity)
- Location-allocation (proximity + supply + demand)
- Urban transportation planning
- Watershed analysis (ArcHydro)
- Traveling salesman problem (TSP)