Accuracy Assessment

Accuracy \& Precision

- Accuracy relates to the quality of a result
- Accuracy is the degree (\%) of correspondence between observation and reality
- Precision relates to the quality of the operation by which the result is obtained.
- Image classification precision
- Levels of classification scheme (data precision)
- Quality of repeated procedures (operation precision)

Classification Accuracy

- Supporting evidence of the quality and validity of a digital map product
- How do we know if something is accurate?
- Compare it to a known truth

Sources of Classification Error

- Data acquisition errors:
- Ambiguity of spectral classes
- Mixel
- Atmospheric condition
- Phenology
- Terrain
- Land-use/cover change
- Data processing errors:
- Misregistration
- Classification methods
- Accuracy assessment methods (e.g., sampling scheme)
- Scene-dependent errors:
- Ambiguity of classification scheme
- Image characteristics (diversity, shape complexity, area...)

Measurement of Map Accuracy

- Classified maps and reference maps/data
- Non-site specific accuracy (inventory error)
- Site-specific accuracy (classification error)
- Error matrix (contingency table)

Ground Truthing

- For training and for accuracy assessment
- Data collected
- Ground cover condition and attributes
- Site condition
- Time \& date
- Location information (coordinates)
- Miscellaneous info

Data Collection Plan

- Field radiometry - for calibration
- Field spectroradiometers
- Reference target (perfect reflector - pure white surface)
- Relative reflectance ratio

Reflectance of sample/reflectance of reference

- Matching satellite/airborne sensors
- Field survey
- Nominal data (classification)
- Biophysical data (e.g., tree plot survey, LAI)
- Unmanned Airborne Vehicles
- GPS
- Geographic sampling

Geographic Sampling

- Sample size
- Sample size per nominal class
- Sampling methods

Stratified random

Stratified systematic nonaligned

Sample Size

$s=P-\left[z \sqrt{P Q / N}+\frac{50}{N}\right]$
s: Lower confidence limit
P: Classification accuracy (80\%)
Q: Classification error (100-80)\%
z: z value (1.645 @ 95\% confidence)
N : Sample size

Error Matrix

- aka confusion matrix or contingency table
- Overall accuracy (Percentage correctly classified - PCC)

	Reference Data					
Residential	70	5	0	13	0	88
Commercial	3	55	0	0	0	58
Wetland	0	0	99	0	0	99
Forest	0	0	4	37	0	41
Water	0	0	0	0	121	121
Column total	73	60	103	50	121	407

Overall Accuracy $=382 / 407=93.86 \%$

Errors of Omission and Commission

- Users are more interested in the \% of map data that are reliable.
- Producers are more interested in the \% of actual land-cover that are correctly mapped.

Producer's Accuracy (omission error)

Residential $=70 / 73=$	96%	4% omission error
Commercial $=55 / 60=$	92%	8% omission error
Wetland $=99 / 103=$	96%	4% omission error
Forest $=37 / 50=$	74%	26% omission error
Warrer $=20 / 20$	100%	0% omission error

User's Accuracy (commission error)
Residential $=70 / 88=80 \% \quad 20 \%$ commission error Commercial $=55 / 58=95 \% \quad 5 \%$ commission error Wetland $=99 / 99=\quad 100 \%$
Forest $=37 / 41=\quad 90 \%$
Water $=121 / 121=100 \%$ 10% commission error 0% commiss

Kappa Coefficient ($\hat{\kappa}$)

A measure of agreement that is adjusted for chance agreement.

Computation of $\boldsymbol{K}_{\text {hat }}$ Coefficient of Agreement

where $N=407$
$\sum_{i=1}^{k} x_{i i}=(70+55+99+37+121)=382$
$\sum_{i=1}^{k}\left(x_{i+} \times x_{+i}\right)=(88 \times 73)+(58 \times 60)+(99 \times 103)+(41 \times 50)+(121 \times 121)=36,792$
therefore $\hat{K}=\frac{407(382)-36792}{407^{2}-36792}=\frac{155474-36792}{165649-36792}=\frac{118682}{128857}=92.1 \%$

Classification Distance File

Distance Value:

- Min distance classifier: Euclidean spectral distance (i.e., distance between means)
- Mahalanobis or max likelihood classifiers: Mahalanobis distance (i.e., distance between means adjusted by covariances)

Histogram of a Distance Image

Chi-square Statistics

- An estimate of the combined distribution of the prob. distance to the mean of i independent variables (i.e., bands).
- The number i is referred to as the degree of freedom.

