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To better understand bicyclists’ preferences for facility types, GPS units were used to
observe the behavior of 164 cyclists in Portland, Oregon, USA for several days each. Trip
purpose and several other trip-level variables recorded by the cyclists, and the resulting
trips were coded to a highly detailed bicycle network. The authors used the 1449 non-exer-
cise, utilitarian trips to estimate a bicycle route choice model. The model used a choice set
generation algorithm based on multiple permutations of path attributes and was formu-
lated to account for overlapping route alternatives. The findings suggest that cyclists are
sensitive to the effects of distance, turn frequency, slope, intersection control (e.g. presence
or absence of traffic signals), and traffic volumes. In addition, cyclists appear to place rel-
atively high value on off-street bike paths, enhanced neighborhood bikeways with traffic
calming features (aka ‘‘bicycle boulevards’’), and bridge facilities. Bike lanes more or less
exactly offset the negative effects of adjacent traffic, but were no more or less attractive
than a basic low traffic volume street. Finally, route preferences differ between commute
and other utilitarian trips; cyclists were more sensitive to distance and less sensitive to
other infrastructure characteristics for commute trips.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Non-motorized travel options have been largely ignored in regional transportation planning and travel demand modeling
in the US, where decisions on more resource-intensive investments in highway and transit facilities have been of primary
concern. Recently, however, policy maker interest in sustainable transportation and healthier lifestyles has shifted some
of the focus to bicycling and walking and the extent to which the urban travel environment supports these modes. This shift
raises questions about what types of infrastructure and policies may increase levels of bicycling for transportation and by
how much, though the evidence answering these questions is scarce (Pucher et al., 2010; Yang et al., 2010).

Cities that are investing in bicycle infrastructure are faced with decisions of where to invest and what type of facility to
install, e.g. bike lanes or separate paths. Several aggregate-level studies have found positive correlations between bike lanes
and overall levels of bicycling (Dill and Carr, 2003; Nelson and Allen, 1997; Parkin et al., 2007; Pucher and Buehler, 2005), but
studies at the individual level have been far less conclusive (Cervero and Duncan, 2003; de Geus et al., 2008; Dill and Voros,
2007; Krizek, 2006; Vernez-Moudon et al., 2005). Some individual-level revealed preference studies have found a correlation
between cycling and proximity to separated paths (Vernez-Moudon et al., 2005) or that cyclists go out of their way to use
paths, indicating their value (Howard and Burns, 2001; Krizek et al., 2007), though other studies do not (Aultman-Hall et al.,
1998; Krizek, 2006). Studies that ask people their preferences often find preferences for more separated facilities (e.g. paths
. All rights reserved.
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or cycletracks) over striped lanes or no facilities (Bohle, 2000; Emond et al., 2009; Jensen, 2007; Rose and Marfurt, 2007;
Shafizadeh and Niemeier, 1997; Winters and Teschke, 2010).

There is some evidence that facility preferences vary by individual characteristics. Studies asking individual preferences
have found that experienced cyclists prefer lanes over separate paths (Akar and Clifton, 2009; Antonakos, 1994; Bureau of
Transportation Statistics, 2004; Hunt and Abraham, 2007; Stinson and Bhat, 2003; Tilahun et al., 2007) or that they have a
weak or no preference for lanes at all (Sener et al., 2009; Taylor and Mahmassani, 1996). There is some evidence that women
and less-experienced cyclists have a higher preference for more separated facilities and avoiding high traffic volumes or
speeds (Garrard et al., 2008; Jackson and Ruehr, 1998; Winters and Teschke, 2010). However, much of the evidence about
relative preferences (e.g. paths vs. lanes) is based upon stated preference survey techniques, rather than revealed preference
data, and sometimes ignores the realities of what networks are available for any particular trip.

The lack of good data linking types of bicycle infrastructure to cycling behavior is one reason the primary tool transpor-
tation agencies use to evaluate investment options – a regional travel demand model – typically does not address bicycling
well, if at all. To our knowledge, many models employed in North America do not include bicycling in all steps of the process,
e.g. trip generation, mode choice, route choice, and network assignment. Non-motorized trips are often combined (walking
and bicycling) and left out after the mode choice step. When cycling is included, a typical practice has been to assume that
cyclists choose the minimum-distance path between origins and destinations using a fixed travel speed (Larsen and El-Gene-
idy, 2011). This approach ignores network features, such as slope, traffic volumes, and the presence of on and off-street bike-
ways, and does not differentiate between bicycle trip purposes.

This paper presents findings from a bicyclist route choice model that reveals the relative attractiveness of different types
of facilities, as well as the effect of traffic control devices (e.g. stop signs and signals) and topography on route choice. The
model was developed using global positioning system (GPS) data collected from 164 bicyclists over the course of several
days in Portland, OR. We only analyze data from utilitarian trips, such as commuting, shopping, eating out and errands,
as route choice decisions are different for non-utilitarian (or ‘‘exercise’’) bicycling. In the remainder of this paper we review
the existing literature on bicycle route choice modeling; describe the person, GPS, and network data used in model devel-
opment; briefly explain important modeling assumptions regarding choice set generation and overlapping alternatives;
and present the model specification and estimation results. Finally, we conclude with an assessment of what we believe
to be the important modeling and policy implications of this research and suggest possible avenues for further development
of the model.
2. Methods

2.1. Previous research on bicycle route choice modeling

The methods used in bicycle route choice research have evolved over time. Much of the early work focused on only a few
variables and did not employ multivariate analysis methods (Sener et al., 2009). The dominant data collection method has
been stated preference (SP) surveys. At their simplest, SP surveys ask respondents to rank or rate their preferences for dif-
ferent types of facilities. More sophisticated SP surveys give side-by-side route options from which to choose; the options are
designed to force the respondent to trade off presumably positive features, such as a separated bike path, with longer travel
times. Several studies have used these techniques applied to bicycle route choice (Hunt and Abraham, 2007; Krizek, 2006;
Sener et al., 2009; Stinson and Bhat, 2003).

Stated preference methods are appealing for several reasons. Data collection is often easier or less expensive, compared
with asking respondents to recall actual routes or equip participants with GPS devices. Detailed travel network data are
unnecessary. There is no need to solve the formidable problem of generating alternative routes on a real network, though
devising revealing pairs of route options can be challenging. Model specification and estimation are also simpler due to
the ‘‘clean’’ data and limited number of alternatives. From a policy perspective, SP surveys allow researchers to test rare
or nonexistent options that are not possible with revealed preference data. There are drawbacks to stated preference data
for cyclist route choice. It is difficult to know how well a participant can map these textual or pictorial representations to
her preferences for real facilities. Many salient features of a route are sure to be missing on a piece of paper or computer
screen. Also, although the choice set is in a sense controlled, it seems likely that respondents have in mind their own usual
routes as points of comparison. Landis et al. (1998) conducted an interesting variation on the typical stated preference meth-
od. Participants actually rode predefined alternative routes before evaluating each. There still may be a problem assuming
cyclists can evaluate an unknown route in the same way they do a familiar one, but the technique does promise greater real-
ism. Strategic bias is a possibility if participants think responses might influence policy outcomes. None of this is to say sta-
ted preference studies are not useful and the results valid, only that their advantages in execution involve tradeoffs.

A handful of revealed preference studies have been undertaken on this topic, but in general they are limited studies that
do not estimate a full route choice model. Most commonly, cyclists have been asked to recall routes. The routes are then
compared with pre-selected routes based on shortest paths or other definitions of optimal paths (Aultman-Hall et al.,
1998; Howard and Burns, 2001; Larsen and El-Geneidy, 2011; Winters et al., 2010). For example, Larsen and El-Geneidy
(2011) collected route data on common bike trips from cyclists in Montreal, Canada and compared them to the shortest path.
These studies have the advantage of using actual routes and network data. The ability of cyclists to accurately recall routes is



1732 J. Broach et al. / Transportation Research Part A 46 (2012) 1730–1740
a question, but it may be quite accurate for habitual routes like commute trips. The larger shortcoming of these studies is the
limited choice sets and lack of compensatory choice models. An exception is the recent work of Menghini et al. (2010) that
developed a cyclist route choice model using GPS data from Zurich, Switzerland. Bicycle mode had to be imputed from the
data, and no person or trip purpose characteristics were available, although the authors were able to construct some person
variables from the GPS data (e.g. average speed). Network data were limited to distance, slope, traffic lights, and a variable
for designated bike routes.
2.2. This study’s data and methods

This research relies on GPS data collected from March through November 2007, by 164 bicyclists recruited using a variety
of non-random methods from throughout the Portland, OR metropolitan area (for more information on sampling, see Dill,
2009; Dill and Gliebe, 2008). Each participant completed a survey with questions about demographics, bicycle travel pat-
terns, and attitudes prior to screening for participation in the GPS data collection. The participants were primarily regular
cyclists who reported riding more than 1 day per week, year-round. Although regular cyclists are more likely to be male
(80% according to the phone survey), we oversampled women, resulting in a GPS sample composed of 44% females. Among
all respondents, 89% were between the ages of 25 and 64. Compared with a random phone survey of adults about bicycling in
the region (Dill and Voros, 2007), the GPS participants were slightly older, were more likely to have a college degree, had
higher incomes, and were more likely to have full-time jobs than other regular cyclists. They were also more likely to live
in a two-person household. Only 7% lived in a household without a car. This was by design. The sample purposely favored
cyclists who had an option to drive.

Participants were outfitted with small hand-held GPS devices, which they clipped onto their bicycles. The devices were
programmed for the participant to enter both weather and trip purpose at the beginning of each trip and to indicate whether
the bicycle was being taken on transit or another motor vehicle. The device recorded the location every 3 s. Once returned,
the data were downloaded and processed, resulting in maps for each bicycle trip recorded. Participants then viewed each trip
on a website and answered questions about the trip, including accuracy and route choice preferences. The former was used
to correct the GPS data and account for under counting of bicycle travel.

GPS traces were matched to network links using ArcGIS and custom scripts written in the Python programming language.
The network developed for this research included about 88,000 undirected links and 66,000 nodes. This network was con-
structed as much as possible to include all links available for bicycle travel. This included a large number of links not usually
found in an auto travel modeling network such as minor residential streets, off-street bike and multiuse paths, alleyways,
and some private roads explicitly open to bicycles. The bike network did not include facilities where bicycle use was legally
restricted, mainly urban freeways. The base network was provided by Oregon Metro, the regional planning organization.
Numerous improvements were made to allow us to link the GPS trip data to the network and to allow for route choice mod-
eling. Particular attention was paid to coding overpasses, underpasses, and one-way streets correctly. In some cases, links
had to be added to the network where ‘‘cut-throughs’’ and other informal or unmapped links were used by the participants.
Spurious u-turns caused by GPS signal ‘‘bounce’’ were eliminated. After several screening steps, 1449 trips were available for
this analysis. The data set did not include trips made exclusively for exercise purposes (e.g. a 15-mile loop ride) or trips that
included transit. A full report describing the GPS data collection methods and the processes used to prepare the data is avail-
able (Dill and Gliebe, 2008).

For the route choice models, several network characteristics (‘‘attributes’’) were added to the data. The City of Portland
provided interpolated average daily traffic volumes for nearly all streets in the study area based on automated count data.
The available volume estimates were used to estimate missing link volumes based on functional class. Turns were calculated
using a combination of street name and geometry. A 10 m digital elevation model (DEM) was used to measure elevation gain
and loss at roughly 10 m increments along each link. Bicycle facilities, grade separation, intersection control, and one-way
restrictions were provided by Oregon Metro. When generating route alternatives, one-way streets were treated as open to
bicycling but with additional impedance based on an observed speed reduction of 41%.

After screening out cyclists with only exercise trips, our dataset included observations for 154 participants over multiple
trips. During the study, participants recorded an average of 2.5 non-exercise bicycle trips per day. About 30% of trips were
commute trips (home to work or work to home). The average trip distance was 2.2 miles (3.5 km) for non-commute trips
(e.g. shopping, errands, etc.) and 3.7 miles (6 km) for commute trips. Average speed (including stops) was 10 miles/h
(16.1 km/h) for non-commute trips and 11.8 miles/h (19 km/h) for commute trips. In comparison, the sample of Zurich, Swi-
terland trips in Menghini et al. (2010) averaged 0.62 miles (1 km) at 6.3 miles/h (10.1 km/h).

A little more than half (53%) of recorded miles were ridden on facilities with bicycle infrastructure, including bike lanes
(29%), off-street paths (13%), and bike boulevards (11%). Bike boulevards are residential streets with traffic calming features
to reduce auto speeds and volumes (e.g. speed humps, one-way restrictions on autos, chicanes, etc.), while giving bicycles
increased priority at intersections, e.g. by eliminating stop signs in the boulevard direction and ‘‘flipping’’ them to the
cross-direction traffic and adding crossing aids, including signals, at busy intersections. Observed paths were on average
somewhat longer than the shortest network paths: by 12% for non-commute trips and 11% for commute trips. Further
descriptive analysis is available in a separate report (Dill and Gliebe, 2008).
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2.3. Choice set generation and model specification

Generating the set of alternative routes considered raised several challenges. The size and density of the Portland bicycle
travel network greatly increased the task’s complexity. In addition, the lack of existing revealed preference bicycle route
choice studies demanded a careful rethinking of existing generation techniques. Common algorithms based on travel time
and street hierarchy were not directly applicable, since bicycle travel times are not affected by speed limits, congestion,
and functional class in the same ways as auto travel times.

We experimented with three common choice set generation methods: K-shortest paths, simulated shortest paths, and
route labeling, none of which proved entirely satisfactory. The first two methods were developed for use with sparse auto
networks. When applied to our bike network, they produced behaviorally unrealistic paths (e.g. paths that left and returned
to the same corridor many times). We attempted to modify the methods using turn penalties, but the results remained poor
both in terms of reasonableness and the reproduction of observed routes. Route labeling, in which a series of route attributes
are minimized or maximized, produced behaviorally reasonable routes but produced only one or two alternatives for an
unacceptably large number of routes. Initial model estimates with the route labeling choice sets suggested high sensitivity
to the distance weighting factors specified.

Based on these experiments and our own hypotheses about bicyclists’ choice set generation process, we developed a
modified method of route labeling that would improve both attribute variation and reasonableness of routes for our unusu-
ally dense network (Broach et al., 2010). Route alternatives were chosen by maximizing individual criteria (e.g. percentage of
route on designated bicycle facilities), subject to multiple distance constraint values within a defined range instead of a sin-
gle arbitrary value as traditionally used in route labeling. The resulting shortest path deviations were calibrated to the entire
sample of observed deviations to ensure that alternatives were reasonable and consistent with observed cyclist behavior.
The new method reproduced a larger portion of observed routes than existing methods and did so more efficiently than
the K-shortest path and simulation techniques. Readers are directed to the cited article for a full description of the calibrated
labeling method and its behavioral rationale.

Applied to our bicycle travel network, the choice set generation algorithm produced a median of 20 alternative paths for
each trip. The number of alternatives varied across choice situations, increasing with both trip distance and network density.
For a small number of trips (15 out of 1464), no alternative to the chosen route was found. These ‘‘captive’’ trips were not
included in the model estimation, since by our criteria the cyclist had no reasonable alternative route to choose.

Where alternate paths share common links, they also presumably have correlated error components. This violates the
multinomial logit (MNL) model assumption of independently distributed errors across alternatives. From a statistical point
of view, a MNL route choice model will tend to assign counter-intuitively high probabilities to routes that share common
network links. From a behavioral point of view, we might say that the MNL considers overlapping routes distinct alterna-
tives; whereas, cyclists may consider such routes jointly as minor variants of a single alternative. There are two options
to overcome the overlapping routes problem (Frejinger and Blerlaire, 2007). A correction factor can be applied to partially
adjust the utilities for overlap, leading to the Path-Size Logit (PSL) model. Alternatively, more complex model forms may
be specified that allow for correlated errors, including the multinomial probit model, mixed logit models, and closed-form
members of the generalized extreme value (GEV) class of models.

Due to the very large number of potential alternatives, we chose the PSL approach, retaining the underlying MNL struc-
ture. We recognized the need to be able to apply the model for prediction across a very complex, detailed network. This
requirement made the specifications of overlapping route calculations and nest memberships needed for the various probit,
mixed logit, and GEV models seem somewhat intractable over such a large computational space. In addition, it has been
shown that more complex model forms may be particularly inconsistent when only a small proportion of potential alterna-
tives can be sampled (Nerella and Bhat, 2004).

A path size factor was calculated directly from route alternatives and network geometry, avoiding direct calculation of
correlations across alternatives. The general form for the j alternatives in choice set Cn is specified as:
PSin ¼
X
a2Ci

la

Li

1P
j2Cn

Li
Lj

� �c
daj

ð1Þ
where Ci are the links in alternative i, la is the length of link a, Li is the length of alternative i, and daj equals 1 if j includes link
a (Frejinger and Blerlaire, 2007). The parameter c is a positive scaling term meant to penalize very long routes in a choice set.
Fixing or estimating c > 0 has been shown empirically to improve route choice model fit (Bekhor et al., 2006; Hoogendoorn-
Lanser et al., 2005; Prato and Bekhor, 2006, 2007); however, it has recently been shown that c > 0 can result in questionable
utility corrections and illogical path probabilities (Frejinger and Blerlaire, 2007). In addition, our choice set generation meth-
od makes it unlikely that improbably long alternative paths will be included in our analysis. For these reasons, the path-size
correction factor in Eq. (1) is used with c = 0, essentially dropping the long-path correction factor and yielding the basic Path
Size Logit (PSL) model (Ben-Akiva and Bierlaire, 1999).

While relatively simple, the PSL model has been shown to perform well relative to more complex model forms such as the
cross-nested logit (CNL), although existing comparisons were performed with the generalized PS factor including c > 0 (Bek-
hor et al., 2006; Prato and Bekhor, 2006, 2007). While nested logit models should outperform the PSL specification, they are
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limited in real network applications due to the huge number of parameters that would have to be estimated to exploit their
full flexibility (Bekhor et al., 2006; Frejinger and Blerlaire, 2007).

This paper presents results obtained from the following specification of the Path Size Logit probability for alternative
route i for observation n given choice set Cn is specified as:
PrðijCnÞ ¼
expVinþlnðPSinÞP

j2Cn
expVjnþlnðPSjnÞ

ð2Þ
where PS is the path size factor from Eq. (1) with c = 0. Since PS will always fall between 0 and 1, ln(PS) will be negative,
consistent with a utility reduction proportional to the degree of overlap. The utility function is linear-in-parameters.

It is likely that an individual’s series of route choices are correlated to some extent. The inclusion of multiple trip purposes
and the generally short period of observation probably limit such correlation. Furthermore, an investigation of commute trip
sequences, which we might expect to be the most regular, showed noticeable route choice variation across trips. It did not
seem as though these cyclists were ‘‘locked in’’ to a fixed route.

Controlling for potential panel effects in discrete choice models with unlabeled alternatives (i.e. alternatives that vary
across observations) requires complex model forms with properties that are not entirely understood (Hsiao, 1986; Train,
2009). We tested mixed logit specifications that included individual-specific effects. Results suggested that mean parameter
values were not particularly sensitive to panel effects, although there was evidence of some unobserved heterogeneity in the
data. The mixed logit estimations exhibited instability, and there are general concerns about effects of distributional
assumptions and estimator consistency when sampling alternatives from a large choice space (Hensher and Greene,
2003; Nerella and Bhat, 2004). For these reasons, further examination of panel effects and unobserved heterogeneity was
left for future research, and trips were assumed to be independent for this analysis.

3. Results and discussion

Table 1 describes the variables used in the route choice model, including mean values and the proportion of alternative
paths (out of a total of 29,090 paths) for which the variable is present. Table 2 presents the full estimation results from our
final model specification. Estimation was performed using the freely available BIOGEME software (Bierlaire, 2003).

Since distance enters the model in log form, each of the other variables in the model have marginal rates of substitution
that are constant with respect to the natural log of distance. The disutility of additional distance diminishes as distance in-
creases but remains constant with respect to the percent change in distance. Table 3 presents the estimation results in terms
of this distance trade-off, which may be thought of as the distance value of a unit change in each variable. The equivalent
percent change in distance is non-linear with respect to the change in a given attribute, and can be calculated for non-unit
changes using following equation:
Equivalent %D distance ¼ Exp Dattribute � b attributes
b lnðdstÞ

� �
� 1

� �
� 100 ð3Þ
where b is the estimated coefficient. In addition, Table 3 presents results for two separate models – commute trips and non-
commute trips – which reveal some differences in route choice preference depending upon trip purpose.

3.1. Effects of route and facility characteristics

As expected, cyclists prefer shorter routes, holding other attributes equal. Log distance outperformed other distance spec-
ifications, suggesting that relative rather than absolute route deviations are what matter to cyclists. This result has some
behavioral appeal. Implied is that a cyclist would be equally likely to go 1 mile out of her way on a 5 mile trip as 0.2 miles
out of her way on a 1 mile trip. In other words, a fixed distance, say 1 mile, is perceived as more costly the shorter the trip. All
else equal, a 1% increase in distance reduces the probability of choosing a route by about 5% and 9% for non-commute and
commute trips, respectively. That cyclists are highly sensitive to distance is consistent with the observed data. Half of all
observed trips were less than 10% longer than the shortest path, and 95% of trips were less than 50% longer.

Travel times in our sample were highly correlated with distance (r = 0.93) such that the two were more or less inter-
changeable. That said, there are probably some minor travel time effects embedded in some of the non-distance variables,
particularly turns, intersections, and slope. The coefficients for these non-distance variables should be interpreted as the
combination of travel time and non-travel time (e.g. perceived safety, effort, pleasantness, etc.) effects.

Turns likely delay cyclists, and they also add the mental cost of having to remember the correct sequence of turns. As
expected, turn frequency is a significant negative factor in route choice. Once difficult left turns (across moderate to heavy
traffic without a traffic signal) were accounted for, left and right turns were not significantly different, which seems reason-
able. The model predicts that an additional turn per mile (0.6 turns/km) is equal to a 7.4% increase in non-commute distance
and a 4.2% increase in commute distance.

Intersection crossings often delay cyclists, though the presence of a traffic control device (signal or stop sign) has an
important bearing on the amount of delay. Depending on the amount of conflicting traffic, signals might be attractive fea-
tures for cyclists trying to travel through or make turns across busy intersections. Significant negative coefficients confirm



Table 1
Variable descriptions.

Variable Description M Proportion of alternative paths for which
attribute is present (np = 29,090) (%)

Bridge w/bike lane Bridge with on-street bike lane Du y
va le

5

Bridge w/sep. facility Bridge with improved, separated bike facility Du y
va le

22

Prop. upslope 2–4% Proportion of route along links with average upslope (gain/length) of 2–4% 0.1 90
Prop. upslope 4–6% Proportion of route along links with average upslope (gain/length) of 4–6% 0.0 70
Prop. upslope 6%+ Proportion of route along links with average upslope (gain/length) of 6%+ 0.0 68
Distance (mile) Distance of route in miles 4.4 100
Path size (0–1, 1 = unique) Path size (formula provided in text) 0.3 100
Left turn, unsig., AADT 10–20k

(mile)
Left turn without traffic signal and parallel traffic volume 10,000–20,000 per day 0.1 36

Left turn, unsig., AADT 20k+(/
km)

Left turn without traffic signal and parallel traffic volume 20,000+ per day 0.0 18

Prop. bike boulevard Proportion of route on designated bicycle boulevard (improved neighborhood street with traffic
calming, diversion, signage, and enhanced right of way)

0.1 53

Prop. bike path Proportion of route on off-street, regional bike path (i.e. not minor park paths, sidewalks, etc.) 0.0 41
Prop. AADT 10–20k w/o bike

lane
Proportion of route on streets with traffic volume 10,000–20,000 per day without a bike lane 0.0 73

Prop. AADT 20–30k w/o bike
lane

Proportion of route on streets with traffic volume 20,000–30,000 per day without a bike lane 0.0 46

Prop. AADT 30k+ w/o bike lane Proportion of route on streets with traffic volume 30,000+ per day without a bike lane 0.0 26
Traffic signal exc. right turns

(mile)
Left turns and straight movements through traffic signals per mile 1.8 90

Stop signs (mile) Turns or straight movements through stop signs per mile 3.1 95
Turns (mile) Left and right turns per mile 3.6 100
Unsig. cross AADT 10k+ right

turns (mile)
Right turns at unsignalized intersections with cross traffic volume 10,000+ per day 0.1 44

Unsig. cross AADT 5–10k exc.
right turns (mile)

Left turns and through movements at unsignalized intersections with cross traffic volume 5000–10,000
per day

0.5 72

Unsig. cross AADT 10–20k exc.
right turns (mile)

Left turns and through movements at unsignalized intersections with cross traffic volume 10,000–
20,000 per day

0.4 72

Unsig. cross AADT 20k+ exc. right
turns (mile)

Left turns and through movements at unsignalized intersections with cross traffic volume 20,000+ per
day

0.1 52
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Table 2
Route choice model estimation results.

Variable Est. coeff. t-Stat

Ln(distance) �5.22 �10.9**

Ln(distance) � commute �3.76 �5.14**

Turns (mile) �0.371 �15.4**

Prop. upslope 2–4% �2.85 �4.57**

Prop. upslope 4–6% �7.11 �6.11**

Prop. upslope P6% �13.0 �8.57**

Traffic signal exc. right turns (mile) �0.186 �5.73**

Stop sign. (mile) �0.0483 �2.10*

Left turn, unsig., AADT 10–20k (mile) �0.782 �4.19**

Left turn, unsig., AADT 20k+ (mile) �1.87 �4.70**

Unsig. cross AADT P10k right turn (mile) �0.338 �2.32**

Unsig. cross AADT 5–10k exc. right turn (mile) �0.363 �5.39**

Unsig. cross AADT 10–20k exc. right turn (mile) �0.516 �5.39**

Unsig. cross AADT 20k+ exc. right turn (mile) �2.51 �11.5**

Prop. bike boulevard 1.03 5.17**

Prop. bike path 1.57 4.64**

Prop. AADT 10–20k w/o bike lane �1.05 �3.02**

Prop. AADT 10–20k w/o bike lane � commute �1.77 �2.28*

Prop. AADT 20–30k w/o bike lane �4.51 �6.04**

Prop. AADT 20–30k w/o bike lane � commute �3.37 �2.24*

Prop. AADT 30k+ w/o bike lane �10.3 �4.67**

Prop. AADT 30k+ w/o bike lane � commute �8.59 �1.96*

Bridge w/bike lane 1.81 �4.71**

Bridge w/sep. bike facility 3.11 �4.96**

Ln(path size) 1.81 20.78**

Number of observations 1449
Null log-likelihood �4058.7
Final log-likelihood �3020.0
Rho-square 0.256

* Significant at the 5% level.
** Significant at the 1% level.

Table 3
Relative attribute values (unit change).

Attribute Distance value (% dist.)

Non-
commute

Commute

Turns (mile) 7.4 4.2
Prop. upslope 2–4% 72.3 37.1
Prop. upslope 4–6% 290.4 120.3
Prop. upslope P6% 1106.6 323.9

Traffic signal exc. right turns (mile) 3.6 2.1
Stop sign. (mile) 0.9 0.5
Left turn, unsig., AADT 10–20k (mile) 16.2 9.1
Left turn, unsig., AADT 20k+(mile) 43.1 23.1
Unsig. cross AADT P10k right turn (mile) 6.7 3.8
Unsig. cross AADT 5–10k exc. right turn

(mile)
7.2 4.1

Unsig. cross AADT 10–20k exc. right turn
(mile)

10.4 5.9

Unsig. cross AADT 20k+ exc. right turn
(mile)

61.7 32.2

Prop. bike boulevard �17.9 �10.8
Prop. bike path �26.0 �16.0
Prop. AADT 10–20k w/o bike lane 22.3 36.8
Prop. AADT 20–30k w/o bike lane 137.3 140.0
Prop. AADT 30k+ w/o bike lane 619.4 715.7
Bridge w/bike lane �29.3 �18.2
Bridge w/sep. bike facility �44.9 �29.2
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that, in general, traffic signals and, to a lesser extent, stop signs decrease the utility of a route. However, where conflicting
traffic volumes are high, the larger negative coefficients on unsignalized intersection movements imply that the positive ef-
fects of signals outweigh the negative in such locations. Whether this is because signals actually reduce delay at busy inter-
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sections, because they increase perceived safety, or some combination of the two is unclear. Right turns were excluded from
most of the variables because such movements avoid most of the traffic conflicts and delays. Model fit with different spec-
ifications supported this distinction. On a 1 mile non-commute trip, a cyclist would be willing to travel about 10.4% out of
her way to avoid an unsignalized crossing where cross traffic averaged 10,000–20,000 vehicles per day (5.9% for a commute
trip). To avoid a left turn at an unsignalized intersection with through traffic volume of 10,000–20,000 vehicles per day, a
cyclist would be willing to travel about 16.2% (9.1% commute) farther on a 1 mile trip. To our knowledge, this is the first such
result demonstrating the importance to cyclists of signalized intersections at busy street crossings.

Many permutations of elevation change and slope were tested, including cumulative gain and loss, average and maximum
slope, and several non-linear slope variables. The best performing specification was proportion of route length within three
categories of average positive slope (gain/distance): 2–4%, 4–6%, and 6%. For example, a link traversing 500 ft (150 m) with
10 ft (3 m) gross gain along the traversal would have an average upslope of 2% and would be coded as 500 ft (150 m) in the
2–4% upslope category. Our model indicates that a cyclist would be willing to pedal 1.72 flat miles (1.37 miles commuting) if
the alternative were 1 mile of 2–4% upslope.

Four bike-specific facility types were included in the final model: bike boulevards, off-street bike baths, bike lanes, and
separated bike facilities on bridges. In addition, bike lanes were further divided into categories based on traffic volumes, and
a separate category for bridge bike lanes was included. In Portland, bike boulevards are always on low traffic, neighborhood
streets. Bike paths by definition have no motorized traffic. Designated bike routes were also tested as a facility type. As ex-
pected, these unimproved bike routes (streets with signage, but no other improvements) were insignificant factors once the
other variables were included in the model.

The models showed a preference for separated bike paths, followed by bike boulevards, even after controlling for all of the
other variables in the model. For non-commute trips, travel on bike boulevards is equivalent to decreasing distance by al-
most 17.9% (10.8% for commute trips). Travel on bike paths is equivalent to reducing distance by 26.0% for non-commute
trips and 16.0% for commute trips. The boulevard and path parameters were significantly different at the 10% level
(p 6 0.09). We tried many permutations of bike lane variables. Because bike lanes in Portland are almost exclusively on busy
arterial streets, it was difficult to tease out the effect of bike lanes from that of traffic volume. In the final specification, bike
lanes more or less exactly offset the negative effects of adjacent traffic but had no residual value of their own. This is con-
sistent with the idea that bike lanes provide cyclists their own space separate from traffic but beyond this are no more or less
attractive than a basic low traffic volume street.

All else equal, the estimation suggests cyclists are willing to go considerably out of their way to use a bike boulevard or
bike path rather than an arterial bike lane. This is not to suggest bike lanes are not valuable; if the alternative is an arterial
street without a bike lane, then a designated lane has considerable value to cyclists. These results may not transfer to places
where bike lanes are placed on low traffic volume streets.

On streets without bike lanes, cyclists are highly sensitive to high traffic volumes. In fact, the estimation suggests that for
non-commute trips, streets with traffic volumes in excess of 20,000 vehicles per day would be used only if lower traffic alter-
natives required very long detours (in excess of 100%) or other strong deterrents such as steep hills. Within the city, Port-
land’s bike network is fairly dense and well-developed, and it is not clear that this result would hold in places with a
sparser network of bike facilities. It seems unlikely that a cyclist would actually choose a route seven times longer to avoid
traveling on a highway without a bike lane; more likely, he would not travel by bicycle at all. Nonetheless, the result under-
scores the sensitivity of cyclists to high volumes of mixed traffic.

The Willamette River splits separates Portland’s central business district from largely residential areas east of the river. A
little more than a quarter of observed trips crossed the Willamette on one of eight bridges available to bikes. Sampled cyclists
were quite sensitive to bridge bike facilities. For non-commute trips, a bridge with a bike lane was equivalent to a 29% reduc-
tion in distance up to almost 45% for a separated bridge facility. Clearly, bridge facilities have a strong influence on cyclists’
route choices for trips crossing the river. It should be noted, however, that very few cycling trips were observed on bridges
without any bike facility (sidewalks designed for pedestrian use were not considered bike facilities), which may make the
estimation less precise.
3.2. Non-commute vs. commute trips

In general, the model suggests that commuting cyclists are relatively more sensitive to distance and less sensitive to most
other variables compared to cyclists riding for other utilitarian purposes. Commuting cyclists are likely under greater time
pressure to reach their destination in the work direction. It is also possible that the more habitual nature of commute trips
makes commuters more aware of distance and time differences among competing routes. It is also possible that commuters’
knowledge of the route allows them to mitigate some of the delay and safety issues on commute trips. For example, they
may learn the timing of traffic lights, how best to navigate intersections, and where to make difficult turns.

Exceptions to the above are found in the facility traffic volume attributes. Cyclists on commute trips are somewhat more
sensitive to riding in high volumes of mixed traffic than on non-commute trips. The finding is consistent with the fact com-
mutes are more likely to occur during periods of peak traffic. Since our traffic volume variable reflects average volumes, it
likely overstates the amount of traffic for off-peak trips.
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3.3. Path-size parameter

The path-size parameter estimate’s positive coefficient is consistent with theory (Table 2). It is significantly different from
1.0, which would be the expected value if the path-size parameter captured only the statistical error introduced by the inde-
pendence from irrelevant alternatives (IIA) property of the MNL model. It has been suggested that the path-size parameter
should not be arbitrarily fixed to 1.0, since it may have a meaningful behavioral interpretation (Frejinger and Blerlaire, 2007).
In our case, estimating the parameter significantly improved model fit. Fixing the path-size parameter to 1.0 has the effect of
reducing the magnitude of the distance coefficient while leaving the other parameters more or less unchanged. Since gen-
erated alternatives tend to cluster around the shortest-path, the greater than expected path-size correction may indicate
unobserved disutility factors along shortest-path corridors.
4. Conclusions

This paper outlined the development of a unique bicycle route choice model based on revealed preference GPS data. A
new choice set generation algorithm, dubbed the Calibrated Labeling Method, was developed to generate reasonable sets
of alternatives after existing methods proved unsatisfactory. The final model specification resulted in a rich range of insights
into cyclist preferences. Some of the factors included in the model, such as bicycle boulevards, have not been tested before
with revealed preference route choice data.

With respect to facility type, the model revealed a preference first for separated paths, followed by bicycle boulevards.
Striped bike lanes were only preferred when low-traffic neighborhood streets were not an option, though they were highly
valued compared to high traffic streets (20,000 AADT or higher) without a striped lane. The preference for local streets and
off-street paths, particularly over arterials, is consistent with findings from Winters et al. (2010) which compared a cyclist’s
typical route based upon recall to the shortest path. Sener et al. (2009) also found that avoiding high traffic was one of the
two most important factors in route choice, along with minimizing time (for commuting).

The findings from our model suggest that even confident cyclists prefer routes that reduce exposure to motor vehicle traf-
fic, since most of the study participants were regular bicyclists, averaging 2–3 bicycle trips per day. These findings contrast
with some stated preference studies that found that experienced cyclists preferred lanes over paths or no facilities at all
(Akar and Clifton, 2009; Antonakos, 1994; Bureau of Transportation Statistics, 2004; Hunt and Abraham, 2007; Sener
et al., 2009; Stinson and Bhat, 2003; Taylor and Mahmassani, 1996; Tilahun et al., 2007). The difference in findings may
be attributed to the methods, which, even when designed carefully, do not reflect the reality of an individual’s route choice
options. In this case, the network of separate paths in Portland may be more extensive and/or located to better facilitate util-
itarian travel than in other locations. Cyclists in some US cities may have only experienced separate paths that are distant
from trip destinations and those biases may influence their responses to stated preference surveys. In addition, some paths
attract high volumes of pedestrians and other users that may slow down commuter cyclists; these experiences may also
influence responses to stated preference questions. Sampling methods may also influence findings. For example, Sener
et al. (2009) sampled from bicycle group e-mail lists where cyclists may have more of a ‘‘road warrior’’ (p. 530) mentality
and included both commuters and recreational cyclists. Using revealed preference data, Larsen and El-Geneidy (2011) did
find that regular utilitarian cyclists were less likely than recreational cyclists to use a bike lane or path. But, for non-recre-
ation trips, the cyclists still went the furthest out of their way for an off-street path, compared to on-street facilities.

The value cyclists placed on bicycle boulevards is an important finding. This type of facility is a relatively new concept in
the US and therefore has not been tested in any of the existing research. Our findings show that bike boulevards have high
and inherent value to cyclists, even beyond the detailed facility variables we were able to measure. In other words, there is
something more to a bike boulevard than low traffic volumes, improved street crossings, and ‘‘flipped’’ stop signs. The some-
thing more may be explained by attributes we were unable to measure, such as parking and traffic speeds, or perhaps some-
thing more subtle like perceived safety in numbers or simplified navigation. The results leave this intriguing question for
future research and direct implications for policy and planning. Bicycle boulevards are an option for existing and new res-
idential neighborhoods with well-connected street systems. In most cases, costs are lower than separated paths, as they do
not require new right-of-way, grading, or other significant engineering.

Our findings regarding the relative value of different types of facilities are influenced, in part, by the characteristics of the
network available to the study participants, making direct comparisons to other studies more difficult. For example, the Port-
land region’s network included bicycle boulevards, while the Montreal network examined by Larsen and El-Geneidy (2011)
did not, but did include on-street separated paths (e.g. cycletracks) which were not present in Portland at the time of the
study. Meaningful comparisons to Menghini et al. (2010) are difficult because the cyclist samples, setting, choice set gener-
ation, and model forms are substantially different. Both models revealed preferences for direct routes, designated bike facil-
ities, and avoidance of steep slopes. The network data available for this study allowed us to include several key variables not
available in the Zurich study: specific bicycle facility types, traffic volumes, and detailed intersection and turn attributes. As
GPS data collection becomes more common, it will be useful to compare results from different locations, using similar mea-
sures of the bicycle facility network and modeling techniques.

In addition, our findings are also based upon a sample largely made up of confident, regular cyclists. For cycling rates to
increase significantly, a wider range of people need to cycle. Therefore, it is important to research the preferences of non-



J. Broach et al. / Transportation Research Part A 46 (2012) 1730–1740 1739
cyclists, occasional cyclists, and cyclists who only ride for recreation (e.g. mountain biking or bicycling on vacation) but
would consider cycling for transportation in different circumstances, including better infrastructure. We did test for differ-
ences between regular and occasional cyclists, but the sample size (20 occasional cyclists making 90 trips) did not allow us to
draw conclusions. We also tested, but did not find significant differences by gender, age group, or parental status. The lack of
differences by demographic group may be due to the sample size.

The results highlight the importance for transportation professionals of not only building bike lanes, paths, and boule-
vards, but building them using comprehensive designs that consider all aspects of the route. Details like busy street crossing
treatments, route ‘‘jogs’’ necessitating extra turns, and route planning to avoid slopes may prove as or more important than
the facility itself. One of the most important influential attributes found in our model were slopes above 2%; cyclists go sig-
nificant distances to avoid such hills. Menghini et al. (2010), which used revealed preference GPS data, also found that cy-
clists avoided steep maximum gradients. However, this finding contrasts with those of Sener et al. (2009) and Stinson and
Bhat (2003) which found a stated preference for moderate hills (compared to flat terrain), particularly for recreational cy-
cling. These differences may be explained by the sample (discussed above), the fact that our model did not include trips
made solely for recreation or exercise, and the use of descriptive terms rather than actual slope. Moreover, some cyclists
may say that they want some hills as a challenge or to increase health benefits, but when it comes to actually riding, they
choose differently.

Intersection characteristics can be just as important as bicycle-specific infrastructure. Our cyclists generally avoided stops
signs and traffic signals, except when they needed to cross or turn left at high-traffic streets, in which case traffic signals
were valued. This is consistent with Winters et al. (2010) which found that the presence of bicycle-actuated signals helped
explain why cyclists’ detoured at least 10% beyond the shortest path. While our model did not specify bike actuation, it did
confirm the importance of signals to aid crossing busy streets. Sener et al. (2009) also found that cyclists preferred routes
with fewer stop signs and lights, but did not distinguish between lights that might facilitate difficult crossings. Changing
the direction of stop signs along a bicycle route and providing signals to facilitate crossing high-traffic streets are two fea-
tures of bicycle boulevards that may be applied to any bicycle route. However, without the addition of other traffic calming
features, such routes may become attractive to motorists as well, possibly negating their value.

In addition to helping transportation professionals plan and design new infrastructure to improve cycling conditions, the
findings can be used to improve travel demand models for predicting bicycle travel and to enhance route-finding tools avail-
able to cyclists. Portland Metro has incorporated the route choice model results developed here into the trip distribution,
mode choice, and network assignment steps within their regional travel demand model. With these changes, travel forecasts
are now sensitive to both planned bike infrastructure changes and the impact of predicted future traffic volumes on bike
travel. There are an increasing number of on-line tools to assist people in finding a bicycle route for a particular trip. The
improved understanding of cyclists’ preferences can make those tools more relevant and effective (Su et al., 2010). Our find-
ings that route choices differ for commute vs. other utilitarian travel indicate that this could be an option to include in route-
finding tools.
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