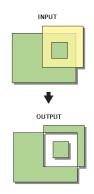
GIS Data Analysis

Methods for Generating Secondary Information

- Buffering Generating AOI
- Overlay Dasymetric Mapping (areal interpolation)
- Distance Measurement Determining AOI
 Thiessen polygons
- Pattern Analysis Determining AOI

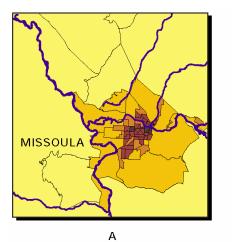

 Nearest neighbor analysis
- Map Manipulation
 Dissolve, clip, append, select, eliminate, update, erase
- Spatial interpolation
- Raster calculation

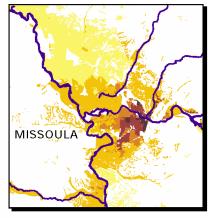
Buffering

- Proximity, edge effect, spatial interaction
- Point, line, polygon features
- · Variations of buffering
- Irregular buffering (e.g., stream reaches)
- · Applications
 - Protection zone
 - Neutral zone
 - Inclusion zone
 - Sampling scheme

Map overlay

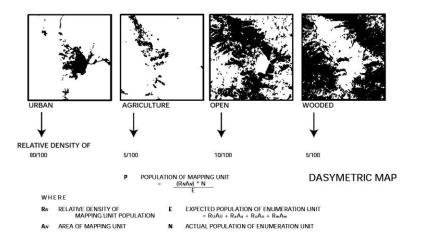
- Overlay feature types
 - Point-in-polygon
 - Line-in-polygon
 - Polygon-on-polygon
- · Overlay methods
 - Union
 - Intersect
 - Symmetrical Difference
 - Identity


Overlay Procedures


- Determine the spatial reference for processing. All the input feature classes are projected (on the fly) into this spatial reference.
- Crack and cluster the features.
- Discover geometric relationships (overlap) between the input features and the overlap features.
- · Assign attributes based on the type of overlay.
- Remove features based on the combinations of attributes and overlay types.

Map overlay (cont.)

- Considerations
 - Georeferencing, registration
 - Slivers (fuzzy tolerance, cluster tolerance, minimum mapping unit
 - Error propagation (The expected accuracy of a composite map cannot be better than the least accurate individual input map.)
- Applications
 - Site analysis
 - Areal interpolation (dasymetric mapping)


Choropleth vs Dasymetric Maps

В

Dasymetric mapping

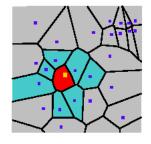
Dasymetric Mapping with Ancillary Info

Α	
в	

Example: Total population N: 100 Total area of enumeration unit: 10 (unit²) Area of A A_A: 7 (unit²) Area of B A_B: 3 (unit²) **B's population is twice as dense as A's** (i.e., relative density A : B = 1 : 2)

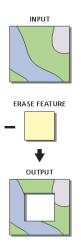
Actual density of A and B: 1 x K, 2 x K (K is a constant) Actual population of A and B: 1K x 7, 2K x 3 Total population 100 = 1K x 7 + 2K x 3 K = 100 / 13Population of A = 1K x 7 = 100 / 13 x 7 = 53.85 Population of B = 2K x 3 = 2 x 100 / 13 x 3 = 46.15 K = N / (R_Ax A_A + R_B x A_B) P_A = R_A x A_A x K, P_B = R_B x A_B x K P_{mu} = (R_A x A_A) x N / E E = R_Ax A_A + R_B x A_B

Dasymetric Mapping (cont.)


1		2		B			_		a c		b		P	nu = ((R _A x A _A) x N /	E
(E	Census Landcover Mapping Unit (Enumeration Unit)															
			,			<u> </u>	O_ID	Area	E_I D	L_ID	N	RD	A*RD	E	P=A*RD*N/E	Р
E_I D	Area	N		L_ID	Area	RD	а	42	1	A	100	0.1	4.2	20.4	4.2 x 100 / 20.4	20.59
1	60	100		А	70	0.1	b	28	2	A	25	0.1	2.8	13.6	2.8 x 25 / 13.6	5.15
2	40	25	ĺ	в	30	0.9	с	18	1	в	100	0.9	16.2	20.4	16.2 x 100 / 20.4	79.41
L			1				d	12	2	В	25	0.9	10.8	13.6	10.8 x 25 / 13.6	19.85
														t		
													E_ID		E=Sum(A*RD)	
													1		20.4	
													2		13.6	
See	See http://web.pdx.edu/~jduh/courses/geog492s10/lab04.htm for exercise.															

Distance measurement

- For features (i.e., points, lines) that cannot perform overlay analysis
- A method to link attributes between features that are not colocated
- For example, the NEAR and POINT-DISTANCE tools in Arctoolbox


Voronoi Map (Thiessen Polygons)

- Why use a Voronoi map?
- · Assigning values to polygons
 - Simple
 - Mean
 - Cluster
 - Standard deviation
 - ...

Map manipulation

- Dissolve
- Eliminate
- Append
- Erase/Clip
- Merge/Split

Raster Data Analysis

- Local (cell-by-cell) operations multi-criteria analysis
- Neighborhood (moving-window) operations "noise" reduction, raster map generalization, terrain analysis...
- Zonal operations zonal statistics
- Raster distance measure operations similar to buffering

Local Operations

- · Cell-by-cell based
- Creates a new raster from either a single or multiple input rasters
- · Includes Reclassification and Map Algebra

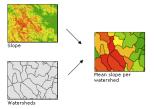
Neighborhood Operations

1	2	2	2	2
1	2	2	2	3
1	2	1	3	3
2	2	2	3	3
2	2	2	2	3

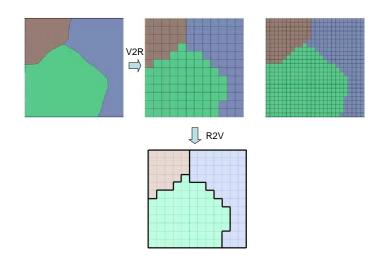
1.56	2.00	2.22
1.67	2.11	2.44
1.67	2.11	2.44

1	2	2	2	2
1	2	2	2	3
1	2	1	3	3
2	2	2	3	3
2	2	2	2	3

2	2	2
2	2	3
2	2	3


Neighborhood Means

Zonal Operations


- Uses groups of cells that have
 the same value or like features
- Can be contiguous or noncontiguous
- For single rasters zonal operations measure the geometry of each zone (area, perimeter, thickness, centroid)
- For two rasters (an input raster and a zonal raster) a summary of values for the input values in each zone of the zonal raster is generated in an output raster (summary statistics and measures)

Raster to Vector / Vector to Raster

