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Abstract

We treat parking as a common property resource and examine the benefits of pricing it. Without
pricing, parking close to the destination will be excessive, and will fall off more rapidly than is
socially optimal. The optimal pattern is attained under private ownership if each parking owner
prices in a monopolistically competitive manner. When cruising for parking congests both parkers
and through traffic, the benefits from pricing are substantially reduced.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Search for parking represents a major source of congestion in urban areas. A significant
fraction of the trip time in a congested urban area may be spent searching for a parking
space. Arnott and Rowse [6] report the claim that over half the cars driving downtown in
cities with serious parking problems (like Boston and major European cities) are cruising
to find a parking space. A smaller number is cited by Allen [2], who reports an estimate
that inefficient parking traffic accounts for up to 30% of total traffic in city centers (see also
Young [22]).

Much has been written about the use of road pricing in alleviating congestion problems.
The formal economics literature is quite developed in this area and the problem has
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received attention from many prominent economists. Seminal work in this area starts
with Dupuit [13], and continues through Knight [17], Boîteux [8], and Vickrey [20],
Road pricing schemes are currently used to ease congestion in Singapore, Hong Kong,
France, and parts of the USA and Canada, among others.1 Recently, the London scheme
has been implemented and looks to be a great success. The technology for determining
sophisticated road pricing tolls that depend on time of day and intensity of road usage
is quite inexpensive. Yet there remains significant political resistance to pricing of road
usage in many jurisdictions, and consequently road pricing remains scarcely used in the
urban context.

Conversely, there is little formal economic analysis of parking, although technology
for pricing parking is very simple (a parking meter!) and there is little social opprobrium
for paying for parking. Arguably, inefficient search for parking may be at least as
distortionary as excessive road use. Clearly optimal policy should account for both sources
of congestion. In the absence of road pricing, efficient pricing of parking may be an
effective policy toll for combatting congestion on the road and in parking.

Our objective in this paper is to study the economics of parking by setting up a
simple and tractable model of parking congestion. Previous theoretical work on parking
is scarce. Arnott and Rowse [6] make a valiant attempt to model the stochasticity of the
parking process, but the model rapidly gets complex. Nevertheless, they are still ableto
make some important normative points. In particular, since their model exhibits multiple
equilibria, the optimal tax (which equals the marginal externality) does not necessarily
decentralize the optimum.2 The Arnott–Rowse framework though is quite different from
ours. We are interested in how parking is allocated away from a common desirable location
(the CBD). They have a model in which people cruise around a ring-road and have
uniformly distributed desired stopping points. In that context they find some intriguing
results. Specifically, “the planner chooses a shorter expected parking time and a longer
expected driving time, implying a shorter cruising distance.” Parkers in their model follow
an algorithm regarding when to start looking for a parking spot and in equilibrium they
start searching too early. This logic might suggest that the equilibrium parking span in the
city model is too spread out. Instead, the opposite happens here.3

But, as Arnott and Rowse point out, there is little in the way of other formal literature,
although there is quite a lot of descriptive work, and some empirical work on mode choice
that includes choice of where to park. There is a bit more modelling of parking inthe
Transportation Science literature. The paper that is closest to this one is Verhoef, Nijkamp,
and Rietveld [19]. These authors show that the alternative transport mode (to cars) ought
to be priced at marginal cost, and that appropriate pricing can decentralize the optimum by
pricing congestion externalities.

1 See the discussion in Lindsey and Verhoef [18] for more elaboration.
2 They suggest that the optimum in their dynamic model can be attained by a dynamic fee.
3 In the Arnott and Rowse model, in choosing when to start cruising for parking, drivers trade off expected

driving time against expected walking time. Since in their model parking entails unpriced congestion while
driving docs not, drivers choose a higher-than-optimal expected parking time which corresponds to higher-than-
optimal expected walking time and hence lower-than-optimal expected driving time.
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We are interested here in parking that is unassigned, parking that drivers must search
to find. Most car commuters have long-term parking contracts to avoid daily search for
parking. We are instead interested in the demand for parking from drivers whose trips are
less regular, typically less predictable, and for shorter time periods. The natural examples
are shoppers and tourists. We shall suppose that there is a fixed and exogenous capacity at
each location.4 One application of the model is to on-street parking. In this case, private
ownership is not usually viable, although this is a useful theoretical benchmark to shed
light on the distortion inherent in not pricing.5 An alternative application of the model
is to off-street parking and we then compare private ownership with public provision of
unpriced parking lots.

If parking is unpriced, then unassigned parking lots are a common property resource that
one would expect to be over-exploited in a free entry equilibrium. Parking spaces closest
to the most desirable destination (the CBD) are the most coveted and will therefore be the
most “overfished.” Less desirable parking lots, further away, may end-up being under-used
because parkers overcrowd the prime locations. The optimal pricing for parking involves
charging for the congestion externality and flattens out the parking gradient by charging
more at the parking meters for closer locations.

This leads us to investigate how private ownership of parking lots in a market system
can decentralize the optimal configuration. We find that private ownership of parking lots
can do the job if private ownership is diverse and monopolistically competitive in the
following sense. Each owner must insure that potential parkers find his location at least
as attractive as any other location at equilibrium. This still leaves the owner with a trade-
off over the price charged per parking spot and the number of drivers who wish to park
there: the higher the price charged, the lower the equilibrium congestion level. Owners
therefore face downward-sloping demands for parking. These demands are higher for
more desirable parking locations, in contrast to the standard Chamberlinian [12] symmetry
assumption. While the parking lot owner is not a traditional price taker since he has latitude
in choosing his price, he is still akin to a competitive agent because he faces an overall
utility constraint. We show that the social optimum parking pattern is obtained under this
market structure.

Cruising for parking slows down through traffic. It does so by necessitating traffic lights
at cross thoroughfares and by increasing traffic on the main highway because drivers circle
to look for a vacant lot. Taking this feature into account introduces an externality that is
not internalized by parking lot owners. This is because this externality is not localized but
rather impacts all travellers passing through a location. In this case, private ownership does
not render the market solution optimal but instead encourages too little parking at the prime
locations and too much parking too far away.

The organization of the rest of the paper is follows. In Section 2 we present the
basic parking model assuming there is no externality imposed by those who cruise for
parking on those who will park closer to the CBD. We first compare the equilibrium

4 This perhaps better describe France than the US (where authorities choose to prohibit parking on many major
streets). In Anderson and de Palma [3] we model endogenous parking lots.

5 The private ownership solution we study is also valid if there are many local jurisdictions and each prices
parking so as to maximize local revenues from parkers.
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with unpriced parking to the optimum and then we derive the parking toll that delivers
the optimum arrangement. We then show that this parking fee is exactly that chosen
in the monopolistically competitive equilibrium with private ownership. Hence, private
ownership and optimum are shown to yield the same solution. In Section 3 we introduce the
externality from cruising and through traffic. We establish the manner in which the market
solution diverges from the optimum. Section 4 provides a discussion of the practicability
of the private ownership solution. It also discusses more general settings (alternate market
structures in the parking market, and elastic demand for trips) and whether road pricing
may enable an optimal outcome. Section 5 summarizes and concludes.

2. The basic model

We are interested in parking that is not assigned to individuals in advance. Shoppers
typically do not have long-term parking contracts. Similarly, tourists in the neighborhood
of attractions need to park but do not reserve parking in advance. For concreteness, we
shall treat all parkers as shoppers.6 Most shoppers who drive come to a shopping district
from a distant location and so we shall assume that shoppers reside far away.

Formally, suppose that there is a common destination located atx = 0 (that we shall
term the CBD), and there areN shoppers located far away. The CBD is at the end of a
long, narrow city, and is served by parallel access roads. Perpendicular to these access
roads are side-streets that are used for on-street parking.7 Cars can park on street at any
free location. Each shopper first drives towards downtown (at speedvd ), then starts to look
for an empty parking spot on a side street according to the search process described below.
Once an available parking spot is found, he walks (at speedvw) to the CBD.

An alternative interpretation of the model is that parking is off-street in lots, with a fixed
amount of parking at any location. What is crucial for the model is that it takes more time
to find a vacant spot in a lot the more other parkers there are.

2.1. Search for a parking spot

Assuming parking is not assigned, drivers must search for a vacant parking spot. The
expected time to find one at a distancex from the CBD depends on the number of vacant
and occupied parking spots at this location. We assume that if a driver stops at locationx he
will search at this location till he finds a vacant parking spot. The driver then walks to the
city. The walking cost is proportional tox/vw . The total number of parking places available

6 We shall also treat shoppers as male. Lucy Nicholson pointed out that a previous version was sexist for
treating shoppers as female.

7 The long-narrow city suffers from the drawback that it is not symmetric in terms of how drivers should search
for parking spots along side streets: drivers arriving on the access roads at the city edges will search inward from
there. We do not treat this asymmetry in what follows. A disc city (with radial access roads carrying traffic
uniformly from outside) avoids such asymmetry, and the formal analysis would be similar to that below, apart
from the additional complexity from the two-dimensional setup. We have chosen to present a long and narrow
city for simplicity of exposition. Note that Arnott and Rowse [6] model a one-dimensional city, the circumference
of a circle (an anulus).
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on the interval[x, x + dx] from the CBD is denoted byK(x)dx, and for simplicity we set
K(x) = k. Hence, the city has widthk, with the CBD located at the end. The number of
occupied parking places over the interval[x, x + dx] is denoted byn(x)dx with n(x) � k.

Consider the last driver to arrive at locationx. The probability that a randomly sampled
spot is free is given byq(x)= [k − n(x)]/k. Suppose that search for a parking spot can be
described by a stochastic processwith replacement.8

We can now derive the expected dollar costS(x) of searching for and finding a vacant
spot at locationx. The probability that any spot is free isq(x) and hence the expected
number of spots searched before finding a vacant one is 1/q(x).9 Assume that a driver
who checks whether or not a spot is occupied incurs a dollar search cost ofγ . Therefore
the expected cost to an individual who chooses to search for parking at locationx is
S(x) = γ /q(x) or10

S(x) = γ k

k − n(x)
. (1)

This is increasing in the number of cars parked,n(x), and at an increasing rate. It goes
to infinity as that number approaches the parking capacity,k. As well as exhibiting these
intuitive properties, this closed form expression is convenient in what follows to give a
closed form to the equilibrium and optimum solutions of the model.

This expected cost refers to the last driver arriving at locationx. Drivers who arrive
earlier face lower search costs because fewer places are already taken. This means that
there is a benefit from early arrival: the earlier the arrival time, the lower the expected
search cost. So suppose that drivers choose arrival times atx. Earlier arrival entails a cost
in terms of sub-optimally early arrival at the destination, but it carries the benefit of lower
expected search costs. An equilibrium in arrival terms at anyx is such that each driver
faces the same inclusive cost (early arrival cost plus search cost on arrival) and therefore
fully dissipates the rents due to an earlier position in the search process. Formally, such an
equilibrium can be derived as one in arrival times, whereby each arriving driver arrives at
the time that just makes him indifferent between arriving then and taking the corresponding
place in the search sequence, and arriving last of all (and incurring no early arrival delay).
Any driver who delays from arriving at the specified time will find her place in the sequence
usurped by one of the remaining drivers. This equilibrium exhibits full dissipation of the

8 This means that an individual who is cruising for parking “forgets” whether she has previously checked on
a spot. With a large number of spots to check, the expected cost with replacement or without replacement is not
very different.

9 Recall the riddle about how many children on average are needed in order to have a girl. Applying this
formula with q = 0.5, we get the desired answer of 2. More formally, the probability that the first spot is
free is q. The probability that the first spot is occupied and the second spot is free is(1 − q)q, because two
searches are involved. The expected number of spots searched isΩ = q(1+ 2[1− q] + 3[1− q]2 + · · ·). Hence
(1 − q)Ω = q([1 − q] + 2[1 − q]2 + 3[1 − q]3 + · · ·). Subtracting the second from the first equation gives
Ω = 1+ [1− q] + [1− q]2 · · · = 1/q.

10 The astute reader familiar with the economics of congestion externalities will already be able to derive the
optimal Pigouvian tax from this formula and considering the expression for d[n(x)S(x)]/dn(x). The answer is
given below in Eq. (12).
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rents accruing to being an early arriver, as in Fudenberg and Tirole [14] and Anderson and
Engers [4].

At this equilibrium, all of the drivers face the same total inclusive search cost as the last
arriver, whose costs are given above.11

Hence (1) is the search cost for all individuals who choose to park at locationx. The
search cost for the last driver arriving atx follows a sequential search process with a costγ

per lot inspected. In summary, schedule delay costs are zero for the last arrival and parking
congestion costs are highest, while earlier arrivals faces lower parking search costs that
are compensated for by schedule delay costs. In a (pure strategy) equilibrium to the arrival
time game, all those who park atx face the same inclusive parking cost (1). Alternatively,
the equilibrium model could be thought of as representing a stationary regime provided
that the time spent parked is independent of location. Then the flow of cars is proportional
to the number of occupied spots.

The form of the expected cost of finding a parking spot is purposefully simplistic. Arnott
and Rowse [4] construct an elaborate microeconomic model of cruising for parking, and
conclude that it is intrinsically a very difficult problem. By using a simple formulation that
captures the key trade-offs, we are able to pursue the analysis of equilibriumand optimum
parking.

The expected cost from parking at locationx is the inclusive parking cost plus the
(differential) cost of walking downtown fromx:

C(x) = γ k

k − n(x)
+ tx, (2)

wheret is the net dollar cost per mile of walking instead of driving, which we have assumed
the same for all individuals.12

2.2. Equilibrium with unpriced parking

In equilibrium, all parking locations must entail the same expected cost, and unused
locations should entail a (weakly) higher cost. Denote this common cost byc, and note
thatc � γ sinceγ is the minimum possible parking cost borne by a drivers located right at
the CBD and with one spot to check (which costsγ ). From (2), the equilibrium number of
cars parked atx solvesγ k/[k − n(x)] + tx = c, or:

n(x) = k

(

1− γ

c − tx

)

, (3)

which must hold whenevern(x) � 0. Let x̂ denote the farthest distance parked orparking
span.Sincen(x̂) = 0, the car that is parked the farthest away incurs the minimum search

11 In a similar vein, the idea of schedule delay as a way to equalize total costs across drivers in equilibrium is
to be found in Arnott et al. [5].

12 More precisely, the total cost paid for a shopper whose point of origin isX is S(x)+ td (X − x) + twx. We
can suppresstdX since it is constant. In (2) we have also sett = tw − td wheretw = βw/vw and td = βd/vd .
Hereβw is the value of time for pedestrians whileβd is the value of time for drivers. Empirically, we have
vw < vd andβw > βd so thatt > 0.
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cost ofγ , so thatx̂ satisfiesγ + t x̂ = c, or:

x̂ = c − γ

t
� 0. (4)

We can now solve for the equilibrium expected cost by equating the supply and demand
for parking. This requires that

x̂
∫

0

n(x)dx = N. (5)

Integrating (5) withn(x) given by (3) gives:

k
[

x̂ − γ

t
ln

( c

c − t x̂

)]

= N,

where we note thatkx̂ is the maximum number of cars that could park over the interval
[0, x̂]. Substitutingx̂ from (4) leads to:

c − γ ln c = tN

k
+ γ − γ lnγ, (6)

which yields the equilibrium expected costc in implicit form. The RHS of this expression is
independent ofc while the LHS is increasing inc in the relevant range wherec > γ (which
is required forx̂ > 0). The LHS is below the RHS forc = γ , and goes to infinity withc,
so that there always exists a unique solution forc. The other endogenous variables are then
also uniquely determined. We defer a discussion of the comparative static properties of the
unpriced equilibrium until we introduce cruising congestion in the next section. The next
step is to derive the optimal parking pattern.

2.3. Social optimum

Suppose the planner chooses the optimal number of cars admissible at each location.
However, once a car arrives at a parking location, it still must search for a parking place
given the search cost functionsS(x) described above. Clearly, the optimal allocation of
parking involves parking over an interval[0, xo], with n(x) > 0, for x < xo andn(xo) = 0.
The social planner faces the following problem of minimizing the social cost of getting the
shoppers to the CBD, or

min
{n(x)}

SC =
xo

∫

0

(

γ k

k − n(x)
+ tx

)

n(x)dx

s.t.

xo
∫

0

n(x)dx = N.

The solution{n(x), xo} to this optimal control problem involves equating marginal
social cost (with respect ton(x)) for all locations with positive parking.13 Call the marginal

13 We verify that the solution satisfies the non-negativity constraintn(x) � 0.
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social costλ, which is given by differentiating the integrand above, so that

γ k2

[k − n(x)]2 + tx = λ, x ∈ [0, xo]. (7)

Sincen(xo) = 0, then

γ + txo = λ. (8)

This value can now be used in (7) to determine the optimal number of shoppers parking
atx as

no(x)= k

(

1−
√

γ

γ + t (xo − x)

)

. (9)

Clearlyn(x) > 0, for x < xo andn(xo) = 0. The population constraint can then be written
as

xo
∫

0

k

(

1−
√

γ

γ + t (xo − x)

)

dx = N.

Integrating the LHS, we get

k

t

(

2γ + txo − 2
√

γ (γ + txo)
)

= N,

which implicitly determinesxo and hence the other endogenous variables. To find an
explicit expression forxo, it helps to write this last equation using the value ofλ in (8)
ask/t (

√
λ − √

γ )2 = N .
The optimized marginal social cost is therefore equal toλ = (

√
γ +

√
Nt/k )2. This

tells us the optimal value of the location of the last parking place. Substituting this value
of λ in Eq. (8) leads to

xo = N

k
+ 2

√

N

k

γ

t
. (10)

This expression is now to be compared with the (implicit) locationx̂ from the equilibrium
problem (see (4) and (6)).

2.4. Comparison with the unpriced solution

The equilibrium parking arrangement has individual cost equalized at allparking
locations, while the optimum arrangement has marginal social cost equalized. The
differences in these arrangements are described in the following proposition.

Proposition 1. The parking span at the equilibrium with unpriced parking is smaller than
the optimal one. Moreover, there exists a locationx̃ < xo such that more cars are parked
at x in the equilibrium than in the optimum if and only ifx < x̃.

Proof. Recall thatn(x) = k(1 − γ /(c − tx)) (from Eq. (3)), while from (9),no(x) =
k(1− √

γ /(γ + t (xo − x)) ). We shall show that these schedules cross once, atx̃. Indeed,
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there must be at least one crossing because both schedules are continuous, with positive
density atx = 0 and the integral of each of them over its support isN . At any such crossing,
x̃, n(x̃) = no(x̃), and henceγ /(c− t x̃) =

√

γ /(γ + t (xo − x̃)) = φ (i.e., we have called the
common valueφ). Denote derivatives with primes. As we will now show,n′(x̃) < n′

0(x̃),
or

n′(x̃) = −kt

γ
φ2 < − kt

2γ
φ3 = n′

0(x̃).

This is true sinceφ < 2 which is satisfied because (recallx̃ < xo) γ < 4(γ + t (xo− x̃)). The
fact thatn′(x̃) < n′

0(x̃) is true at any crossing implies that there can be only one crossing.
The fact that the equilibrium density slopes down more steeply at the crossing means that
the equilibrium density is above the optimum one forx < x̃ and the converse is true for
x > x̃. ✷

The equilibrium involves tighter parking than is optimal because of the uninternalized
externality associated with parking. At equilibrium, there is more crowding, and hence
excessive search cost,because drivers do not take into account that selecting a parking
spot close to the CBD increases the search cost of a large number of other drivers trying
to park there. This is a variant of the classic common property resource over-grazing or
over-fishing problem; see Gordon [16] for a seminal treatment. Here there is the extra twist
since the resources are ranked by quality—spots closer to the CBD are intrinsically more
desirable. The analogy is that fishermen fish too close to the shore (see Weitzman [21] for
a similar idea). One might also surmise that the lowest apples are overpicked at a common
property orchard.

The optimum involvesunequal treatment of equalsin the sense that different individuals
get different utilities at the optimum. Those who are allocated to park closer to the CBD
get higher utility than those who park further away. The optimum can be decentralized
via pricing of parking. Since parking is more desirable closer to the center, the optimum
parking tariff increases with closeness to the CBD in order to counteract this effect and
reduce the over-congestion that is most pronounced closest to the CBD. We next derive the
optimum parking tariff.

2.5. Optimal parking tariffs

We can use the analysis above to determine the optimum price of a parking lot as a
function of distance from the city. One can think of this as the rate paid at a parking meter.
As we now show, the parking meter rates that decentralize the optimum decrease with
distance from the city center.

The optimal priceτ (x) is equal to the difference between the marginal social cost and
the private cost. Hence, from (2) and (7),

τ (x) =
[

γ k2

[k − no(x)]2
+ tx

]

−
[

γ k

[k − no(x)]
+ tx

]

, (11)
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whereno(x) is the optimal number of cars parked at locationx. Rearranging (11) gives the
optimal (positive) price as

τ (x) = γ kno(x)

[k − no(x)]2
. (12)

Inserting the expression for the optimal parking densityno(x) given by (9) means that
the optimal parking tariff can also be written as

τ (x) = (γ + txo)−
(
√

γ [γ + t (xo − x)] + tx
)

, (13)

with xo given by (10).
The first term of this expression is the marginal social cost of an additional shopper

parking at (any)x given the optimal occupancy (see Eq. (8)). Hence, the second term is the
private cost (as can readily be checked from Eqs. (2) and (9)). The optimal parking tariff is
a decreasing and concave function of distance from the CBD. It is maximum atx = 0, and
zero at the furthest parking place atxo. The shape of the optimal price schedule reflects
the property that the congestion externality diminishes with distance and it does so at an
increasing rate.

2.6. Parking lot operators

We have just seen that the market equilibrium with unpriced parking lots is socially
inefficient. This raises the question as to whether the market mechanism can deliver the
optimal allocation when prices are determined through market forces. The answer is a
qualified affirmative and here we explore the conditions under which this can be the case.

We consider a market where parking lots are managed by parking lot operators. To
approximate a competitive market setting we assume that the parking lots atx are priced
by a single operator who set his price competitively, i.e. by taken the other prices as given.
However, each operator has a degree of market power since he controls all the lots atx.
This leads to a situation that might be termed monopolistically competitive, since there are
many operators and each has local market power. The set-up differs from the standard
monopolistic competition framework because operators are not symmetric in terms of
the market conditions they face. Those located closer to downtown have a competitive
advantage by dint of their more desirable location.14

With parking lot operators, the costC(x) is augmented by a location specific price,
p(x). The equilibrium condition is that this augmented cost, denoted byCm(x) = C(x)+
p(x) for the monopolistic competition case, is equal at all locationsx at which there is
parking and is no lower at any other location.

To determine the equilibrium level ofp(x), we consider the decision problem faced
by the individual parking lot operator. The profit of the operator located atx is π(x) =
p(x)nm(x), with Cm(x) = cm. Here the expressionC(x) is given by (2), wheren(x) is
replaced bynm(x), the number of parkers given monopolistically competitive pricing.

14 In equilibrium, they will also earn more revenue: if operators bid for lots then profits will be driven to zero
and operating revenues will be incorporated in land rents: see Anderson and de Palma [3] for a discussion of the
monocentric city model with parking.
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The operator nonetheless faces a downward sloping demand curve because a lower price
will attract more shoppers, whose presence raises the search cost. It is most convenient to
substitute out for price and determine the operator’s choice of number of parkers to attract.
Doing so yieldsπ(x)= [cm −C(x)]nm(x). The first-order condition is

∂π(x)

∂nm(x)
= p(x)− nm(x)

[

γ k

[k − nm(x)]2
]

= 0. (14)

Clearly, the price charged by the operator is therefore equal to

p(x) = nm(x)
γ k

[k − nm(x)]2
. (15)

This shows:

Proposition 2. Private ownership of parking lots in a monopolistically competitive market
decentralizes the social optimum.

Proof. This result is a direct consequence from the fact that the pricep(x) charged by the
parking lot operators (15), coincides with the optimal priceτ (x) given by (12). ✷

The intuition underlying this decentralization result is that it is a case in which the Coase
theorem works. We know that assigning property rights can alleviate and even solve market
failure in the presence of externalities. However, property rights need to be assignedin such
a way as to preserve a competitive market. Private ownership must be disparate enough as
to preclude market power. Here this means that private owners should be small enough that
they take as given the cost level attainable at all other locations, and have no discernible
effect on that level. What is interesting here is that the individual owners retain the power
to choose the level of parking and its price (given the constraint).

2.7. Numerical results

For comparison purposes we now give a numerical example of the solutions described
in the rest of this section. We use the following parameter values:γ = 10 cents,t = $4/km,
N = 20 000 drivers, andk = 40 000 parking spots per kilometer.

The first benchmark is a technology without search congestion. Suppose that each driver
is assigned a space and can find it costlessly. Then all locations at which there is parking
are fully occupied. The parking span is half a kilometer, and the driver at the furthest away
location pays $2 in transport costs (plus the 10 cents to manoeuver the car into the lot) and
nothing in parking. The other closer locations provide the same level of cost in equilibrium,
so that the parking cost is $2 at the CBD and declines linearly away from there. Equilibrium
values are readily computed for the other scenarios from the equations above.

We first compare to the equilibrium with unpriced parking. The equilibrium cost is
c = $2.42. The parking span isx = 0.58 km and the average occupancy rate is 86%. The
maximum packing of parking (atx = 0) is 96%.

At the social optimum, the average cost (per driver) isSC/N = $1.70. The optimal
parking span ofxo = 0.72 km is considerably larger than at the equilibrium and as a
consequence the average occupancy rate is smaller (69%).
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With monopolistically competitive parking operators, the user cost ofcm = $2.99 is
higher than at the unpriced equilibrium. However, this cost is reduced to $1.70 (which ver-
ifies the value of the socially optimum cost given above) if operator revenue is lump-sum
redistributed. Then the average profit per parking operator is($2.99−$1.70)69%= $0.90.

3. Road congestion from cruising

There are many aspects of parking that have been assumed away in this analysis. These
include dynamic pricing, multiple destinations, and driver heterogeneity in the value of
time, parking duration and desired arrival time. This analysis has focused on the specific
externality that a parker increases the search time of subsequent parkers. However, cars that
are cruising and searching for a parking place slow down other cars passing by. Cruising
cars slow down traffic directly on the main arteries into town if they are searching on those
streets (either for on-street parking or searching for and turning into an off-street parking
lot). They may also slow down traffic on the main arteries if the cruisers are searching in
side-streets: after an unsuccessful search, the car searching for parking must either re-enter
the main stream or cross it to get to another side-street. The more cruising traffic there is,
the greater the slow-down in terms of traffic light delays, traffic flow interference, etc.

Thus the speed at which through traffic can travel is lower the more cars are looking for
somewhere to park. This is a second type of externality germane to the cruising problem.

3.1. A model of cruising for parking

Without congestion from cruising, the user cost isC(x) = S(x)+ tx (see (2)). We now
introduce road congestion by assuming that the driving time taken to traverse the stretch of
road[x, x +!x] is higher the more people are searching for parking in this interval.

The simplest formulation is to stipulate that a cruising car atx induces an extra delay
for all cars crossing[x, x + !x]. We assume that the total delay induced by the cruising
car at locationx is an increasing function of the number of drivers cruising for parking in
this interval. For simplicity, we assume this function is linear, i.e. the additional congestion
is αn(x)!x, whereα is the extra delay cost per cruiser (previously,α = 0). Alternatively,
this amounts to assuming that travel speed is proportional to 1/n(u).

This means that the expected cost incurred by a shopper who parks atx is

C(x) = γ k

k − n(x)
+ tx + α

x̄
∫

x

n(u)du, (16)

wherex̄ is the location of the car parked the furthest away.15 The third term in (16) is a
non-localized externality since drivers atx impact all drivers parking closer downtown.

15 Just ast is interpreted as the net cost of walking over driving, so canα be interpreted as the net burden from
cruising interference of driving over walking. This would allow forα to be negative if many traffic lights slowed
down pedestrians more than drivers. If the shopper gets a subway downtown after parking there is no interference
to pedestrians and soα is positive. For concreteness we treat positiveα in the sequel.
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One advantage of our formulation is that aggregate congestion is independent of the
distribution of those parking. To see this, note that the total cruising congestion cost
is α

∫ x̄

0 n(x)
∫ x̄

x n(u)dudx. Letting G(x) denote
∫ x̄

x n(u)du, we can write this cost as

−α
∫ x̄

0 G′(x)G(x)dx = −α[G2(x)/2]x̄0 = αN2/2, where the last step follows from the
fact thatG(0) = N andG(x̄) = 0. Thus the total cruising congestion cost is constant,
as claimed. This property implies that the solution to the social problem is the same as in
Section 2, whereα = 0. This argument establishes the next result.

Proposition 3. The socially optimal parking configuration is independent of the strength
of the externality on through traffic,α.

This formulation of the externality therefore gives a clean benchmark case for com-
parison of the other market structures with the optimum arrangement.

3.2. Equilibrium with unpriced parking and cruising congestion

The equilibrium condition is thatC(x) (given by (16)) is constant over all locationsx at
which there is parking and that it is no lower at any other location. Since the last locationx̄

involvesn(x̄) = 0, the equilibrium relation between the common equilibrium costc andx̄
is16

c = γ + t x̄. (17)

Clearly, the equilibrium involves a band of on-street parking contiguous to the CBD. Over
this interval, expected cost is constant, so that

dC(x)

dx
= γ kn′(x)

(k − n(x))2
+ t − αn(x) = 0, x ∈ [0, x̄]. (18)

The unique solution of this first-order differential equation is denoted byne(x). Note
that the number of parkers may rise with distance from the CBD,x, if α is large enough:
since drivers wish to avoid congestion from cruisers, they tend to park far away and then
walk. This induces other drivers to act in a similar manner and as a consequence all drivers
end up parking far away. The induced excessive walking time is a source of additional
deadweight loss since locating far away is individually efficient but collectively inefficient
(the total cruising time stays the same). In the sequel, we assume thatαk < t ; in the present
case, this ensures thatn′

e(x) < 0.17 We now turn to the qualitative properties of the solution.

3.3. Comparative static properties of the equilibrium solution

The equilibrium solution has the following comparative static properties that are proved
from Eq. (18) using techniques similar to those used to prove Proposition 1.

16 Similarly, atx = 0, c = γ k/[k − n(0)] + αN .
17 Sincen′

e(x) has the same sign asαn(x)− t , the conditionαk − t < 0 is sufficient, but not necessary to have
n′
e(x) < 0.
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Proposition 4. The equilibrium parking span with unpriced parking is smaller when:

(a) the parking search cost,γ , is lower;
(b) the travel cost differential,t , is higher;
(c) the cruising congestion cost,α, is lower.

Moreover, there exists a locatioñxi , i = a, b, c such that more cars are parked atx in the
equilibrium before the change than after the change if and only ifx < x̃i .

The proof of this and of the next proposition are found in the discussion paper version
at http://www.virginia.edu/economics/papers/anderson/parksubjue3.pdf.

The intuition behind the result is as follows. A lowerγ means that drivers are less
sensitive to parking congestion. The new equilibrium therefore involves more congested
parking at each location close to the city and the total area devoted to parking falls. Ift

rises, walking becomes more of a nuisance relative to driving and parking lots closer in are
more packed. Ifα falls, there is less annoyance from those cruising for parking so shoppers
will tend to drive further in. Again, this creates more intense usage of parking lots further
in.18

3.4. Equilibrium with private parking lot operators

In the absence of cruising for parking affecting travel time, an operator of a private
parking lot has full control over the level of congestion atx and therefore the market
outcome can decentralize the social optimum (Proposition 2). By contrast, with the cruising
externality, there is an additional cost that shoppers who cruise for parking impose on
other drivers who park at other locations (and therefore who are not generating profit atx).
This second externality is not fully internalized by the parking operators since it is not a
localized externality: this cost affects all the cars which park downstream (nearer to the
CBD).

With parking lot operators,C(x) as given by (16) is augmented by a location specific
price p(x). In equilibrium, the resulting cost is equal at all locations at which there is
parking and operators maximize profits. The social planner minimizes the social cost
SC, which is now amended by the additional congestion cost term. As noted in the
Proposition 3, the optimal number of parkers at any location is independent of the
externalityα.

The optimum tariff that decentralizes the social optimum isτ (x) = λ −C(x), or

τ (x) = γ kno(x)

[k − no(x)]2
+ α

x
∫

0

no(u)du.

18 If an improvement in parking information technology allows drivers to improve their search for parking, the
overall social gains may be larger than the simple reduction in the search cost. To see this, recall thatc = γ + t x̄

(by (17)), then the total cost incurred per driver falls by more than the decrease in the search cost,γ , becausēx
also falls (average walking distance falls).
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Therefore the price schedule is the same as in the caseα = 0, plus the term reflecting the
cruising externality that a driver located atx imposes on all the drivers located downstream.

We can now compare with the monopolistically competitive equilibrium.

Proposition 5. The first-best optimal parking span is smaller than the monopolistically
competitive one forα > 0 and the equilibrium span without pricing is always smaller.
Moreover, there exists a locatioñxi , i = (o, e) such that more cars are parked at the
optimum(i = o) or at the equilibrium without pricing(i = e) than at the monopolistically
competitive regime if and only ifx < x̃i; i = o, e.

These results can be understood from inspection of the condition that characterizes the
social optimum:

{

γ kn′
o(x)

[k − no(x)]2
+ t − αno(x)

}

+
{

γ kn′
o(x)

[k − no(x)]3
[

k + no(x)
]

}

+ αno(x) = 0.

The first term in curly brackets stems from the unpriced equilibrium problem is identical to
the condition (18) that characterizes equilibrium there. The monopolistically competitive
case adds the second term in curly brackets, so that setting the first two terms to zero
characterizes equilibrium for monopolistic competition. This second term reflects the
parking congestion effect that is internalized under monopolistic competition. Since this
term is negative, the slope is flatter with monopolistic competition. The final term reflects
the cruising externality not accounted for under monopolistic competition. Since this term
is positive, the gradient at the optimum is steeper than under monopolistic competition.
The fact that the two externalities play in different directions means that either the
monopolistically competitive or the unpriced equilibriummay be closer to the optimum.

3.5. Numerical results with cruising

We use, as before, the following parameter values:γ = 10 cents,t = $4/km, N =
20 000 drivers, andk = 40 000 parking spots per kilometer. We assume thatα = 0.01 cents.

The different solutions are displayed in Fig. 1.19 The four curves represent the
equilibrium solution withα > 0 (thick line); the optimum solution for any value of
α � 0 or the monopolistic competition solution whenα = 0 (diamond); the monopolistic
competition withα > 0 (cross); and the unpriced equilibrium withα = 0 (thin line).

The average cruising cost isαN/2 = $1. Recall that without cruising externalities, the
equilibrium cost in the unpriced equilibrium was $2.42. With the cruising externality, this
rises to $2.73, which is significantly less than the direct congestion externality and reflects
that the unpriced is now closer to the optimum (as can be seen from the figure). Indeed,
the average cost at the social optimum is $2.70 which is just the original $2.70 plus the
dollar for the congestion externality. The unpriced solution is remarkably close to this one.
However, the monopolistic competitive solution now moves away from the optimum to
become too spread out (in contrast to the equilibrium which is still too tight). The social

19 To find the various solutions requires solving first-order differential equations; the constants of integration
are then obtained by numerically solving the constraint that allN shoppers park.
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Fig. 1. Location (vertical axis) versus parkers (horizontal axis).

cost rises from $1.70 to $2.75 and so overshoots the extra dollar of congestion cost. In
this example, the congestion externality is sufficiently severe that it renders the unpriced
solutionmore efficientthan the price solution.

4. Alternative market structures and cost-sensitive demand for shopping

The monopolistically competitive market structure enables the optimal solution to be
attained whenα = 0, but it causes insufficient occupancy close to the CBD whena > 0.
As we have shown, the monopolistic competitor internalizes the local externality from
search for parking at the operator’s location, but does not take into account the externality
from cruising that hampers traffic flows for those parking closer to the CBD. In that sense
the operator sets a local price that is too low. The price distortion is greatest at locations
far away (through which many drivers must pass) because the externality is greatest at
locations the furthest out. The price gradient in monopolistic competition is too shallow,
and the optimal arrangement has more packed parking close to the CBD.

If, instead, all parking were owned by a singlemonopolyfirm then this firm would
internalize all of the externalities, local as well as global. It would then reach the full
socially optimal arrangement of parking. However, monopolies cause distortions when
demands are not perfectly inelastic. This leads us to consider the optimality of the
alternative arrangements when the demand for shopping is no longer fixed atN .

Suppose instead that the number of shoppers depends in a decreasing fashion on the
full cost paid (see also Bacon [7]). Without too much violence to the notation, letN(c) be
the number of shoppers as a function of the full price,c, so this is the downward-sloping
(aggregate) demand for shopping trips. Consider first the optimum problem. The way we
have set this up is to derive the marginal social cost,λ, associated to an allocation. Since
λ is the marginal social cost of an extra shopper, then the optimal number of shoppers is
simply given byN(λ) from the demand curve for shopping. As argued above, this optimum
can be attained with appropriate parking meter fees (and the same is true forα > 0) so that
all individuals pay the marginal social cost when the optimal feesτ (x) are in place. When
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α = 0, we already know that the monopolistically competitive price exactly tracks the
feeτ . This means that the full cost is the same and the full social optimum is attained even
with cost-sensitive demand.

By contrast (still for the caseα = 0), the unpriced market equilibrium involves a lower
cost level paid per shopper at the equilibrium we found with fixedN . This translates into
too many shoppers whenN is variable. At the other extreme, a monopolist of all parking
lots will use its market power to raise the price too high, leading to too little shopping. This
effect will still be present whenα is positive; so, despite the property that the monopolist
will set the right allocation across locations for any given level ofN , it will price too high
in aggregate and deter shopping excessively.

Finally, one could consider intermediate degrees of market power between monopolistic
competition and monopoly. Firms might be envisaged as each controlling a tranche of
locations. Although we do not formally consider this case, it seems straightforward to
conjecture that the resulting allocation lies between the monopoly and monopolistic cases,
drawing the benefits and disadvantages from each. That is, prices tend to be too high from
the market power side, but allocations are improved the larger the tranche controlled by a
firm because then the cruising externality is internalized to a greater degree.

5. Conclusion

The economics of unassigned parking pose a common-property resource problem. If
parking is unpriced (or priced independently of location) then the market equilibrium will
overused the resource where it is most valuable (at the CBD) and the parking gradient will
tail off too fast. If there is no pricing at all, too many shoppers will be attracted tothe CBD.
The socially optimal configuration can be attained under private ownership of the parking
lots. This is not a great surprise from the Coase theorem, although the form of market
structure (which we can think of as linked to the way in which the private ownership must
be structured) needed to get the optimum is more intricate. First, agents need to be small
enough (i.e., own few enough parking lots) to act competitively by taking as given the
utility level that can be attained by drivers. Second, they need to be large enough to be able
to internalize the local externality in parking congestion. This means they must control
the lots at a given location. Each parking lot operator therefore acts in a monopolistically
competitive manner, taking as given the overall utility constraint but with the power to
set price given that occupancy will adjust. If lot owners are larger, and have more market
power, they will tend to set prices too high and so there will be too little shopping activity.
However, a full monopoly owner will fully internalize the problem of cruising activity that
adversely impacts the road speed of drivers parking elsewhere. The small-scale owners
will not do this. This gives a trade-off between efficiency across locations (that the full
monopoly gets right) versus overall too high prices (that the monopoly encourages).

There are other reasons for not using a market solution for on-street parking. One is the
transaction cost involved if there are many small-scale operators—think for example of the
enforcement problem of parking without paying. Arguably too, local governments have
wider objectives in their parking policy than simple efficiency. For example, many parking
meters have a (short) time limit and regulations against coming back to “feed” them. Even
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if someone—a commuter, say, who wants to park from dawn till dusk—is willing to pay
more than what individual short-term users would pay over the day, he is barred from doing
so. Arguably the local government is encouraging shopping at downtown establishments;
and subsidies are needed because of shopping externalities and other implicit subsidies and
market failures in other sectors.

However, Internet markets may provide a workable solution to the common property
problem. To fix ideas, suppose there were a planner who could costlessly allocate a specific
parking spot to each shopper. Then there would be no search costs (apart from finding
one’s designated place!). Such a planner would allocatek cars to each location. This is the
full first-best optimum, without the search technology constraint. This first-best optimal
solution might be decentralized in a market system if property rights are properly defined
and transaction costs are zero (or, hopefully, sufficiently low). Defining property rights
means having owners for the parking spaces, and, as we have discussed, we need a large
number of owners for this to be done efficiently in the private domain (although one could
also imagine that public ownership can still be viable with an auction system).20 For market
transactions to be low-cost, we need to have a fluid spot market for parking lots. One might
envisage such a market developing over the Internet, with parking lots auctioned off to the
highest bidder. There are some obvious benefits from such a system. Clearly eliminating
cruising reduces aggregate walking time, road congestion and practically eliminates search
time. However, for the Internet solution to be practical would require mass access by
shoppers. It might also need substantial monitoring and enforcement costs, especially in
the early stages.

The model of this paper has taken the number of parkers and parking spots as
exogenous. In a companion paper (Anderson and de Palma [3]) we embed the current
parking technology in a mono-centric city model with commuters and endogenous land
use. This gives in equilibrium an inner ring next to the CBD comprising parkinglots; next
out is a ring of residential housing whose residents walk to work. Finally, there isan outer
ring of residential housing for those who drive to a parking lot and then walk in to the
CBD. Note in this model that land rents falls off away from the CBD and adjust so that the
parking lot operators earn zero profit. Furthermore, we show that the equivalence between
the social optimum and the monopolistically competitive solution continues to hold when
there is no cruising congestion.

The model can be usefully expanded to deal with roads and road pricing. Road
congestion has only been addressed obliquely via the cruising cost externality. But road
congestion also typically depends on the number of vehicles on the road at a particular
point (and downstream, in case of bottlenecks). We have assumed that the amount of
parking space is exogenous. However, on-road congestion is eased if parking places are
converted to road lanes. Road pricing should also optimally be used in conjunction with
parking pricing. This direction leads us to consider how road pricing might be used if
parking is unpriced (or is constant over locations). Parking externalities can be directly

20 We showed in Section 3 that the monopolistically competitive (diverse ownership) solution diverges from
the social optimum whenα > 0 (congestion from cruising). However, if parking lots are perfectly assigned, there
would be no cruising. So then there would be no congestion from cruising and the diverse ownership equilibrium
would coincide with the first-best optimum.
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affected by the road price. For example, in our model, the optimal price charged for using
the road up to locationx would simply be the parking tax we have derived (see (12)).
Conversely, in the absence of road pricing, parking tariffs can affect road congestion. This
needs to be investigated more fully in a model with both local and through traffic (see
Glazer and Niskanen [15]), and with route choices endogenous (see also Carrese et al. [9]).

Driver length of stay has no role in our model, and we focus on distance from the
CBD as the key determinant of parking externalities. By contrast, Arnott and Rowse [5]
concentrate on the time dimension by suppressing distance from a common destination.
Likewise, time plays a key role in Calthrop, Proost and Dender [10] and Calthrop and
Proost [11]. Both dimensions ought to be jointly considered. This would allow the analysis
of time restrictions (as with many parking meters) and prices that are non-linear over time,
and how these instruments can be used to complement the distance component of optimal
pricing.

Other extensions include a detailed treatment of the interaction between on-street and
off-street parking (in particular, to consider that raising on-street parking rates will induce
some drivers to drive directly to a parking garage without cruising for parking, which
reduces congestion), parking policy in the presence of heterogeneity of individuals (in
terms of origin, destination or time costs: see also Adler [1]), and optimal parking violation
policy.
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