

Introduction

- * In the last three months there have been 21 bicycle collisions reported to Bike Portland.org and 33 close calls
- * Portland is 6th in the nation for biking cities
- * The number of bicyclist in Portland will continue to grow in the coming years

Project Information

- * Our goal was to create the safest routes as possible, ideally for recreation rides. For commuting rides bikers often make a trade off between safety and distance (OTREC 2008)
- * Our Study area is West of 205, South of I-84, East of 405 and North of Powell

Factors

- Street type
- * Difficult intersections
- * Roads that parallel Max and Streetcar lines
- * Direction of street

Layers

- * RLIS: Streets, bike routes, river, city boundary, max and streetcar lines
- Created: Locations, dangerous intersections form PDOT information

Network Geodatabase

- ArcMap and ArcCatalog both have an extension known as "Network Analyst"
- Finds the shortest route which takes the user's specifications into account
- Designed to work specifically with street maps.
- Must be built in ArcCatalog

Creating the Network

- Specify attributes
- Assign risk as cost
- Hierarchy Risk

- Set Usage, Units, Data and Type
- * Select Restriction
 - One-way streets
- Select Cost
 - Risk
 - Length
- * Select Usage
 - Hierarchy

Network Analysis

- * Three main components
 - Route
 - User creates route by specifying starting and ending points
 - Stops
 - User specifies points the route must cover
 - Barrier
 - User specifies points the route must avoid

Bike Route Layer

Metro has a "bikemode" and a risk value to each street type

Street Type

- Multi-Use path
 - Separated from motor vehicle traffic; used by only bicyclists, pedestrians etc.
- Bike Lane
 - Designated as a bicycle lane; one way traffic only
- Low traffic through street
 - <3,000 vehicles, <25 mph speed limit

Street Type

- Moderate traffic through street
 - Between 3,000 and 10,000 vehicles per day
 - Speed limit about 35 mph
- High traffic through streets
 - > 10,000 cars per day
 - Speed limit> 35mph
- * Caution Area
 - Sharp curves, high traffic volumes, narrow lanes etc.

Street Type

- * Assign a risk value to each street type
- * The risk range is 1-6. With 1 being the safest to 6 the most dangerous.
 - Highways are at a risk level of 6
 - Local streets are at a risk level of 3

Туре	Risk	Street classification.		
1110	6	Freeway		
1120	6	Ramps; interchanges & feeders		
1121-1123	6	On- and off-ramps		
1200	6	Highway		
1221-1223	6	On/Off ramps to highway		
1300	5	Primary arterial		
1400	4	Secondary arterial		
1450	4	Other arterial		
1500	3	Minor streets		
1521	3	Local street to local street connector		
5101	6	Freeway with rapid transit		
5201	6	Highway with rapid transit		
5301	6	Primary arterial with rapid transit		
5401	5	Secondary with rapid transit		
5500	5	Minor with railroad		
5501	5	Minor with rapid transit		

One-way streets

- Flipped the direction of streets and bike route segments with the wrong direction
- Created new text field "oneway"
- Selected all one-way segments and assigned "F" to them
- Now when creating the network all streets with F will only allow traffic from origin to end direction

Difficult Intersections

- PDOT has maps available identifying difficult intersections
- We created point features to represent each dangerous intersection
- * These points were then used as barriers in the network
- * They have a risk value of 6

Create Routes

- * Add location points
- * Add Barriers
- * Solve Route

Locations

- Laurelhurst Park
- McMenamins Bagdad Theater
- * Mt Tabor Park
- * Stumptown Coffee
- Ankeny Square Saturday Market
- * PSU Farmers Market

How Much Safer Per Mile?

Route	Shortest	Safest	Difference	X safer
1	63.45	44.96	18.49	1.41
2	63.45	44.07	19.31	1.44
3	72.78	41.7	30.98	1.75
Total	199.68	130.73	68.78	1.55

Units are in Risk Per Mile

On average our safe routes were 1.55 x safer than the shortest routes

Conclusions

- * We were able to crate safer routes
- Distance is sacrificed for safety
- * Our Routes differed from ByCycle.org's because we took in additional factors into account.
- * Our route can create complex directions
- * For further study: We would expand the network, take crash data into account

References

- * Geoffrey Duh
- * ByCycle.org
- * 'Bike there' map
- ArcHelp Desktop
- BikePortland.org
- * Americasbestonline.net
- * Dill, J., & Gliebe, J. (2008). *Understanding and measuring bicycling behavior: A focus on travel time and route choice* (OTREC-RR-08-03). Portland, OR: Oregon Transportation Research and Education Consortium Final Report.

Questions?