Geometric Transformation Based on Ground Control

 PointsCraig Warden
GEOG 481/581: Satellite Digital
Image Analysis
January 23, 2007

Introduction

- Several methods to transform satellite image to projected map for analysis
- Using ground control points (GCPs) one way
- Empirical or nonparametric: do not need orbital data, etc.

Limitations

- "Easy" but labor intensive
- Must have "enough" GCPs for statistically reasonable transformation
- Limited GCPs in "boring" topographies: desert, ocean
- Map must "match" scale \& area covered
- Transformation can be complicated by heterogenous terrain

Requirements

- Suitable vector map with sufficient GCPs
- Mapping software (GIS) to display \& transform image
- Good hand-eye coordination
- Digitizing tablet or on-screen marking

Least Squares Regression

Regress or plot (r, c) values versus (x, y) values

Generic equations:
$x=f(c, r) ; y=f(c, r) ; c=f(x, y) ; r=f(x, y)$
Want to minimize sum of square of residuals i.e. difference in real values versus estimated values

Software solves all 4 equations simultaneously

Least Squares Regression

Simplest is linear regression:

$$
X=a_{0}+a_{1} R
$$

Least Squares Regression

Most common geometric transformation is bivariate, affine or first-order least squares function:

$$
\begin{aligned}
& X=a_{0}+a_{1} R+a_{2} C \\
& Y=b_{0}+b_{1} R+b_{2} C \\
& R=d_{0}+d_{1} X+d_{2} Y \\
& C=f_{0}+f_{1} X+f_{2} Y
\end{aligned}
$$

Least Squares Regression

- First-order usually OK for modest resolution on relatively flat area
- Can accomplish scaling, rotation, shearing \& reflection
- May need higher-order functions for oblique angles and/or rough terrain

GCPs

- Best are pinpoint, permanent features
- Need 10-15 for first-order fit, and image area up to 1024×1024 pixels
- Need more for relief or wide areas that induce distortion from nadir
- Need to be spread out to cover all of area
- Keep some in reserve to validate transformation

Geometric Transformation

- Once equations known:
- Calculate X,Y coordinates of 4 corners to form bounding rectangle of transformed image
- Then calculate X,Y coordinate of the center of each pixel
- To get pixel values image has to be resampled (later)

Root-Mean-Square Error

GCP	R	C	X	Y	Residual
1	134	230	3098	12	-18.9
2	1304	304	4449	23	20.9
3	120	3245	2345	213	302.3
4	534	645	1235	324	15.5
5	756	1287	3456	250	-12.3

RMSE

- Check each GCP for outlier
- Can try different models to minimize total RMSE
- Use other GCPs to validate transformation

Questions ?

