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Abstract--High-amplitude folding of viscous multilayers during shortening can be analyzed with a theoretical 
solution motivated by first-order theoretical analysis of folding by Raymond Fletcher and Ronald Smith. The 
solution method can better match boundary conditions along irregular interfaces than the first-order method, so 
it increases the range of slopes over which linear-viscous folding theory can be applied. In our method, rather 
than solving algebraically for a small number of constants in the flow equations, we numerically solve for a large 
number of constants, the values of which are chosen so that they minimize errors in matching conditions at the 
interfaces in a least-squares sense. A similar method has been applied to problems of density instability involving 
a single deformable interface with bonded contacts; however, we extend the method to include shortening 
parallel to interfaces and many deformable interfaces so that we can deal with problems of multilayer folding. 
Contacts between the layers can be firmly bonded, slip freely, or slip with viscous resistance. We use the solution 
to produce high-amplitude folds in single layers embedded in soft media, and in simple repetitive multilayers 
confined above and below by stiffor soft media. We show that the folding of linear-viscous multilayers can largely 
reproduce the gross forms of some small folds in the Huasna syncline in the central California Coast Range as well 
as the Berry-Buffalo syncline in the central Pennsylvania Appalachians. However, the sharp, chevron-like forms 
in these natural examples are notably missing in the simulations based on linear-viscous theory. 

INTRODUCTION 

A THEORY of folding involving layers of viscous fluids has 
been developed independently for single-layer folds by 
Fletcher (1974, 1977) and Smith (1975), and further 
developed to analyze forms of folds in multilayers by 
Johnson & Pfaff (1989). The solutions are approxi- 
mated, so that the analyses are limited to folding at low 
amplitudes. The basic analysis by Fletcher and Smith is 
to first order in the maximum slopes of interfaces. The 
analyses by Johnson & Pfaff (1989) are carried to third 
order but even these are probably limited to maximum 
limb slopes of less than 30 ° . The algebra becomes so 
complex that it has been infeasible to carry analyses to 
higher orders. Thus alternative solution methods are 
required to model high-amplitude folding. In this paper 
we describe a solution method, motivated by the basic 
theoretical developments by Fletcher (1967, 1977), for 
analyzing high-amplitude folding of a viscous multilayer 
during shortening. The method can match boundary 
conditions even along irregular interfaces, so it extends 
the range of slopes over which viscous-folding theory 
can be applied. 

A similar solution method has been applied to prob- 
lems of density instability involving a single deformable 
interface with bonded contacts by Fletcher (1967, 1972) 
and Nasir & Dabbousi (1978). We extend the method to 
include shortening parallel to interfaces and many 
deformable interfaces so that it can deal with problems 
of multilayer folding. Contacts between layers can be 
firmly bonded, slip freely, or slip with viscous resistance. 

*Present address: Stanford Rock Fracture Project, Department of 
Applied Earth Sciences, Stanford University, Stanford, CA 94305- 
2225, U.S.A. 

Almost all prior studies of high-amplitude folding 
have used finite-element methods (see review in Price & 
Cosgrove 1990), although other techniques such as var- 
iational methods have been tried (Chapple 1970). Per- 
haps the first attempt at high-amplitude folding using 
numerical methods was that by Dieterich & Onat 
(1969), who used a finite-element model to simulate a 
single interface undergoing shortening in order to pro- 
duce mullion-like structures. The first use of finite- 
element models to analyze folding of a single stiff layer 
embedded in soft media was by Dieterich & Carter 
(1969), Dieterich (1970) and Parrish etal. (1976). Unfor- 
tunately, the models used a compressible material, and 
the results are not directly comparable with the results 
presented in this paper, although the final fold shapes 
are similar in many respects. Anthony & Wickham 
(1978) and Lan & Wang (1987) performed a finite- 
element analysis of single-layer folding, including the 
effect of layer-parallel shear. Lan & Hudleston (1991) 
have used finite-elements to investigate high-amplitude 
folding of a single layer of power-law material, deBre- 
maecker & Becker (1978) used finite-elements to model 
the folding of a multilayer with three layers with bonded 
contacts. 

The objective of this paper is to extend the basic 
theoretical analysis of multilayer folding by Johnson & 
Pfaff (1989) to higher amplitudes. We use their method 
for calculating the dominant and preferred wavelengths 
in a viscous multilayer, and use that information to 
provide a seed perturbation for the fold pattern. They 
use up to three terms plus all second- and third-order 
interactions in their exact solution. Our method leads to 
an approximate solution, but uses as many terms as are 
needed to adequately match conditions at boundaries. 
Thus the objective of this paper is to extend a rigorous 

79 



80 K.M.  CRUIKSHANK and A. M. JOHNSON 

I' I' I' I' I' I' I' I' I' I' I' 

Fig. 1. In viscous folding theory a stratigraphic sequence is represented by layers of viscous fluids, subjected to layer-parallel 
shortening. 

theory from moderate- to high-amplitude while main- 
taining the same boundary conditions and material 
properties. 

The first part of this paper presents an outline of 
viscous-folding theory and the solution method. It then 
presents results of analyses for single layers and for 
simple repetitive multilayers. The fold forms in these 
idealized multilayers can be used to interpret mechan- 
ically more complicated multilayer systems. The final 
part of the paper uses the model to simulate some folds 
in the Huasna syncline in California (Johnson & Page 
1976), and the Berry-Buffalo syncline in Pennsylvania 
(Aytuna 1984, Johnson & Pfaff 1989). 

VISCOUS-FOLDING THEORY 

Figure 1 shows the system that we wish to model. It is 
comprised of a stack of incompressible linear-viscous 
fluids embedded between infinite media. The system 
undergoes layer-parallel shortening, with accompanying 
layer-normal thickening. The layers may all be of differ- 
ent thickness and viscosity. Also, contacts between 
layers may have different properties--ranging from 
freely slipping to bonded. The theoretical basis for the 
model is the deformation of an interface between two 
fluids. This is the basic problem in folding theory, and 
exact solutions for the evolution of an interface were 
derived by Fletcher (1974, 1977) and Smith (1975). 

Johnson & Fletcher (submitted) provide an exhaustive 
treatment of viscous folding. 

Basic equations 

Viscous folding theory analyzes the deformation 
within layers of Newtonian (linear-viscous) material in 
response to stresses and velocities applied at the bound- 
aries. For folding, an essential deformation is layer- 
parallel shortening. In this theory the two-dimensional 
Navier-Stokes equations for incompressible, steady, 
creeping flow are solved under conditions of plane 
deformation (e.g. Smith 1975, Fletcher 1977, Pfaff 1986, 
Johnson & Fletcher submitted). Fletcher (1991) has 
extended the formulation to three dimensions. 

A perturbation method which separates components 
of velocity and stress into mean and perturbed values is 
used to solve problems in folding. For example, each 
component of velocity (e.g. vx) is the sum of the mean 
velocity, Vx, and the perturbed velocity, ~x: 

Vx=~x+-~x; v z=~z+~z  

and each component of stress is the sum of mean and 
perturbed values; 

axz = 5~ + ~ , .  

The mean flow is the flow that results from layer- 
parallel compression of flat interfaces, and the per- 
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Fig. 2. The evolution of an interface between two fluids undergoing 
shortening is solved by summing the flow due to shortening where the 
interface is planar (a) with the flow due to perturbations in the 

interface (b). Each layer has its own local co-ordinate system. 

turbed flow results from shapes of actual deflected 
interfaces (Fig. 2). Each of the two flows is discussed in 
more detail below. 

Mean flo w 

The mean flow is the flow resulting from shortening 
(at a rate of/9~x) parallel to flat interfaces separating 
viscous fluids (Fig. 2). For incompressible flow 
D= = -ff)xx, and the velocities and stresses in an arbi- 
trary layer m are: 

(Vx),, , = Xbx~ (la) 

(V~) m = zff)= = - zDxx  (ab) 

( ~ z z ) m  = 2l~mff)zz - -  t i m  = -2ltmE),~ - t im  (lc) 

(Gx)m = 21~.,b~ -Fm (ld) 

(Oxz)m = 2ltmff)xz = 0, (le) 

where the deformation rate is 

= ! + 
2 ~Oxi -~x# 

x and z are positions with respect to a local co-ordinate 
system with an origin at mid-depth in each layer (Fig. 2). 
For folding to occur, /3~x is negative (layer-parallel 
shortening). 

The pressure, tim, within a layer comes from three 
sources: an arbitrary confining pressure, a pressure due 
to density and a pressure from viscosity contrasts be- 
tween layers. We ignore the effect of gravity, which is 
satisfactory if density contrasts between layers are negli- 
gible, so the pressure due to gravity is essentially hydro- 
static. Fletcher (1967) and Nasir & Dabbousi (1978) 
included the effect of density, but did not include layer- 
parallel shortening. 

The vertical stresses at a horizontal interface must 
match, so 

[~ZZ]Z=__~mi2 = [~ZZ]z=(hm+I)/2, 

where h is the thickness of a layer. Thus, in general, the 
pressure in layer (m + 1) is: 

P(m+l) -----/tffrn q- 2(/d'm - f l ' ( m + l ) ) D x x ,  (If) 

where tim can be set equal to zero for the uppermost 
layer, or medium (m = 0). The last term is the contri- 
bution of the viscosity contrast to the pressure. 

Equations (1) provide a complete description of the 
mean flow. 

Perturbed f low 

The perturbed flow arises because the interface is not 
flat. Although an interface is initially perturbed with a 
single cosinusoidal waveform, the perturbed flow alters 
the shape of the interface; these deviations from the 
initial perturbation also contribute to the perturbed 
flow. For each layer, the basic equations that must be 
satisfied by the perturbed flow are the two equations for 
pressure in that fluid: 

O~ [OZvx 02Vxl (2a) 
- + ] 

(2b) 

and the biharmonic equation in terms of the stream 
function, ~p: 

04~3 2{ 04~) / 04~J 
+ ~ax2o~ ] + Tyz 4 = o. 

(2c) 

~x is the perturbed velocity in the x-direction, ~z the 
velocity in the z-direction, and ff is pressure; 

-~(Oxx + GD. 

The velocity components are related to the stream 
function through the relations, 

~x = - a ~ .  ~z  = a ~ .  
OZ' 3X 

A solution to equation (2c) for a cosine-shaped inter- 
face between two fluids, is: 

= (1/l)([a + b(lz)] e tz + [c + d(lz)] e -tz} sin (lx). 

From this solution and the solution of equations (2a) 
and (2b) for the perturbed pressure, the equations for 
the perturbed velocity and stress components through- 
out the fluid are: 

vx = - [{a  + b(lz + 1)} e tz - {c + d(lz - 1)} 

x e- tq  sin (Ix) (3a) 
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~z = [{a + b(lz)} e tz + {c + d(lz)} e -tz] cos (Ix) 

(3b) 

6~x = -2/xl[(a + b(lz  + 2)} e t~ - {c + d(lz  - 2)} 

× e -Iz} cos (/x) + pgz - fro (3c) 

az~ = 2pl[{a + b(lz)} e l~ - {c + d(lz)} e - tq  

× cos (Ix) + pgz - P o (3d) 

6,: z = -2~l[{a + b(Iz + 1)} e Iz + {c + d(lz  - 1)} 

x e -/~] sin (Ix), (3e) 

where l is the wave number,  l = (2:ffL), and L is the 
wavelength of the perturbation. 

These equations are exact. The central problem in 
folding theory is evaluation of the arbitrary constants, 
,60, a, b, c and d for relevant boundary conditions. This is 
accomplished in two quite different ways in the analyti- 
cal approach (e.g. Fletcher 1977, Pfaff 1986) and in the 
numerical approach being followed here. In the analyti- 
cal approach, one evaluates the constants to a certain 
order  or approximation defined in terms of the maxi- 
mum slope of a waveform describing the interfaces. In 
the numerical approach, one sums a series of solutions 
like those presented in equations (3) and then deter- 
mines the set of constants that in some sense minimizes 
the error in matching conditions at the interfaces. Thus 
the total perturbed flow is the sum of a series of sinu- 
soidal solutions for the flow: 

k 

(Fx)m = ~ -- [(amn + bm,,(nlz + 1)) e nlz 
n = l  

- (Cmn + dmn(nlz - 1)) e -ntz] 

x sin (nlx) + O ( k  + 1) (4a) 

k 

(V'.)m = ~ [(am,, + bm~(nlz)) e nl~ 
n = l  

+ (Cm,, + d~ , (n l z ) )  e -~t~] 

x cos (nlx) + O ( k  + 1) (4b) 

k 

( 6 ~ ) m  = 2 - 2pmnl[(am. + b ~ ( n l z  + 2)) e nt~ 
n = l  

- (C,nn + dm,(n l z  - 2)) e -nlz] 
x cos (nix) - (Po)m + O ( k  + 1) (4c) 

k 

(Ozz )m  = Z 2#mnl[(amn + b m n ( n l z ) )  e ' l~  
n = l  

- (Cm. + dmn(nlz)) e - ' aq  cos (nlx) 
- ( r io ) , .  + O ( k  + 1) (4d) 

k 

(a.~)m = 2 - 2pmnl[(am" + bmn(nlz + 1)) e "t~ 
n = l  

q- (Cmn "~ d, ,n(nlz  - 1)) e -nl~] 

× sin (nlx) + O ( k  + 1) (4e) 

(/3o)m = constant. (4f) 

Here  k is the number of terms in the series, m is the 
layer number, and nl is the wave number. O ( k  + 1) 
represents all terms truncated from the series. 

Equations (4) reduce to equations with two unknown 
constants for each term in the series for infinite media; 
such media are used in mathematical models to confine a 
multilayer. For the upper infinite medium, terms involv- 
ing amn and bran will disappear. For the lower infinite 
medium terms involving c,,m and dmn disappear. 

Each equation for a perturbed stress or velocity has 4k 
undetermined constants per layer, and 2k undetermined 
constants for the enclosing infinite media. There are no 
undetermined constants for the mean flow. 

Boundary  matching conditions 

The flow that results from shortening an interface 
between two fluids has been described in terms of mean 
and perturbed components,  and the perturbed flow 
equations involve undetermined constants. In order to 
solve for the constants, boundary conditions describing 
relationships between the stress and velocity com- 
ponents must be formulated. 

Boundary conditions require that velocities and 
stresses are matched at an inclined interface, thus we 
need equations that relate stresses and velocities in the 
x- and z-directions to directions normal and parallel to 
the interface (Fig. 3): 

vn = - sin O[Vx]~ + cos O[v.]~ (5a) 

v, = cos O[vx]~ + sin O[vz]~ (5b) 

ann = [a~z]~ cos 2 0 + [axx]~ sin 2 0 

- 2[ax~]~ cos 0 sin 0 (6a) 

an, = [a~ - axx]¢ cos 0 sin 0 

+ [axz]~(cos 2 0 -- sin 2 0) (6b) 

where ~ is the z-co-ordinate of a point on an interface, 
and parameters in brackets, [ ]¢, indicate that the para- 
meter is evaluated at the interface, v~ and ann are normal 
to the interface, v, and ans are parallel to the interface, 
and 0 is the slope angle of the interface. 

For multilayers with bonded  contacts we require that 
interfaces between layers do not separate or slip. Thus 
the boundary conditions are: 

= [ v . k , ;  = [ % ,  

[(Tnn]~ h = [ann],~¢; [Ons]~b = [Ons]~,, 

where ~t is the upper interface of layer m + 1, and ~b is 
the lower interface of layer m. 

When the contacts between layers are allowed to slip 
freely,  the boundary conditions are: 

[Vn]¢t ' = [Vn]~t ; [(7nn]~b = [Gnn]S t 

[o..]ch = 0; [Oks]c, = 0. 
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Fig. 3. Boundary conditions in viscous folding theory are formulated in 
terms of velocities and stresses in directions locally parallel and normal 

to the interface. 

Below we formulate the equations for bonded contacts, 
since this is the most complete case. Matching velocities 
at the lower interface of a layer, ~b, and the upper 
interface of the next lowest layer, Ct, and noting that the 
mean velocities cancel: 

[v.]~, - [vn]~, = - sin 0([~x]¢, - [Vx]¢) 
+ cos 0([~z]¢, - [vz]¢,) = 0 (7) 

- = c o s  - 

+ sin 0([~]¢, - [~]~,) = 0. (8) 

The normal-stress matching condition is: 

2ff)xx(,Urn+ l - ~m) sine 0 
= - c o s  2 0 + - [ 6 x x ] 0  

x sin 2 0 - 2([6~z]¢, - [6~z]¢,) cos 0 sin 0, (9) 

and for bonded contacts the shear stress matching con- 
dition is: 

-- 4bxx (~m+ 1 -- ,Urn ) COS 0 sin 0 
= ([6~ -- 6~]¢~ -- [6~ -- 6x~]¢,) COS 0 sin 0 

+ ([6x~]~, -- [6x~l~,)(cos 2 0 -- sin E 0). (10) 

A variation on the free-slip or bonded contact bound- 
ary condition is a contact that is allowed to slip, but 
resists slip according to some relation. For a bonded 
contact, the velocity difference across the interface was 
specified to be zero. However we can specify the velocity 
difference in terms of a film viscosity,/~f, and a film 
thickness, hf, and relate the velocity difference to the 
shear stress at the interface (Fig. 1). Large viscosities 
will allow little or no slip, while low viscosities will 
permit slip at the interface. Specifying the ratio h~/luf 
allows any behavior from free-slip to fully bonded to be 
modeled. Johnson & Pfaff (1989) and Pfaff & Johnson 
(1989) used a power-law rheology to relate the change in 
velocity across a contact. This allowed areas of high 
contact shear stress to slip (e.g. inflection points on fold 
limbs), while other areas were effectively still bonded 
(e.g. fold hinge zones). In our analysis of high- 

amplitude folding, however, we have restricted our- 
selves to viscous drag. 

For viscous resistance to slip, the shear velocity 
matching condition becomes: 

where hf is the thickness of a viscous film at the contact, 
and ~f is the viscosity of the film. For viscous slip the 
following equation would replace equation (8): 

-4/)xx~rn(hf/~0 cos 0 sin 0 

= [vs]¢, - [vs]~, - ([6zz - 6xx]~,, cos 0 sin 0 
+ [6xz]¢,(cos2 0 -  sin 20)}(hf//~f). (11) 

Below we expand the normal-velocity matching con- 
ditions, and group the terms according to the constants. 
Substituting the velocity equations (3a) and (3b) into 
equation (7) and grouping terms, 

0 = a(,,,_l),,{sin O[e lz sin (lx)]¢~ + cos O[e tz cos (lx)]¢~} 

+ amn{sin O[e t~ sin (/x)]¢, - cos O[e l~ cos (/x)]¢,} 

+ b(m_l),,{sin O[elZ sin ( lx ) ( l z  + 1)]~, 

+ COS O[elzcos (lx)lz]~,} 

+ bm.{sin 0 [ -  e~ sin (Ix)( lz  + 1)]c, 

- cos O[e tz cos (/x)/z]¢,} 

+ c0,,_l).{sin 0 [ -  e-t~ sin (lx)]~, 

+ cos 0[e -tz cos (/x)]¢,) 

+ Cmn{sin 0[e -t~ sin (lx)]~, 

- c o s  0 [ e  c o s  

+ d(m-1)~{sin 0 [ -  e-t~ sin ( Ix)(& - 1)]~b 

+ cos O[e -tz cos (lx)lz]~,} 

+ dm~{sin O[e -t~ sin ( lx)(Iz  - 1)]¢, 

- cos O[e-lZ(lx)lz]¢).  (12) 

Similar equations can be written for the other three 
matching conditions. The remainder of the theoretical 
section deals with determining the constants once their 
coefficients have been calculated. 

LEAST-SQUARES DETERMINATION OF 
CONSTANTS TO FOLDING EQUATIONS 

The objective is to determine values for the constants 
which can be used to calculate stresses and velocities in a 
multilayer. Previously this has been done algebraically 
for a limited number of terms in equation (4) (e.g. 
Fletcher 1977, Pfaff 1986). Here we do it numerically for 
an arbitrary number of terms. Before developing the 
solution method, we first show that we have a sufficient 
number of equations to solve for the unknown con- 
stants. 

In a multilayer composed of m layers, (m - 2 finite 
layers, and two infinite confining media) there are 
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4(m - 1) constants (four per layer, two per media) and 
(m - 1) interfaces. Using the four matching conditions 
(vn, vs, ann, ans) at one point on each interface gives a 
total of 4(m - 1) equations, which is sufficient to solve 
for all the constants in the multilayer. 

The constants determined using only one point on 
each interface will exactly satisfy velocity and stress 
boundary conditions at these points, however, there will 
not be very good agreement in the matching conditions 
away from these points (Fletcher 1967, Nasir & Dab- 
bousi 1978). The equations will better represent the 
velocity and stress distributions over the entire interface 
if the constants are over-determined, and chosen so that 
they best fit the matching conditions in a least-squares 
sense (e.g. Dahlquist & Bj6rck 1974, Stoer & Bulirsch 
1980). The velocity and stress distribution equations 
may not be anywhere exactly satisfied, however, the 
velocity and stress at an arbitrary point can be calculated 
with less error than if only the minimum number of 
points were used. 

The reason we use least squares is because of the 
nonlinearity of the problem. The non-linearity enters 
only through the boundary conditions. We illustrate the 
nature of the non-linearity by expanding a single term 
from equation (12). We have chosen the coefficient for 
bran: 

sin 0 [ -  e tz sin (lx)(lz + 1)]~. - cos 0[e tz cos (lx)lz]¢,. 

At the interface, z = ~, the coefficient is written as: 

sin 0 { -  e t~ sin (lx)(l¢ + 1)} - cos 0{e t¢ cos (Ix)l~}, 

where 

ax 1 

1 + \Ox/ 

Thus the coefficient becomes, 

I + Tx) 

- ~ {e I¢ cos (lx)l¢}. 

¥ \OXl 

Similar expressions can be written for each of the 
terms in equation (12). The essential non-linearity of the 
problem in the variable x is apparent if we represent the 
interface with a finite Fourier series, 

~t = hm 12 + Al  cos (Ix) + A 2 cos (2/x) 

+ A 3 cos (3/x) + . . .  + A n cos (nix) 

in which A n is the amplitude of the n-th waveform. 
In analyzing the growth of a fold, the height of the top 

of the layer, ~f is initially hml2 + A 1 cos (Ix), in which hm 
is the thickness of the layer, and A 1 is the amplitude of a 

cosine waveform, and is a component of an eigenvector 
of amplitudes (Johnson & Pfaff 1989). The cosine wave- 
form is the initial perturbation of the interfaces. During 
growth of the fold, however, each interface is rep- 
resented by a piecewise cubic spline. A piecewise cubic 
spline is a set of coefficients for a cubic equation, with a 
set of coefficients for each interval between points rep- 
resenting the interface. The coefficients are chosen so 
that first- and second-derivatives are continuous along 
the interface (Stoer & Bulirsch 1979). By representing 
the interface with a spline, the function will pass through 
all points used to represent the interface, something not 
guaranteed by a finite Fourier series. 

We now derive the least-squares solution, and illus- 
trate that it provides the best numerical estimate for the 
constants. At each point on the interface the normal and 
shear stresses and velocities above and below the inter- 
face are matched. This gives the four equations for each 
point required to determine the constants. Thus, for a 
single matching condition at any point on an interface, 
we have an equation of the form: 

A i l C  1 + m i 2 c  2 + A i 3 C  3 + A i 4 C  4 

+ . . . + A i K C  K = D i ,  

where AiK is a coefficient to a constant, Cj is a constant 
and D i is the driving term. K is the number of undeter- 
mined constants in the multilayer. Matching at n points 
on m interfaces for k terms in the perturbed flow series 
gives the following set of equations: 

A I l C 1  + AI2C 2 + A13C 3 + AlaC 4 

+ . . .  + A1KCK = DI 

A21C1 + A22C2 + A23C3 + A24C4 

+ . . .  + A2KCK = D 2 

m 3 ] c  | + A32C2 + A33C3 + A34C 4 

+ . . .  + A 3 K C K = D  3 

A N I C I  + A N 2 C  2 + A N 3 C 3  + A N a C 4  

+ . . . + A N K C  K =  D N ,  

where N = 4 x m x n and K = 4 x m x k. 
This set of equations can be written using subscript 

notation: 

AijCj = Di, 

where i ranges from 1 to N, and j ranges from 1 to K. 
We define a residual, R, which is the difference 

between the actual value D, and the value computed 
using some estimate of the constants, Cj. For a single 
point and matching condition, the equation becomes 

A i l C  1 + A i 2 C  2 + A i 3 C  3 + m i 4 c 4  

+ . . . + A i K C  K - O i = R i. 

Ri, Di and Cj must all have the same dimensions. This 
implies that Aij is dimensionless. For the entire multi- 
layer the equations become, in subscript notation: 
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AqCj - Di = Ri. (13) 

An estimate of the total error is the sum of the R 
values. However, individual R values may have different 
signs, so an unbiased measure of the error, M, is the sum 
of the squares of the residuals, R, 

N 

M = y ,  R/2 = R~ + R 2 + R3 2 + . . .  R~ = RpRp. 

i=l 

The total error, M, is minimized when aMIOCj is zero. 
For the differentiation, the actual values of constants, 
Cj, need not be known. Taking the derivative of M with 
respect to the first constant, C1, gives 

aM _ 0 = aRT + aR22 + oR2 + . .  + OR--- z-N-zN 

OC 1 a C  1 a C  1 a C  1 OC 1 

OR ,_ a 
OCt 0C1 

(AI IC  1 + A12C 2 + AI3C 3 

+ . . . + A l ( 4 k ) C 4 k  - DI) 2 

= 2 A l l ( A u C j  - DI). 

Similar expressions can be derived for the other terms: 

0g2 2 
-- 2 A z l ( A z j C j  - D2) , 

0CI 

aR~ _ 2A31(C j _ D3), etc. 
oC1 

Summing terms, 

aM 
OCI - 2Aa(Ai jCi  - Di). 

In general, 

OM 
- 2Aip(AqC i - Di). 

OG 
The error is minimized when aM/aCp is zero: 

2Aip(AqCj - Di) = O. 

This can be written in the following form: 

AipAiyC 1 - AipD i = O. 

The subscripts p and j range from 1 to K, the number 
of constants, and the subscript i ranges from 1 to N, the 
number of matching equations. This equation gives the 
following square matrix: 

A i l A i l  A i l A i 2  • . . A i l A i K  CI A i l O i  [ 

A i 2 A i l  A i2A i2  . . .  A i 2 A i K  C2 A i 2 D i  

I A i3m i l  A i 3 A i 2  . . .  A i 3 A i K  C3 = mi3D i • 

A i K A i l  A i K A i 2  . . . A i K A i K  C K  A i K D i  

Comparing the cell (2,1) (row 2, column 1) with cell 
(1,2), and cell (4k,1) with cell (1,4k), it can be seen that 
they are identical. This indicates that the matrix is 
diagonally symmetric. For any cell in the matrix, the 
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only repeated subscript is i, the row counter. Thus, for 
any cell in the matrix, we sum on i. This indicates that the 
matrix can be generated by manipulating only one row 
of the A matrix at a time, rather than multiplying two 
complete A matrices. 

The constants, C], which minimize the residuals 
(equation 13) can then be solved for by inverting the 
coefficient matrix. Computationally, it is unnecessary to 
completely invert the matrix, and we use a LU- 
decomposition with back substitution to solve for the 
constants (e.g. Dahlquist & Bj6rck 1974, Stoer & 
Bulirsch 1980). 

Procedure 

The least-squares method requires that the equations 
be dimensionless, and we have used the uppermost layer 
as the characteristic layer: all thicknesses, lengths, vis- 
cosities and densities are normalized with the properties 
of this layer. Once a multilayer model has been con- 
structed we use the method of Johnson & Pfaff (1989, 
pp. 152-154) to calculate the dominant and preferred 
wavelengths, as well as the initial wavelength that be- 
comes the preferred wavelength at the end of folding• 
The folds are seeded by perturbing the interfaces with a 
single cosine waveform of 1 ° maximum slope• The re- 
lationship between dominant and preferred wavelength 
is simple, as shown by Johnson & Pfaff (1989, p. 152). 

The constants in equation (4) are determined for the 
initial conditions, and used to calculate velocities of 
material points on the interfaces• These velocities are 
integrated to give the new positions for the material 
points after some increment of deformation, and the 
constants for the new interface shape are calculated. At 
each increment material points on the interfaces are 
arranged so that they are uniformly distributed along the 
interface• The interface is represented by a cubic spline 
(Stoer & Bulirsch 1980). Accuracy in the integration 
step is essential, and we use a Runge-Kutta  integration 
procedure that is accurate to fourth-order in the step size 
(Stoer & Bulirsch 1980). (This differs from the first- 
order, Euler method used in finite-element studies• The 
Euler integration procedure simulates folds of lower 
amplitude than the Runge-Kutta  method, which is to be 
expected when integrating an exponential function•) 
The program continues tracing the interface positions 
until either a specified amount of shortening has 
occurred, or a maximum error limit has been exceeded• 

Suitability o f  the solution 

The solutions presented in following pages have all 
passed several suitability tests. Each of the tests is a 
necessary but insufficient condition for correctness. 
During a simulation the program monitors the squared 
residuals (equation 13), the correlation coefficient (r 2), 
the vn mismatch across an interface, and the conser- 
vation of volume. The most critical of these conditions is 
the v n mismatch, for, without good velocities, the inte- 
gration, no matter how precise, would be inaccurate. 

15:I-F 
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We have set a criterion that only solutions with v, 
mismatch of less than 1% of the maximum v, are 
acceptable. Solutions with a maximum v, mismatch 
greater than 1% are not known to be incorrect. Indeed, 
symmetry in some cases is maintained until much larger 
mismatches occur. However ,  there is no reason to trust 
such solutions. A mismatch of about l%  occurs when 
the constants of the last term in the perturbed flow series 
begin to become significant, suggesting that the next 
term in the series would also be significant. At this stage, 
the simulation could be re-run with more terms in the 
series. 

In addition to the tests described above, symmetry 
was also used to check solutions for single layers and 
symmetric multilayers. The simulations are set up so 
that no symmetry is imposed. A complete wavelength is 
used, and the velocities on an interface are calculated 
using the constants from the overlying material. Thus, in 
a single layer the velocities of the upper interface are 
calculated using media constants, and the velocities of 
the lower interface using layer constants. With the 
model set up in this manner interface shapes could be 
used as an internal check. 

RESULTS 

Below we present results of analyses using least- 
squares to determine constants that minimize mismatch 
of stresses and velocities at interfaces, and using the 
algorithm outlined above. All the analyses presented 
used free-slip at contacts. The analyses were all stopped 
when the maximum vn mismatch reached about 1% of 
the maximum normal velocity. Results at every stage are 
saved and can be animated. Unfortunately, here we can 
only provide snapshots of the evolution of the fold. 

We first present results for a single layer embedded in 
identical media. This is the most common analysis of 
folding, and we include these analyses for comparison 
with previous studies. We also present results for sym- 
metric multilayers, again to demonstrate that the solu- 
tion produces no unexpected results. These multilayers 
also help temper one's intuition about how more com- 
plex multilayers can be modeled. The section ends with a 
simulation of folds in two more complicated multilayers. 

Single layer 

Perhaps the most thoroughly studied fold is the single- 
layer fold. The majority of theoretical studies have 
focused on a competent  layer in less competent media. 
We first re-examine this problem. 

The solution derived here was verified at low ampli- 
tude (maximum limb slopes less than 10 °) by checking 
the numerical values of constants with those computed 
with the analytical solutions of Fletcher (1977) and 
Johnson & Fletcher (submitted). Cases involving both 
bonded and free-slip contacts were checked, and the 
constants differed by less than 10-4% at low amplitudes. 
Also, the form of a fold with a maximum limb slope of 

(a) 

(b) (= 

(c) 

(d) 

(e) 

Fig. 4. Five stages in the development of a single-layer fold composed 
of a material 50 times stiffer than the medium. There is an equal 
amount of shortening between each step. Boundary conditions were 
matched at 161 points on each interface. The series solution for the 

perturbed flow used 10 terms. 

24 ° was checked against the form calculated using a 
third-order analysis (Johnson & Fletcher submitted). 
The fold forms were indistinguishable. 

Figure 4 shows the evolution of a single layer between 
two infinite media. The viscosity of the layer is 50 times 
that of the media, and the contacts could slip freely. 
Figure 4(a) shows the initial perturbation. It has a 
maximum slope of 1 ° and is perturbed with a wavelength 
16 times the layer's thickness. Ten terms were used in 
the series approximation (equation 4). The boundary 
conditions were matched over one wavelength at 161 
points on each interface. Early in the folding history the 
layer thickens noticeably, but the fold does not grow 
much in amplitude. As folding continues, the amplitude 
of the fold grows rapidly. The fold has maximum slopes 
of about 40 ° and has a concentric-like form at the stage 
shown in Fig. 4(d). The slope has increased to nearly 60 ° 
and the hinges show subtle, but noticeable, thickening 
while there is thinning on the limbs at the stage shown in 
Fig. 4(e). Although the fold is concentric-like, it is 
beginning to show some of the characteristics of similar 
folds. 

Figure 5 shows a series of single-layer folds, all with 
the same initial geometry, and all shortened the same 
amount. The viscosity contrast between the layer and 
media increases from 10 in Fig. 5(a) to 100 in Fig. 5(f). 
With increasing viscosity contrast, the amplitude of the 
fold increases. At low viscosity contrast, the layer thick- 
ens much more than at high viscosity contrasts. It should 
be noted that for the analyses shown in Fig. 5, the 
preferred wavelength was not used to seed the solution, 
since the objective was to show the effect of variation of 
viscosity contrast on the same initial conditions. Ten 
terms in the approximation to the perturbed flow were 
used, and the boundary conditions were matched at 161 
points on each interface. 
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Fig. 5. Variation in fold form for a single layer in identical soft media 
with changing viscosity contrast. The form for the lowest viscosity ratio 
(10; the layer is 10 times stiffer than the medium), is shown in (a), and 
forms for the highest viscosity ratio (100) is shown in (f). The viscosity 
ratios for the various folds are (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and 

(f) 100. All the folds have undergone 40% shortening. 

Hudleston (1973) (see also Hudleston & Stephansson 
1973) performed a series of experiments on single-layer 
folds using viscous material. In these experiments Hud- 
leston noted that there was little change in the arc length 
of the folds once limb dips of 10-20 ° had been reached. 
This was independent of viscosity contrast. Figure 6 
shows normalized fold arc-length as a function of maxi- 
mum limb dip for the solution presented here (Fig. 6a) 
and for the experiments of Hudleston (Fig. 6b). Results 
from our solution (Fig. 6a) show a rapid decrease in arc 
length for slopes less than 10 ° for all viscosity contrasts. 
From 10 ° to 20 ° the rate of interface shortening de- 
creases. There is very little change in arc length once the 
slopes are greater than about 25 ° . The angle above which 
the arc length does not change becomes smaller as the 
viscosity contrast increases. 

The data shown in Fig. 6(b) are from Hudleston's 
experiments (Hudleston & Stephansson 1973, fig. 3). 
Hudleston used solutions of ethyl cellulose in benzyl 
alcohol for his experiments. At concentrations of 15% 
or less ethyl cellulose the solutions are almost true 
Newtonian fluids, however at higher concentrations 
they may be weakly nonlinear (Hudleston 1973, p. 193). 
In the experimental results shown in Fig. 6(b) the 
concentrations were of the order of 28-40% ethyl cellu- 

( a )  1 . 0 1 ~  ' ~ ' ' ' ~ ' ' - - - -  ' ' -  
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Fig. 6. Relationship between arc length and maximum slope according 
to (a) the theoretical model, and (b) experiments by Hudleston (1973). 
The theoretical and experimental results are broadly correlated. The 
results show that the arc length decreases rapidly until maximum limb 
slopes are 10-15 °. Between 10 ° and 20 ° the change in arc length 
becomes considerably less. When maximum limb slopes are more than 
20-25 ° there is little change in arc length. Hudleston's experiments 
may have been with non-linear materials. The numbers next to the 
curves are viscosity ratios based on back-calculation from linear- 
viscous folding theory. The numbers in parentheses are viscosity ratios 
measured with a viscometer. Thus, none of the viscosity ratios 
reported in (b) may be equivalent to those in (a). In the theoretical 
model, the layers were represented by 161 points, and 10 terms were 
used in the approximation series. The wavelength was selected so that 
the wavelength at the end of shortening would be the preferred 
wavelength. The initial maximum slope angle of the perturbation 

w a s  1 °. 

lose (Hudleston 1973, table 1), so the layers may have 
been behaving as non-linear fluids. This could explain 
why the wavelength-to-thickness ratios observed by 
Hudleston were smaller than expected from a linear- 
viscous folding theory (Smith 1979, p. 284). 

Unfortunately, there is considerable confusion con- 
cerning the viscosity ratios reported by Hudleston 
(1973). The viscosity ratios shown for the curves in Fig. 
6(b) were calculated by Hudleston, using an approxi- 
mate theoretical analysis of fold wavelength and amplifi- 
cation. The viscosity ratios he measured, with a visco- 
meter, are shown in parentheses. These values are 
alarmingly different. Thus, the viscosity ratios reported 
in Figs. 6(a) & (b) cannot be easily compared. Neverthe- 
less, the curves for the experiments of Hudleston are 
qualitatively similar to the curves derived with the theor- 
etical analysis presented here. 
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(a) 

( b )  

!~;i i i" !IZ j i l l !  i i i i i i i ! "  " 

Stiff ~ Very Stiff 

Fig. 7. Constrained fold forms in multilayers confined by stiff media. 
Each multilayer consists of 17 layers. In (a) the layers have the same 
viscosity, and the media are 100 times stiffer than the layers, (b) shows 
the folding where the multilayer consists of alternating stiff and soft 
layers. The stiff layers have a viscosity 10 times that of the soft layers, 
and the media have a viscosity 100 times that of the stiff layers (1000 
times the soft layers). 

Symmetric, repetitive multilayers 

Freely-slipping contacts are used so that multilayer 
folding can be analyzed. The choice of contact property 
has little influence on the final fold form. In multilayers, 
amplification factors for bonded contacts are much 
lower than for freely-slipping contacts (Johnson & Pfaff 
1989). For a multilayer with bonded contacts there has 
to be a large amount of shortening to produce folds. For 
example, consider a multilayer composed of identical 
layers (e.g. Huasna simulation, below), if bonded con- 
tacts were used the entire multilayer would behave as a 
single thick layer. Field observations of striation along 
bedding planes show that there is slippage along layer 
contacts during folding (e.g. Pfaff 1986). 

The simplest multilayers are symmetric, and com- 
posed of layers of the same viscosity, or alternating beds 
of two different viscosities (Figs. 7 and 8). Similar 
multilayers have been analyzed using a third-order solu- 
tion (Johnson & Pfaff 1989). We present results for four 
simple multilayers. The first (Fig. 7a) consists of 17 
layers of the same viscosity confined by infinite media 
that are 10 times stiffer than the layers. The second 
multilayer (Fig. 7b) is also confined by stiff media, 
however the stiff layers are interbedded with soft layers 
of 1/10 the viscosity of stiff layers. In both Figs. 7 and 8 

[]  

S t i f f  

Fig. 8. Concentric-like folds in multilayers confined by soft media. 
Each multilayer consists of 17 layers. In (a) the layers have the same 
viscosity, and are 10 times stiffer than the media. In (b) the multilayer 
consists of alternating stiff and soft layers in which the stiff layers are 10 

times as stiff as the soft layers. 

stresses and velocities were matched at 161 points on 
each interface, and 10 terms in equation (4) were used. 

For stiff media (Fig. 7), the highest amplitude folds 
are in the middle of the multilayer, and the amplitudes 
die out towards the confining media. At low amplitude 
the form is similar to the 'internal instability' of Biot 
(1964), but at high amplitudes shown in Fig. 7 the form is 
the constrained fold of Johnson & Pfaff (1989). Synclines 
and anticlines at mid-depth in the multilayer are equal in 
size. Up section from mid-depth, the anticlines become 
broader and flatter while the synclines become narrower 
and pinched. In Fig. 7(b) the stiff layers are interbedded 
with softer layers. The synclines do not appear as 
pinched as in Fig. 7(a), and the soft interbeds accommo- 
date most of the thickening and thinning. 

Where the confining media are soft (Fig. 8), and the 
multilayer is composed of similar beds (Fig. 8a), the 
entire multilayer folds with no noticeable thickening and 
thinning of individual layers. Synclines on the upper 
surface are narrow, but become broader down section. 
The fold form is concentric-like. It is quite interesting 
that the cores of the anticlines do not tightly pinch to 
become chevron folds. 

The high-amplitude analysis is consistent with the 
third-order analysis of Johnson & Pfaff (1989), in that 
chevron-like folds are absent in normal folding of linear- 
viscous material (the only result that produced chevron 
forms, is for an unusually short wavelength, many times 
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Fig. 9. Folds associated with the Huasna syncline in California. (a) Down-plunge view of the Huasna syncline. (b) Idealized 
view of folds in the riverbank exposure (after Johnson & Pfaff 1989). The essential elements of fold forms in the riverbank 

exposure are that amplitudes become lower, synclines become narrower, and anticlines become broader up-section. 

shorter than the dominant  or preferred wavelength for a 
multilayer, Johnson & Pfaff 1989, fig. 4). Johnson (1977) 
concluded that the chevron form is a result of some kind 
of yielding in hinges. The results presented show that, in 
a material that cannot yield, the chevron form is missing. 
They do not show, though, that yielding is a necessary 
condition of chevron folding. 

Figure 8(b) shows folds in a multilayer of interbedded 

stiff and soft layers. The soft layers have the same 
viscosity as the confining media,  which is 1/10 the visco- 
sity of the stiff layers. The stage shown in Fig. 8(b) has 
undergone about 22% shortening. Soft layers, in the 
core of the anticline in the center of the picture show 
thickening at the hinges low in the multilayer, but 
thinning near  the upper  medium. The anticlines also 
become broader  up-section. The same trend, but in 
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Fig. 10. Simulation of the idealized folds in the riverbank exposure 
based on linear-viscous model. The structural-lithic units in the river- 
bank exposure were modeled with nine layers of identical material 
confined above by a stiff medium, and below by a soft medium. The 
gross forms of the folds in the riverbank exposure--folds that die out 
up-section, and narrow anticlines becoming broader up-section--are 
reproduced by the model. Notably lacking in the linear-viscous folds 
are the sharpened, chevron-like forms that are so obvious in the field. 
Initial conditions of the model are shown in (a), and the form after 

40% shortening is shown in (c). 

reverse, exists in the synclines. The forms are, again, 
concentric-like and chevron folds are absent. 

Huasna syncline 

The 'riverbank exposure' part of the Huasna syncline 
in the southern California Coast Range has been de- 
scribed in detail by Johnson & Page (1976), and its 
essential characteristics are presented by Johnson & 
Pfaff (1989). The Huasna syncline is shown in down- 
plunge view, and the forms visible in the 'riverbank 
exposure' are idealized in Fig. 9. Folds within the upper 
Monterey Formation consist of broad anticlines, with 
narrow, sharp synclines. Down-section, below the 
Monterey-Santa Margarita contact, the synclines and 
anticlines become higher in amplitude, and the synclines 
become broader while the anticlines become narrower. 

The Monterey Formation is a series of interbedded 
shales and porcelanite beds, and is composed of 
structural-lithic units that are 30--40 m thick, and separ- 
ated by thin shear zones. The overlying Santa Margarita 

Formation is a relatively massive sandstone, while the 
underlying Point Sal Formation is soft shale and dolo- 
mite (Johnson & Page 1976, Chen & Oertel 1989). 

The field evidence suggests that the Monterey can be 
modelled as nine layers of equal thickness and viscosity, 
and the contacts between the layers be allowed to slip 
freely. The overlying Santa Margarita is modeled as a 
confining medium, of the same viscosity as the Mon- 
terey. The underlying Point Sal is taken to be a soft 
confining medium with a viscosity of 1/100 the viscosity 
of the Monterey layers. 

The results of an analysis using 10 terms in equation 
(4) is shown in Fig. 10. The folds in the multilayer have 
some of the essential elements of the folds in the 'river- 
bank exposure'. The model shows the amplitude of the 
folds increasing gradually downward. In the upper layer 
the synclines are sharper than the anticlines and they 
become broader down-section. The anticlines become 
sharper down-section. 

Although the same variations can be seen in the forms 
in the high-amplitude analysis and the down-plunge 
view, the actual forms of the folds differ. The folds in the 
Huasna syncline have straighter limbs and sharper 
hinges. The sharpened, chevron-like forms in the field 
situation are missing in the theoretical results. Our 
experience with several theoretical analyses based on 
linear-viscous theory suggests that we cannot expect the 
theory to produce the sharpened forms. We suggest that 
some type of non-linear model, such as a power-law 
model, would be required to simulate yielding and 
thereby produce sharp hinges, which so characterize the 
actual folds. 

The Berry-Buffalo syncline 

Folding in the Appalachians occurs at several scales 
(e.g. Nickelsen 1963). Folds with wavelengths of 11- 
18 km involve rocks from the Cambrian to the Pennsyl- 
vanian, while intermediate-scale folds (wavelength of 
about 3 km) are best developed at the levels of the 
Silurian Tuscarora and Ordovician Juniata-Bald Eagle 
Formations (Table 1). The large-wavelength folds 
appear to be controlled by the massive sandstones of the 
Devonian Catskill Formation. Folds with intermediate 
wavelengths occur in the Lower Paleozoic sandstones, 
apparently because these sandstones are stratigraphi- 
cally bounded by thick units of less competent rocks, and 
have a degree of mechanical independence from the 
Upper Paleozoic units. 

In an investigation of Appalachian fold forms, Aytuna 
(1984) constructed a down-plunge section of the Berry- 
Buffalo syncline in central Pennsylvania (Fig. 11). The 
syncline is open, and has straight limbs and narrow 
hinges in its upper parts. Further down section the 
hinges become more rounded, and are fairly flat near the 
base of the section. A Fourier analysis for the interfaces 
indicates that the shorter waveforms were present lower 
in the section, and much stronger there than higher in 
the section. 

Based on the forms of the folds in the Berry-Buffalo 
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Table 1. Average thickness and normalized viscosity ratio of the structural units of the central Appalachians 
(from Aytuna 1984) 

D 
E 
V 
O 
N 
1 
A 
N 

PENNSYLVANIAN 

MISSISSIPPIAN 

Catskill 
Formation 

Mahantango 
Formation or 

Hamilton Group 

SILURIAN 

ORDOVICIAN 

Llewellyn Formation 

Pottsville Formation 

Mauch-Chunk Formation 

Pocono Formation 

Duncanon Member 
Clark's Ferry Member 

Average 
thickness 

(km) 

0.45 

0.7 

0.6 

1.5 

Normalized 
viscosity 

100 

100 

Sherman Creek Member 0.5 25 

Irish Valley Member 1 100 

Trimmers Rock Formation 0.7 100 

Harrell Member 
Sherman Ridge Member 

Montebello Member 

Marcellus Formation 
Onandago Formation 
Oriskany Formation 

Helderberg Formation 
Keyser Formation 

Tolonoway Formation 

Wills Creek Formation 

Bloomsburg Formation 

Mifflintown Formation 

Rose Hill Formation 

Tuscarora Formation 

0.5 

0.375 

0.4 

0.365 

0.2 

0.25 
Juniata Formation 

Bald Eagle Formation 

Martinsburg Formation 
(Reedsville Formation) 

30 

20 

CAMBRO-ORDOVICIAN 3 5 

100 

100 

syncline, and knowing how ideal multilayers behave 
(Figs. 8 and 7), we would suppose that the Berry- 
Buffalo syncline formed in a multilayer confined below 
by a stiff material and above by a soft material, or 
perhaps was unconfined above. Thus, in our model of 
folding in the central Appalachians we use the thickness 
and viscosity ratios given in Table 1, with a stiff lower 
medium and a very soft upper medium. 

Analysis of eigenvectors and eigenvalues of the fold- 
ing, according to the central Appalachian stratigraphy 
shown in Table 1, shows there are two wavelengths that 
have large amplification factors (Aytuna 1984). The 
wavelength of one perturbation that amplifies rapidly is 
about 3.3 kin, and the wavelength of the other is about 
17 km. For all layers the highest amplification factor was 
for perturbations with a 17 km wavelength. The 3.3 km 

wavelength was important only in the lower Paleozoic 
strata (Tuscarora and Bald Eagle Formations). 

Using the theoretical analysis presented here, where 
the interfaces were seeded with only the 17 km wave- 
length the folds with shorter wavelengths produced in 
the Lower Paleozoic were barely noticeable. 

Figure 12 shows results of an analysis where the 
perturbations in the interfaces were seeded with both 
the 17 and 3.3 km wavelengths. Folds became broader 
down-section, and have very flat bottoms, in this respect 
they are similar to the folds shown in the down-plunge 
view (Fig. 11). Perturbations with the shorter 3.3 km 
wavelength amplify in the layers representing the lower 
Paleozoic sandstones, but do not show much more than 
kinematic amplification higher in the section. In this 
respect the forms of theoretical folds in the linear- 
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Fig. 11. Form of Berry-Buffalo syncline in Pennsylvania. (a) Down-plunge view. (b) Idealized fold forms from Johnson & 
Pfaff (1989). 
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Fig. 12. Simulation of the idealized forms of the Berry-Buffalo synclinc based on the linear-viscous model, and 
structural-lithic units identified in Table I. The multilayer is confined above by a very soft medium and below by a stiff 
medium. The initial perturbation was seeded with the first and fifth waveforms. The first waveform amplifies throughout the 
multilayer. The fifth waveform amplifies very slightly low in the section. Again, the simulation based on linear-viscous fluid 
satisfactorily models the gross forms of the Berry-Buffalo syncline, but it lacks the sharp form characteristic of the core of 

the syncline. 
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viscous model have the same flaw in the multilayer 
chosen to represent the structural-lithic units in the 
central Appalachians as they did in the multilayer 
selected for the 'riverbank exposure' in California. The 
chevron-like structures of cores of folds is lacking. Thus, 
some of the elements of the Berry-Buffalo syncline can 
be seen in the simulation. However the hinges in the 
simulated folds are more open and rounded than those 
in the down-plunge view. 

SUMMARY AND DISCUSSION 

In this paper we have presented a solution for high- 
amplitude folding of multilayers based on the viscous 
folding theory developed for single-layers by Fletcher 
(1974, 1977) and Smith (1975), and for multilayers by 
Johnson & Pfaff (1989). The maximum amplitude of 
folds that can be produced with the model depends upon 
the number of terms used to represent the perturbed 
flow. Maximum limb slopes of 60-80 ° can be obtained 
using the solution technique developed. 

We have used the model to reproduce folds in a single 
layer embedded in less viscous medium (Figs. 4 and 5), 
and the forms of folds in constrained and unconstrained 
simple multilayers (Figs. 7 and 8). We have shown that 
the linear-viscous model reproduces the gross forms of 
some folds in the Huasna syncline in southern Califor- 
nia, and the Berry-Buffalo syncline in Pennsylvania. 
However, we have shown that even to high-amplitude, 
the linear-viscous model does not produce the 
sharpened forms characteristic of chevron-folds and the 
folds in the Huasna syncline and in the Berry-Buffalo 
syncline. Presumably we need to analyze folding of non- 
linear-viscous fluids to have a yield-like behavior to 
better model chevron folds. 

Besides the limitations of rheological behaviors, there 
are two limitations to the method. First, the simulations 
presented in this paper require considerable knowledge 
about the multilayer being simulated. Representing a 
section as a multilayer requires knowledge of structural- 
lithic units in a stratigraphic sequence. Each unit in a 
multilayer must be described in terms of viscosity, thick- 
nesses, and contact properties. This can require detailed 
field work (e.g. Johnson & Page 1976). After describing 
the multilayer, the dominant wavelength and eigenvec- 
tor must be determined (Johnson & Pfaff 1989, Johnson 
& Fletcher submitted). Determining the dominant 
wavelength requires considerable computational effort, 
although programs are available for this (Pfaff 1986, 
Cruikshank 1991). Once the multilayer has been de- 
scribed mechanically, and the preferred wavelengths 
calculated, one is ready to proceed with the high- 
amplitude analysis. 

The second limitation of the method, and perhaps the 
most critical, is the massive computational effort in- 
volved in the high-amplitude analysis. The method is 
numerically intensive. For example, the idealized multi- 
layers in Figs. 7 and 8 have 18 interfaces. Each interface 
is represented by 161 points, and 10 terms were used in 

the approximation to the perturbed flow. In evaluating 
the constants at one stage in the simulation, the match- 
ing conditions are evaluated 115,920 times (161 points × 
18 interfaces × 10 terms x 4 matching conditions). The 
result is a 115,920 x 720 matrix, which when squared 
gives a 720 × 720 matrix to be solved, just to determine 
the constants which determine the velocities. A Runge- 
Kutta integration of the velocities to produce displace- 
ments requires that in a single increment of deformation 
the constants are evaluated 4 times---or 463,680 evalu- 
ations of matching equations, and four 720 × 720 
matrices solved. Over 30 time steps, this requires some 
14 million evaluations of matching conditions, and 120 
matrix solutions. Also, at each step spline functions 
representing interfaces must be re-calculated, and some 
other book-keeping and error-checking performed. 

The method can take 1-2 h for one- or two-layer 
problems when run on a personal computer. Mainframe 
computers are needed for multilayers. A run can take 
several days, depending on the computer used. The 
Berry-Buffalo solutions, using 30 steps, a Runge-Kutta 
integration, and 10 waveforms can take 6 days of CPU 
time on a Sun SPARC workstation that is dedicated to 
running the program. A more detailed discussion of the 
solution algorithm, and a C-language program are given 
elsewhere (Cruikshank 1991). 
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