Image Transforms

- Single band: spatial domain to frequency domain
- Multiple bands: spectral enhancement
- The enhancement techniques that require more than one band of data.
- Purposes:
- extract new bands of data that are more interpretable to the eye (VI, Tasseled Cap)
- apply mathematical transforms and algorithms (Band ratioing)
- display a wider variety of information in the three available color guns (R, G, B) (PCA)
- compress bands of data that are similar (PCA)

Indices

- Band ratioing
- NDVI (Normalized Difference Vegetation Index)
$\frac{I R-R}{I R+R}$

Spectral Properties of Objects

Figure 1.10 Typical spectral reflectance curves for vegetation, soil, and water.

Soil Reflectance Separation

Mixture of Soil \& Vegetation Reflectance

Dehazing Algorithm

- Tasseled Cap Transformation
- Subtracts Haze from the blue band

```
Brightness = .3037(TM1) +.2793)(TM2) +.4743 (TM3) +.5585(TM4) +. 5082 (TM5)
    +.1863 (TM7)
Greenness = -.2848(TM1) -.2435(TM2) -.5436(TM3) +.7243(TM4) +.0840 (TM5)
    -. 1800 (TM7)
Wetness = .1509(TM1)+.1973 (TM2) +. .3279(TM3) +.3406 (TM4)-.7112 (TM5)
    - .4572 (TM7)
Haze = .8832(TM1) -.0819 (TM2) -. 4580 (TM3) -.0032 (TM4) -.0563 (TM5) +
    .0130 (TM7)
```


RGB / IHS Transform

IHS Color Coordinate System

Data Fusion

- Fuse data
- Resolution merge
- Merge SPOT 10m pan with 20m multi-spectral
- Sensor merge
- Merge Radar intensity with multi-spectral

Fusion Procedures

1. Band transformation

- RGB - IHS
- PCA, Tasseled Cap
- Wavelet Analysis

2. Band replacement
3. Band back-transformation

TM multi-spectral merged with Radar image

Principal Components Analysis (aka Factor Analysis)

- Capture the main factors \& reduce data redundancy
- Based on covariance matrix
- Covariance measures the tendencies of data file values in the same pixel, but in different bands, to vary with each other, in relation to the means of their respective bands.

$$
\operatorname{var}(X)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}{(n-1)} \quad \operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1)}
$$

[^0]
Principal Components Analysis (PCA)

Figure 6-18: Two Band Scatterplot

Covariance Matrix

TABLE 10.1. Similarity Matrices for Seven Bands of a TM Scene

Covariance matrix						
1	2	3	4	5	6	7
1. 48.8	29.2	43.2	50.0	76.5	0.9	44.9
2. 29.2	20.3	29.0	48.6	65.4	1.5	32.8
3. 43.2	29.0	46.4	59.9	101.2	0.6	53.5
4. 49.9	48.6	59.9	327.8	325.6	12.4	104.32
5. 76.5	65.4	101.2	325.6	480.5	10.2	188.5
6. 0.9	1.5	0.6	12.5	10.2	14.0	1.1
7. 45.0	32.8	53.5	104.3	188.5	1.1	90.8
Correlation matrix						
1	2	3	4	5	6	7
1. 1.00						
2. 0.92	1.00					
3. 0.90	0.94	1.00				
4. 0.39	0.59	0.48	1.00			
5. 0.49	0.66	0.67	0.82	1.00		
6. 0.03	0.08	0.02	0.18	0.12	1.00	
7. 0.67	0.76	0.82	0.60	0.90	0.02	1.00

Calculating Components

- Component A

$$
A=C_{1} X_{1}+C_{2} X_{2}+C_{3} X_{3}+C_{4} X_{4}
$$

- Component coefficients
- $\mathrm{C}_{1}=0.35, \mathrm{C}_{2}=-0.08, \mathrm{C}_{3}=0.36, \mathrm{C}_{4}=0.86$
- BV of input bands
- $X_{1}=28, X_{2}=29, X_{3}=21, X_{4}=54$
- What is the BV of component A ?

Fourier Transformation

Image Domains

- Spatial domain (2D images)
- Spectral domain (Feature space plots, scatterplots)
- Frequency domain (Fourier Transformation)

Fourier Filtering

Brightness Image Fourier Transform Inverse Transformed

Low-Pass Filtered Inverse Transformed

High-Pass Filtered Inverse Transformed

Fourier Analysis (http://cns-alumni.bu.edu/~slehar/fourier/fourier.html)

Figure 63: Wavelet Resolution Merge

[^0]: http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

