

Portland State

Introduction
Several methods to transform satellite image to projected map for analysis
Using ground control points (GCPs) one way
Empirical or nonparametric: do not need orbital data, etc.

Least Squares Regression

Regress or plot (r,c) values versus (x,y) values

Generic equations:

x = f(c,r); y = f(c,r); c = f(x,y); r = f(x,y)

Want to minimize sum of square of residuals i.e. difference in real values versus estimated values

Software solves all 4 equations simultaneously

Least Squares Regression Most common geometric transformation is bivariate, affine or first-order least squares function: $X = a_0 + a_1 R + a_2 C$ $Y = b_0 + b_1 R + b_2 C$ $R = d_0 + d_1 X + d_2 Y$ $C = f_0 + f_1 X + f_2 Y$

GCPs

- Best are pinpoint, permanent features
- Need 10-15 for first-order fit, and image area up to 1024 x 1024 pixels
- Need more for relief or wide areas that induce distortion from nadir
- Need to be spread out to cover all of area
- Keep some in reserve to validate transformation

- center of each pixelTo get pixel values image has to be re-
- To get pixel values image has to be r sampled (later)

	GCP	R	С	Х	Y	Residual
	1	134	230	3098	12	- 18.9
	2	1304	304	4449	23	20.9
	3	120	3245	2345	213	302.3
	4	534	645	1235	324	15.5
	5	756	1287	3456	250	- 12.3

