Image Classification |l

Supervised Classification

Using pixels of known classes to identify pixels of
unknown classes

Advantages
— Generates information classes
— Self-assessment using training sites
— Training sites are reusable

Disadvantages

Information classes may not match spectral classes
Signature homogeneity of information classes varies
Signature uniformity of a class may vary

Difficulty and cost of selecting training sites

Training sites may not encompass unigue spectral classes




Supervised Classification Procedures

» Determines a classification scheme

» Selects training sites on image

» Generates class signatures

» Evaluates class signatures

» Assigns pixels to classes using a classifier

Training Site Selection

* Number of pixels (at least 100 per class)

* Individual training sites should not be too
big (10 to 40 pixels per site)

 Sites should be dispersed throughout the
image
» Uniform and heterogeneous sites




Signature Evaluation

Alarm (i.e., preview using parallelepiped classifier)
Ellipse (mean & stdv)

Contingency matrix (based on pixels within training sites)
Separability

— Euclidean Distance

— Divergence

— Transformed Divergence (0 — 2000, > 1700)

— Jefferies-Matusita Distance (0 — 1414)

Statistics & histograms
— Small variations preferred
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Contingency Matrix

ERROR MATRIX

Reference Data

Classified
Data Veg Nonveg Row Total
Veg 2395 0 2395
Nonveg 1 1279 1280
Column Total 2396 1279 3675

Classifiers

* Nonparametric (faster then parametric classifiers)
— Parallelepiped
— Feature space

* Parametric

— Minimum distance (Euclidean spectral distance): least accurate,
most efficient

— Mahalanobis distance (Euclidean distance + covariance - normal
distribution of DN is assumed).

— Maximum likelihood (Bayesian prob. - normal distribution is
assumed): most accurate, least efficient
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A Maximum Likelihood Classification

Likelihood of unknown
measurement vector X

belonging to forest
is greater than the
likelihood of it
belonging to
agriculture:
assign pixel
tao forest
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Classification Terminology

Features/Feature space/Dimensionality

— Spectral bands, textures, indices, ancillary GIS layers...

Classification schemes

— Taxonomically correct definitions of classes organized according to
logical criteria (e.g., 1976 USGS Anderson’s classification)

Signatures

— Information classes and spectral classes
Training sites (fields)

— Areas for extracting signatures of information classes

Classifier

— A procedure to assign pixels to classes based on pixel features and
class signatures

What are land-use and land cover?

Land-use

* Human activity on, and intention for, the land
Land-cover

» The biophysical characteristics of the landscape




Texture Analysis

e Texture

— Apparent roughness or smoothness of an image
region (Campbell 2002)

— Frequency of tonal change on an image (Lillesand
and Kiefer 2004)

— Natural scenes containing semi-repetitive
arrangements of pixels (Pratt 1991)

» Texture analysis
— Feature-based (first-order, second-order statistics)
— Model-based
— Structural

First-Order Texture Statistics

 Stats based on a moving window
— Mean
— Standard Deviation
— Range
— Entropy




Second-order Texture Statistics

 Stats based on paired pixels
— Variogram
— Fourier Analysis
— Gray-Level Co-occurrence Matrices
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Textural Classification

TM Band 4 (NIR)

Texture
Information
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Ancillary Data

 Increase feature space dimensionality so that
information classes can be more easily
separated
— For example, elevation and vegetation distribution

* (In)compatibility
— Physical (data format, resolution, etc.)

— Logical (do the values used to define the feature
space make sense?)

Ancillary Data (cont.)

» Stratification

* a priori probability in maximum likelihood
classifier

e Contextual classification

» Post-classification sorting (rule-based pixel
class adjustment)
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Classification Using Ancillary Data

1. Correct for slope and aspect effects and then do classification
2. Classify with aspect data masked using elevation and slope criteria

Contextual Classification

* Rule-based classification
e Decision tree
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Final Remarks

* No classification method is inherently superior to
any other.

» The process guideline varies among images

 In general, one should generate 10 ~ 15 spectral
classes for each intended information class in
unsupervised classification (e.g., 20 ~ 30
spectral cls for 2 info cls)

» When determining info class in supervised
classification, one should also consider their
spectral heterogeneity (e.g., agricultural might
include fallow and vegetated fields)

Mixels

* Pure & composite signatures
* Where do mixels occur?
» Are mixels good or bad?
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Tree, soil, water, grass, shadow ...

Hard & Fuzzy Classification Schemes

» Hard

— Mutually exclusive classes

— Exhaustive
— Hierarchical

* Fuzzy

— Fuzzy (e.g., upland forest, forested wetland, water)
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Fuzzy Classification

1. Bayes' Theorem and Maximum Likelihood
Classification

2. Fuzzy Signature Development

3. Soft Classifier (evaluation of probability that a
pixel is a member of a class)

4. Hardeners (forcing decision of class membership)

Fuzzy Signhatures

* Training sites (homogeneous vs. fuzzy)
» Fuzzy partition matrix

Class#1 |Class#2 |Class#3
Site#l |0.7 0.2 0.1
Site#2 (0.2 0.2 0.4
Site#3 [0.5
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