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 Abstract 

Located in the Columbia River Gorge, The Red Bluff Landslide (18.8 km2) is one of 

four large landslides that make up the Cascade Landslide Complex. In its current form, 

the Red Bluff Landslide is a post-Missoula Flood feature made up of two components: 

an active upper lobe (8.6 km2) that is translational, creeping to the south at 25 cm/yr 

and spreading laterally to the east at 6 cm/yr over a semi-fixed portion (10.2 km2) of the 

Red Bluff Landslide area that has been “smoothed” by Missoula Floods. The upper active 

lobe is the landslide debris accumulated since Missoula Flood time (~15,000 yr. BP). Five 

separate collapse events have been identified and rock failures along the main scarp 

headwalls continue. Two rock avalanches on the Red Bluff Landslide were mapped. The 

Old Greenleaf Basin Rock Avalanche is estimated to have occurred 100 to 150 years ago, 

represents the fifth collapse event on the Red Bluff Landslide, and covers an area of 

200,000 m2. It has a volume of 4.2 million m3; its length is 748 m and has a width of 215 

m. On January 3, 2008, the Greenleaf Basin Rock Avalanche occurred, flowing over the 

Old Greenleaf Basin Rock Avalanche, covering an area of 100,000 m2 and deposited a 

volume of about 375,000 m3. Its length is 730 m with an average depth of 1.22 m. It 

contributed approximately 0.058% of the total volume and 0.01% of the surface area to 

the active upper lobe portion of the Red Bluff Landslide. The Greenleaf Basin Rock 

Avalanche was determined to be insignificant in the movement of the active part of the 

Red Bluff Landslide during the winter of 2007-2008. The original Cascade Landslide 

Complex map (Wise, 1961) included the Mosley Lakes Landslide which has now been 

removed because it lacked the characteristics of a landslide like a scarp. The original 
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complex (35.5 km2) has been renamed the “Greater Cascade Landslide Complex” (43.0 

km2), with the addition of the adjacent Stevenson Slide and the elimination of the 

Mosley Lakes Landslide. 
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Chapter 1.0 - Introduction  

The Red Bluff Landslide is located approximately 72 kilometers (45 miles) east of 

Portland, Oregon (Figure 1). It is directly across the Columbia River from the town of 

Cascade Locks, Oregon, in Skamania County, Washington and is part of the Cascade 

Landslide Complex (Figure 2) (Wise, 1961).  

Landslides are abundant on the north side of the Columbia River where “dip 

slopes” are inclined to the south. Conditions leading to slope failure on the north side 

include high steep slopes combined with thick heavy sequence of lava flows overlying 

weak sedimentary rocks, a wet climate, undercutting of inclined bedding by giant glacial 

floods, tectonic uplift, tilting, seismic activity, rapid drawdowns of Columbia River post 

glacial floods, hydrothermal alteration of underlying bedrock to clay, debris deposition,  
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and reduction of shear strength by weathering (Palmer, 1977). On the south side of the 

Columbia River, where dips are away from the Columbia River and to the south, 
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landslides are smaller and have different mechanisms. Hydraulic squeezing of clayey 

layers between formations and debris flows are characteristic in this area. Landslide 

mechanisms on the Cascade Landslide Complex include gravitational collapse of cliffs 

causing high velocity rockfalls and plastic flow of impermeable and clayey rocks of the 

Eagle Creek and Ohanapecosh Formations that underlie the Columbia River Basalts 

(Palmer, 1977). 

The Red Bluff Landslide has been 

mapped as one of four landslides that 

make up the 35.5 km2 Cascade Landslide 

Complex (Wise, 1961) (Figure 2 and 3). 

The Bonneville Landslide, Carpenters 

Landslide and the Mosley Lakes 

Landslide complete the complex 

configuration.  Along this stretch of the 

Columbia River, we also find an 

additional collection of large landslides: 

the Washougal and the Skamania 

Landslide Complexes to the west and 

the Wind Mountain Landslide Complex 

to the east. On the Oregon side, across 

from the Cascade Landslide Complex, are the Ruckle and Fountain Landslides (Figure 4).  
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Little research has occurred on the Red Bluff Landslide since early studies of 

Wise (1961), who had been the only geologist to have mapped the Cascade Landslide 

Complex area (Figure 3). Today, all maps depict the slide as it was mapped originally by 

Wise (1961). Little is understood about the mechanisms of the Red Bluff Landslide.  

Recently, attention has focused on to the Red Bluff Landslide because it has reactivated 

(Pierson and Lu, 2009). The slide is estimated to be moving at a rate estimated in 

centimeters/year (Tom Pierson, oral communication, 2011).  Understanding the 

movement of the Red Bluff Landslide is important because of its effects on the 

surrounding infrastructure, the nearby inhabitants and possibly the Bonneville Dam.  No 

documentation of historic movement of the Red Bluff Landslide has been published 

before (Pierson and Lu, 2009).  

In January of 2008, a moderately 

large rock avalanche landslide occurred 

on the southern portion of the Red Bluff 

scarp headwall (Greenleaf Basin Rock 

Avalanche) (Figure 5). The Greenleaf 
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Basin Rock Avalanche was investigated as part of this thesis and studied for its 

contribution to movement of the Red Bluff Landslide which was first noticed the same 

winter.   

1.1 Aims, Hypothesis, and Objectives 

The purpose of my thesis is to describe and classify the Red Bluff Landslide. I 

hypothesize that the Red Bluff Landslide is composed of two parts, an upper lobe that is 

creeping southward and spreading laterally to the east over a lower semi-fixed portion 

of the slide (Figure 6). The upper lobe is composed of “recent” debris whereas the lower 

lobe is composed of ancient debris. 

To test my hypothesis, six objectives were identified: 

1. Determine whether the Mosley Lakes Landslide is a landslide;  
2. Define the spatial extent of the upper lobe; 
3. Excavate soil pits to determine an age difference between the upper lobe 

and the lower area; 
4. Describe how the Missoula Floods may have affected the Red Bluff Landslide; 
5. Characterize the January 3, 2008 Greenleaf Basin Rock Avalanche and 

determine if it initiated the re-activation of the Red Bluff Landslide in the 
winter of 2007-2008; and 

6. Develop a chronology, using and analyzing morphological features to 
characterize the recent evolution of the Cascade Landslide Complex.  
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Chapter 2.0 - Background  

2.1 Geology  

The Cascade Landslide Complex is located where the Columbia River cuts 

through the central uplifted core of the Cascade Mountains exposing weaker formations 

and making this area prone to landsliding. The geology of this part of the Gorge contains 

four main rock units:  Ohanapecosh Formation, Eagle Creek Formation, Columbia River 

Basalts, and the Quaternary Volcanics.  

The oldest is the Ohanapecosh Formation composed of pyroclastic debris 

deposits from volcanoes of the Western Cascades placed during Eocene time and ending 

late Oligocene (Wise, 1970). The main feature of this formation is the zeolitic and argillic 

alteration, where primary joints and cavities have been sealed and altered 

hydrothermally, making it nearly totally impermeable to ground water. The thickness of 

the Ohanapecosh Formation is well over 3,000 meters (10,000 feet), all mostly andesitic 

and dacitic in composition (Wise, 1970). At the top of the Ohanapecosh, the formation 

has been weathered and converted to a purplish-brown, clay saprolite, which is 

considered to be the failure plane of all the major landslides in this area (Waters, 1973: 

Palmer, 1977).  

An erosional unconformity separates the Ohanapecosh Formation from the 

overlying Eagle Creek Formation. The Eagle Creek Formation is a sequence of weakly 

lithified, light-brown to light-gray, predominantly coarse-grained volcaniclastic rocks and 

local interbedded lava flows (Wise, 1961, 1970; Waters, 1973), deposited from mud 

flows and slurry floods washed from nearby active volcanoes.  It is interpreted as being 



8 

 

a debris fan extending south and southeast from one or more andesitic volcanoes (Wise, 

1970). The upper most 244 meters (800 feet) of the Eagle Creek Formation is exposed in 

the Red Bluffs (Wise 1970). Plagioclase from a dacitic lithic pyroclastic-flow deposit 

yields a 40Ar/39Ar age of about 19 Ma (Evarts, 2011 personal communication). The top of 

the Eagle Creek Formation is marked by an erosional unconformity (Waters, 1973) and is 

the surface upon which the Grande Ronde Basalts flowed during the early to middle 

Miocene time (Wise, 1970).  

Punching through the Ohanapecosh Formation, the Eagle Creek Formation and 

the Columbia River Basalts are Quaternary volcanics producing lava flows from various 

vents in the area. The Quaternary volcanic rocks found on the Red Bluff Landslide are 

andesitic basalts sourced from the “Red Bluffs volcano” (Wise, 1961) that erupted 

within the valley of upper Greenleaf Creek, damming the stream with lava and forming 

Greenleaf Basin (Wise, 1970; Korosec, 1987). The Red Bluffs Volcano is dated ~146,000 

years B.P. (Russ Evarts, U.S.G.S., personal communication, 2010). Not too far from the 

head of the Red Bluff Landslide, a well preserved intact cinder cone and undisturbed 

flows demonstrate large block sliding. A second volcano (Russ Evarts, U.S.G.S., personal 

communication, 2011) is located adjacent and to the north. Both volcanoes (“Red Bluff 

Volcanoes”) are now collapsed remnants which cover an area of 4.1 km2 on the Red 

Bluff Landslide.  

The Weigle Formation is a name used by the Army Corps of Engineers. This unit 

(Weigle) was first recognized by Holdredge (1937) while investigating the foundation 

area of the Bonneville Dam. Its description was intermediary between the classical Eagle 
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Creek and the Ohanapecosh Formations in degree of alteration, induration and grain 

size. It remained un-named until Wise (1961) termed it the Weigle Formation while 

working on his PhD dissertation over in the Wind River area. It was adopted by the Army 

Corp of Engineers (USACE, 1994) while building the second power house for the 

Bonneville Dam. While continuing work in the Wind River area, Wise (1970) had decided 

to drop the name Weigle and put it at the top of the Ohanapecosh Formation. Wise’s 

(1970) report came out after the commencement of the initial investigations for the 

new powerhouse in which the Weigle was initially used by the USACE. The Weigle 

designation is being retained by the USACE to maintain consistency with the 

investigation work. The new power house foundation rock is considered by Wise to be 

the Ohanapecosh Formation (USACE, 1994) (Figures 7 and 8). Wise (1970) includes the 

Weigle in the Ohanapecosh Formation.  

2.2 Structure  

The study area is represented by gentle folds, low structural relief, and an 

average dip of 70 to the south (Pierson and Lu, 2009). Because the Cascade Landslide 

Complex is covered by landslide debris and thick vegetation, identifiable fractures and 

faults are difficult to detect. Recent investigations by Evarts (personal communication, 

2011) finds evidence that the stratigraphy on both sides of the Columbia River matches 

up indicating no apparent vertical offset in any of the stratigraphic units. If there are 

faults through the area, displacement would have to be lateral. 
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Wise (1971) indicates dips that 

are to the southwest along the Wind 

River and Nelson Creek. Outside the Red 

Bluff Landslide area, to the northeast 

along Rock Creek, the dips are to the 

south (Figure 9).  These readings are 

generally consistent with the tension 

cracks evident on the north part of the 

Red Bluff Landslide.  In the southwest 

part of the Cascade Landslide Complex, 

along and close to Hamilton Creek, dips 

are to the SSE.  These dip readings imply that the whole of the Cascade Landslide 

Complex has a very shallow bowl shape and is consistent with the strike of the beds that 

are almost parallel to the northwest trending Rock Creek and then bending around 

Greenleaf Peak and Table Mountain (Russ Evarts, U.S.G.S., personal communication, 

2011). The orientation of stratigraphic units indicates a SE-plunging syncline with an axis 

in the vicinity of Table Mountain (Bela, 1970; Evarts, personal communication, 2011). 

2.3 Ice Age Floods  

Toward the end of the Pleistocene, the Cordilleran Ice Sheet advanced 

southward into Washington, Idaho, and Montana during Late Wisconsin time. One of its 

eastern most terminal lobes, the Purcell Trench Lobe, blocked the Clark Fork River 

impounding and creating Glacial Lake Missoula. For a period of 3,000 plus years ending 
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15,000 years ago, up to 89 glacial outbursts occurred (Atwater, 1984), pouring massive 

amounts of water through Idaho and into eastern Washington, through the Pasco Basin 

and down through the Columbia River Gorge. Forty of these floods probably reached the 

study area (Waitt, 1980). Benito and O’Connor (2003) calculated that the largest flood 

reached levels of 305 m asl (1,000 ft) in the Hood River area and 122 m asl (400 ft) at 

Crown Point.  Based on these figures, flood level is interpolated to have reached 267 m 

asl (875 ft) at Dog Mountain, and inferred to 253 m asl  (830 ft) on the Cascade 

Landslide Complex (Allen et al., 2009;Benito and O’Connor, 2003). Figure 10 shows a 

conceptualized path the largest of Missoula Floods moved in this region.  

 

Pre-Wisconsinan floods may have also occurred in this area based on a few 

exposed deposits in the form of paleosols containing calcium carbonate or caliches that 
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formed Bk and K soil horizons in the Pasco Basin having reversed magnetic polarity and 

being older than 700,000 years (Bjornstad and Fecht, 1989; Medley, 2012). Although 

these are suspected to have contributed to the physical expression of the Gorge, little 

evidence of them remain in the Gorge. 

2.4 Climate  

Climate data are of major importance to landslide investigations, as increased 

water in the soil/rock system is the primary contributing factor to most landslides 

(Burns, 1998). Precipitation intensity and duration are also crucial in triggering 

movement of a slide mass (Cornforth, 2005). Slope failures are often the result of a 

single storm event occurring when soil is already saturated (Burns, 1998: Cornforth, 

2005). Movement is generally accelerated during periods of high rainfall over several 

weeks. 

The climate in the Cascade Landslide Complex area is greatly influenced by the 

Cascade and Coastal mountain ranges.  The Cascade Landslide Complex is protected 

from severe winter storms moving inland from the ocean by the Coast Range, and the 

Cascade Range protects the area from the high summer and low winter temperatures of 

eastern Oregon and Washington (Haagen, 1990). In winter, the average temperature at 

Bonneville is 3.90 C (390 F.). The average winter daily minimum temperature at 

Bonneville is 0.60 C. (330 F.) In the summer, the average temperature is 18.30 C. (650 F.) 

The average summer daily maximum temperature is about 24.40 C. (760 F.) (Haagen, 

1990).  Average seasonal snowfall is 33 cm. (13 in.) at Bonneville.  Average annual 

precipitation, observed at Bonneville Dam (Station # 350897; (1947 - 2010) is 191.5 cm. 
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(75.39 in.) (WRCC, 2010). Months with the heaviest precipitation are from the beginning 

of November through January (Figure 12). The maximum annual precipitation amount 

recorded was 301.3 cm. (118.6 in.) in 1996 and a minimum annual amount recorded 

was 120.1 cm. (47.3 in.) in 1944 (WRCC, 2010). Months (1942 to 2007) with the most 

intense rainfall (over 48.3 cm.) are shown in Table 1. 
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2.5 Vegetation 

Vegetation cover is shown in Figure 12. The native vegetation for the Red Bluff 

Landslide is mainly mixed conifers and shrubs. Douglas fir, western hemlock, and red 

alder are the main woodland species. Other species growing in the area are grand fir, 

big leaf maple, vine maple, Oregon grape, red huckleberry, trailing blackberry, 

creambush oceanspray, western hazel, Pacific dogwood, common snowberry, 

thimbleberry, and dwarf rose (Haagen, 1990). Not included in the Soil Survey of 
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Skamania County and observed in the field are western red cedars, which are common 

on the Red Bluff Landslide, especially in the upper elevations. 

2.6 Soils 

The specific soil types for the study area, shown in Figure 13, are Steever Stony 

Clay Loam, Steever-Rock outcrop complex, Stevenson loam, Typic Dystrandepts and 
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Rock outcrop-Rubble land complex (Haagen, 1990). The Steever Stoney Clay Loam 

makes up around 70% of the Red Bluff Landslide area. The Steever Series (Typic 

Humudepts) consists of very deep, well drained soils on back slopes, foot slopes, and 

toe slopes and formed in colluvial landslide material derived from conglomerate, 

andesite, and basalt parent material (Haagen, 1990). The remaining 30% of the soil 

types found on the Red Bluff Landslide are the Stevenson loam, Rock outcrops, and 

Typic Dysandrepts. The Stevenson loam (Typic Humudepts) is found on the lower 

portions of the Red Bluff Landslide in low sloping areas. The Typic Dysandrepts are very 

deep, well drained soils on cinder cones. They are formed in volcanic material derived 

from volcanic ash, cinders and pumice. The Rock outcrop-Rubble land complex is found 

on mountain slopes and is barren. This unit is about 60 percent rock outcrop and 30 

percent rubble land and consists of about 90 percent fragmented rock, including 

cobbles, stones, and boulders of andesite and basalt. 

2.7 The Cascade Landslide Complex: Earlier Studies  

The earliest accounts of the Cascade Landslide Complex came from the Native 

Americans who passed down oral information over several generations. Lawrence 

(1937) and Lawrence and Lawrence (1958) summarized these oral histories indicating 

Native Americans “could cross the river without getting their feet wet” and that “the 

falls are not ancient, and that their fathers voyaged without obstruction in their canoes 

as far as The Dalles. It was also noted that “the river was dammed up at this place, 

which caused the waters to rise to a great height far above and that after cutting a 

passage through the impeding mass down to its present bed, these rapids made their 
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appearance”. The damming of the Columbia River by the landslide deposit has been 

recorded in Indian legends and referred to as “The Bridge of the Gods” (Palmer, 1977). 

The earliest written accounts came from Lewis and Clark in 1805 (Moulton, 

1991). They were the first to describe a submerged forest between the Cascade Rapids 

and The Dalles that was drowned by a lake that formed behind the dam. Judging from 

the fresh appearance of drowned snags, Lewis and Clark first speculated that the 

blockage formed just a couple of decades prior to their journey (Moulton, 1991). Today, 

the Cascades Rapids, as well as the drowned forest, are completely submerged beneath 

the even higher water level created by Bonneville Dam. 

Lawrence (1937) mapped the drowned forest during low water in 1934 and 

1935. He catalogued over 1800 trees in the twenty five miles above Cascade Rapids. 

Using dendrochronology, he concluded that the submerged trees must have been 

drowned prior to 1562 AD. In 1958, two decades after the closure of Bonneville Dam, 

Lawrence submitted two retained samples of the submerged forest to radiocarbon 

dating giving an age estimate of about seven hundred years ago. This lead Lawrence to 

conclude that the landslide had occurred in about AD 1250.  

2.8 Bonneville Landslide  

The 14 km2 Bonneville Landslide is the youngest landslide in the complex (Wise, 

1961). It failed rapidly surging downslope, spreading debris over, across, and damming 

the Columbia River. The rapid failure initiated liquefaction of river sediments over which 

the toe of the slide was able to move rapidly onto the opposite valley wall (Palmer, 

1977). 
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The landslide is considered to have occurred between 1425 and 1450 AD 

(O’Connor and Burns, 2009). The slide created a temporary dam and a lake (Lake of the 

Gods) that rose to a maximum impoundment of 90m asl. (O’Connor, 2011), extending 

approximately 142 km (88 miles) upriver (O’Connor and Burns, 2009). All indications 

point to an impoundment that was maintained for several years (O’Connor and Burns, 

2009).  Breaching of the debris dam occurred near the south side of the gorge where the 

present channel is located. The landslide diverted the river channel towards the Oregon 

shoreline (Wang et al., 2002; Palmer, 1977). The magnitude of the flood, caused by the 

breaching of the dam, is evident by the numerous islands and terraces present 

immediately 

downstream. The 

Bonneville Terrace, 

Robins, Bradford, 

Cascade, Hamilton 

and Ives Islands are 

all remnants of the 

former outwash 

delta (Allen et al., 

2009) (Figure 14). 

The most detailed study to date resulted in a cross section by the Corps of Engineers 

(Figure 15). 
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2.9   Red Bluff Landslide, Mosley Lakes Landslide and the Carpenters Landslide 

The Red Bluff Landslide (RBL), adjacent to the Bonneville Landslide covers an 

area of 18.76 km2 and is the eastern most portion of the Cascade Landslide Complex 

(Figure 2). Its most 

striking feature is 

the scarp headwall, 

known as the Red 

Bluffs (Figure 16). 

The only 

description of the 

Mosley Lakes 

Landslide by Wise 

(1961) is that it 

originated near the Mosley Lakes, covers an area of one square mile (Wise, 1961), 

probably moved a few hundred feet into the Columbia River, and had transport 

distances on the order of hundreds of feet.  

The Carpenters Landslide, adjacent to and west of the Bonneville Landslide 

covers an area of 2.75 km2 (Figure 17).  Wise (1961) briefly describes the Carpenters 

Landslide to have moved during a two to three week period, and Palmer (1977) states 

that reports of rockfalls close to Carpenters Lake occurred in 1955 and 1974. Other than 

this, detailed information is lacking. It is likely to have occurred before the Bonneville 

Landslide.  
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2.10 Recent Movement  

Until recently and presently, the Williams Northwest Pipeline (NWP) has been 

involved in the construction and maintenance of a natural gas pipeline through the 

Cascade Landslide Complex (Figure 6).  Before 2007 they apparently became concerned 

about its movement and contracted Golder Associates Inc. (2009) to assess and evaluate 

the slide region. Golder Associates recommended a pipeline route north and around all 

landslides in the area. In the summer of 2010, after receipt of their study, a NWP 

maintenance crew was on site with heavy equipment inspecting and adding new laser 

monitoring equipment indicating a continued presence at the location. Movement data 

from Williams Northwest Pipeline (NWP) is not available to the public. Movement has 

been detected independently by Interferometric Synthetic Aperture Radar (InSAR) on 

8.6 km2 of the Red Bluff Landslide occurring during the winter of 2007-2008 and over 
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the winter of 2008-2009 (Pierson and Lu, 2009) (Figure 18). The data showed 15-25 cm 

of slope-parallel motion from 06 November 2007 to 23 March 2008 and similar 

movement between 08 November and 08 February 2009 (Pierson and Lu, 2009). InSAR 

monitoring of the slide is ongoing.  

2.11 - Greenleaf Basin Rock Avalanche 

On the southernmost section of the west headwall on the Red Bluff Landslide, 

the Greenleaf Basin Rock Avalanche occurred on January 3, 2008 (Russ Evarts, U.S.G.S., 

personal communication, 2008) (Figure 19), and it may have contributed to the recent 

reactivation of the Red Bluff Landslide (Scott Burns, P.S.U., personal communication, 

2008). Evidence of potential failure was first observed on the headwall where tension 

cracks were observed in the summer of 2007 before the avalanche (Russ Evarts, 

U.S.G.S., personal communication, 2008).  
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Chapter 3.0 Methods 

3.1  ArcGIS/LiDAR/InSAR 

One of the principal methods used to interpret the Red Bluff Landslide was 

evaluating a 0.6 m resolution digital elevation model (DEM) provided by the Washington 

Department of Natural Resources, (DNR, 2007) LiDAR (Light Detection And Ranging) 

datasets.  ArcGIS version 9.0 was used to convert the DEM into a hillshade relief, and 

contouring was added when needed. In some cases, the DEM was colored to enhance 

relief. Particularly useful was the “3-D Analyst” ArcGIS tool enabling the creation of 

surface profiles (cross sections). Headscarp heights and slide volumes were calculated. 

Selected parts of the slide were digitized.  

Landforms are easily seen on LiDAR images, and features of interest were 

identified and coordinates determined to examine the feature in the field. Soil pit sites 

were located in this manner. This is also how the blocks of Eagle Creek were first 

identified and were later field checked with a GPS unit. Printed LiDAR hillshade reliefs 

with 0.5 to 6 m (5 to 20 ft) contours aided field work.  

To calculate volumes of the landslide, I used ArcGIS to calculate the area of the 

digitized perimeter. ArcGIS’s “3-D Analyst” tool is then used to generate a profile of that 

area from which one can estimate the stratigraphy based on the known depth and dip 

of the saprolite below the Eagle Creek Formation (See section 4.1, page 32).   

Radar returns (InSAR) from two satellite flyovers yield amplitude and phase 

information at each pixel aided in the analysis of the Red Bluff Landslide. With computer 

software, surface displacements as small as a centimeter can be estimated. 
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3.2 Field Work 

An integral part of this research were field observations and involved 

reconnaissance for familiarity, followed by ground truthing features identified by LiDAR. 

Of particular interest were the Greenleaf Basin Rock Avalanche, the climbing and hiking 

along La Bong Creek, and the investigation on the lower part of the slide where blocks of 

Eagle Creek sediment were located. I also examined tension cracks on the upper portion 

of the slide, sag ponds, the andesitic basalt fields from the Red Bluff Volcanoes and 

observing rockfalls off the headwall. The great portion of the Red Bluff Landslide was 

only accessible by 4-wheel drive vehicles. As a consequence, my time on site was spent 

on foot with plenty of challenging hikes and a lot of bushwhacking.  A GPS unit (Garmin, 

GPSmap 60CSx), a compass, relief and contour maps avoided any orientation problems. 

There were no problems getting into restricted areas. There were a couple of challenges 

with dogs and 4-wheelers on week-ends that later changed my field work to week days. 

 Four soil pit regions were selected prior to going into the field using LiDAR base-

maps. The purpose was to determine if there were soil differences between the upper 

and the lower parts of the Red Bluff Landslide and hence an age difference could be 

determined. Birkeland (1999) states that once colluvium has been deposited and the 

landscape is stabilized, pedogenic processes operating over time produced soil horizons. 

Two were selected on the active upper part of the Red Bluff Landslide (U3 and U4), and 

two were selected below this area (L1 and L2) in the semi-fixed portion of the slide 

(Figure 20). 
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Because the soil pit locations were remote, they were excavated using a small 

shovel and a rock pick deep enough to get in and get a clear view of the side walls and 

collect samples from all visible horizons, specifically the B-horizon. The size of the soil 

pits was approximately 1m X 1m wide (3ft. by 3ft.) and at least 71 cm (2.3 ft.) in depth. 

Soil samples and textural descriptions were collected from all soil horizons from each of 

the four excavated soil pits and described using the approach of Soil Survey Staff (2002) 

and Birkeland (1999). Each soil horizon was described for thickness, texture, structure, 

consistence, clay films, and horizon boundaries. The two lower pits were dug first, 

followed by the upper pits. The method used to measure the soil bulk density was 

digging another small 5cm X 7.6cm X 3.8cm (2 in. X 3in. X 1 ½ in.) deep holes at the 
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bottom of each pit, collect the mass and fill the hole in with water to get the volume 

(Figure 22). The collected soil mass was then dried in the lab and weighed.  

 3.3 Soil Analysis 

Laboratory analysis of the selected soils included collecting and recording moist 

and dry colors, USDA texture (Gee and Bauder, 1986) and the particle size grading curve. 

The Munsell Color guide was used to determine the moist and dry colors. USDA field 

texture was based on the Birkeland (1999) gradational scale of smoothness and 

stickiness. Only the B-horizon from each of the selected soil pits was emphasized for 

comparing pits because the B-horizon is the zone of clay accumulation (Bockheim et al., 

1996). The clay content in the B-horizon can be used as an indicator of the age of the 

soil (Birkeland, 1999). The A-horizon is the zone of decomposition, and no clay is 

accumulated; therefore, no correlation with age can be made using the A-horizon 

(Birkeland, 1999). The C-horizon is weathered bedrock or colluvium, so clay contents 

may reflect residual clay in the original parent material and not clay that has been 

translocated in the soil over time (Schaetzl and Anderson, 2005). 
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Chapter 4.0 Results/Discussion 

4.1 Active portion of the Red Bluff Landslide 

Hillshade imagery from the LiDAR DEM’s enabled me to sort out different 

topographical features not otherwise seen in the field. The hillshade indicated 2 major 

differences in the topography with an abrupt change in slope in between them; an 

upper region with extremely hummocky topography and a lower region with a 

smoother texture. I have called these regions the upper and lower lobes respectively 

(Figure 22). 

 

My hypothesis states that the Red Bluff Landslide is composed of two parts: an 

upper lobe that has been creeping on and off, over time, in a southerly direction and 

spreading laterally over in-place Eagle Creek and/or Ohanapecosh Formations. Other 

than the interpretation of LiDAR imagery, recent InSAR evidence indicates that it has re-
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activated (Pierson and Lu, 2009) (Figure 23).  

 

The hillshade imagery allowed me to see what appeared to be pimple-like 

features (hummocks) on the lower part of Wise’s (1961) Mosley Lakes Landslide, just 

east and below the eastern front of the active area (Figure 24). The hummocks were 

investigated and were found to be large 

boulders and/or blocks of Eagle Creek 

Formation (Figure 24). Russ Evarts (personal 

communication, 2011) and I confirmed one 

hummock to be Eagle Creek. The 

conglomeratic boulders were difficult to 

break, were well cemented, but broke apart 

around its matrix. There are no visible signs 

of alteration. Grain size is larger relative to 

Ohanapecosh type rocks. These boulders/blocks of Eagle Creek litter the lower portion 

of the Red Bluff Landslide (Figure 25). Based on the geology of the lower portion of the 
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Stevenson Landslide (discussed later), the boulders probably rest on in-place Eagle 

Creek Formation. I conjecture that these Eagle Creek boulders originated from units that 

have been calved off the main headwall and broken up by Missoula Flood waters (Figure 

26). 

It became clear during 

many hikes along the base of the 

north headwall of the Red Bluff 

Landslide that the headwall was 

actively unraveling and probably 

has been for thousands of years. 

The Red Bluff Landslide was a 

progression of failures over time. 

During the warm summer 

months near the head wall, 

cobbles and small boulders are continually heard bouncing and knocking their way 

down the face of the headwall every 5 to 10 minutes and what seemed to be truck loads 
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of debris crashing down less frequently during the day. Local residents report that the 

activity is much greater in the winter months.  

The active portion of the Red Bluff Landslide has an area of 8,245,000 m2 and 

was divided into four sections to calculate volume. Each of the four sections was 

measured for that particular 

area of the upper lobe 

(Figure 27). A cross sectional 

line was drawn down the 

center of each section 

resulting in four cross 

sectional profiles. Since an 

erosional unconformity lies 

between the Eagle Creek 

Formation and the 

Ohanapecosh Formation, an 

average depth was estimated using the arc GIS generated profiles and information from 

Wise (1961). Wise (1961) said that the slide in front of the Red Bluffs a likely to be 300 

to 400 feet thick (91 to 122 meters) based on the 1,600 ft. elevation (488 meters) at the 

base of the Red Bluffs and the elevation of the saprolite at the top of the Weigle 

formation one mile to the northeast at 1,200 feet (366 meters). The volume for each 

section is simply the area times the average depth. The four volumes were added up for 

a final estimated volume of 650,000,000 m3 for the Red Bluff Landslides upper lobe.  
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4.2 Characterization of Major Collapse Events on the Red Bluff Landslide 

The Red Bluff Landslide can be thought of as a slide that is progressively 

unraveling with sediment, cobbles and boulders shedding off most frequently, rock 

avalanches less frequently, and punctuated by infrequent events where large unit blocks 

separate from the west headwall. The Red Bluff Landslide is covered with andesitic 

basalt, remnants of collapsed volcanoes with Eagle Creek Formation sediments sifting 

through and spreading around the south and east perimeter of the upper reactivated 

portion of the slide. A sequence of five major collapse events is defined in Figure 28. 
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Events three, four, and five are preliminarily identified as post Missoula Flood events. 

Event number one is suspected to be pre-Missoula Flood based on its separation from 

the other events and its smoother appearance. Event two may be a pre-Missoula Flood 

feature and its orientation may have been influenced by Missoula Flood waters. Another 

possibility for its lineation may have come from the failure of the Bonneville Landslide. 

The Red Bluff Landslide can be loosely termed a translational slide as it follows a 

rough plane identified as an erosional unconformity (Figure 29). The failure plane is 

likely to be located in a range spanning from the lower parts of the Eagle Creek 

Formation to the upper parts of the Ohanapecosh Formation and creeping at a rate 

measured in tens of centimeters per year (Pierson and Lu, 2009). These infrequent 

collapse events likely span a period of less than 100,000 years based on the 146,000 

year age of the Red Bluff Volcano (Russ Evarts, U.S.G.S., personal communication, 2011). 

Missoula Floods probably washed the slide surface but probably did not get high enough 

to initiate slide movement (Figure 10). 

4.3 Mosley Lakes Landslide: Non-existent 

Three pieces of evidence lead to the conclusion that the Mosley Lakes Landslide 

is not a landslide:  1) If Wise’s (1961) headscarp (Figures 3, 9, 30) was meant to be lower 

than where he had drawn it, where the eastern edge of my lobe is, then his head scarp 

is convex, being steeper at the bottom and shallower at the top, contrary to classical 

headscarps which are concave and steeper at the top (Cornforth, 2005). Wise’s 

(1961,1970) Mosley Lakes Landslide, as drawn, does not have a scarp;  2) The alleged 

slide also flows to the east but the overall dip of the Red Bluff Landslide there is to the  
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south southeast.  3) The lower portion of the Red Bluff Landslide, east of the re-

activated upper lobe, is a continuation of a dip slope that the town of Stevenson lies 

upon, an area of inactivity (Figure 31). This dip slope is described by Wise (1961) as 

entirely underlain by one or more lava flows interbedded with the sedimentary rocks of 

the Weigle Formation (Ohanapecosh type rocks).  
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There appears to be Ohanapecosh type rocks in the La Bong Creek area (Figure 

32), an area typified by a thin layer of landslide debris. About a third of the way down 

from Brush Lake along La Bong Creek’s north bank, an apparent Ohanapecosh type 

outcropping, or a block of it was observed. The rocks were conglomeratic, very dark in 

color, extremely inundated, and the grain size of the matrix is finer than that of the 
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Eagle Creek Formation. If it indeed is Ohanapecosh type rock, it would be the only 

exposure of it on the Red Bluff 

Landslide. 

I argue that the 

purported scarp of the former 

Mosley Lakes Landslide is in fact 

the eastern frontal boundary of 

the reactivated upper lobe passing over a surface of the Ohanapecosh type rocks, a 

continuous feature that does not stop at the edges of the supposed scarp.  Wise (1961) 

was a field geologist concerned at the time with the stratigraphy and bedrock geology of 

the Wind River area. Waters (1973), a mentor and later a colleague to Wise, considered 

a landslide a “nuisance that hides the bedrock geology”. In the case of the Mosley Lakes 

Landslide, it appears they may not have been accurate in their analysis. This can 

probably be attributed to the imagery we have today, specifically LiDAR, which has 

made the difference in recognizing topographic features not otherwise seen before. I 

propose to stop using the term Mosley Lakes Landslide.  

4.4 Greenleaf Basin Rock Avalanche 

On the southernmost section of the Red Bluff Landslide headscarp, a rock avalanche 

occurred on January 3, 2008 (Russ Evarts, U.S.G.S., personal communication, 2008). The 

Greenleaf Basin Rock Avalanche was surveyed (Figure 33), investigated and 

characterized because it may have contributed to the recent reactivation of the 8.6 km2 

reactivated upper lobe of the Red Bluff Landslide (Burns, 2008 personal 
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 communication). A tension crack observed in the summer of 2007 by Russ Evarts (2008, 

personal communication) was the first evidence of potential failure. It separated off the 

main scarp headwall and collapsed, breaking apart as it hit the base. It flowed easterly 
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(Figure 34a) until deflected by a west dipping slope re-directing its flow southward, 

where the failure plane intersects the slope (Figure 34b). Figure 34c shows a view from 

the headscarp. From here it took on two separate flows: one down the western part of 

the slide and one directly south near the eastern 

portion of the slide (Figure 35). The rock avalanche 

flowed shearing all trees in its path finishing with 

one flow overlapping the other. Most of the rock 

avalanche accumulated in a north-south trending 

trough close to the eastern perimeter and southern 

portion of the slide. Total time from inception to 

termination was likely about a minute. 

A cross section of the Greenleaf Basin Rock 

Avalanche was generated using the “3-D Analyst” 

tool in ArcGIS (Figure 36).  A scarp length of 105 

meters (345 ft.), determined by the measuring tool 

in ArcGIS, was known from the data points collected in the field (Figure 33), and the 
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elevations were identified by ArcGIS generated contour lines and Figure 36. Its run out 

length is about 730 m (2,400 feet) and has an average width of approximately 140 m 

(450 feet). The deposit is made up of  andesitic basalt and Eagle Creek sediments 

covering an area of about 100,000 m2 (1.07 million ft2). Some areas have accumulated 

heights of up to 10 meters while other areas are bare of debris. The average depth of 

the rock slide deposit was calculated to be around 1.22 m (4 ft). Calculations indicate a 

displaced volume of roughly 375,500 m3 (13.2 million ft3). The displaced volume of the 

Greenleaf Basin Rock Avalanche represents about 0.058 % of the reactivated volume 

part of the Red Bluff slide mass (upper lobe) which is 649,862,170 m3 (22,949,665,940 

ft3) and approximately 0.01% of the area. A spring fed water saturated layer in the lower 

part of the Eagle Creek Formation is suspected as the failure surface (Figure 34) inclined 

at approximately 7 degrees to the south.  Eagle Creek sedimentary rocks contain enough 
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montmorillonite so that if saturated with water, the overlying weight could be enough 

to start horizontal movement (Wise, 1961). Although the Greenleaf Basin Rock 

Avalanche is rather small, we could probably consider this as a sixth event on the Red 

Bluff Landslide. 

4.5 Old Greenleaf Basin Rock Slide 

The Greenleaf Basin Rock Avalanche flowed over a previous event (event 5 

shown in Figure 28), the Old Greenleaf Basin Rock Slide (Figure 37). The old rock slide 

has a length of 

approximately 750 

m in the northeast 

southwest direction 

of flow and an 

average width of 

about 215 m. Its 

depth was estimated based on a rendition of the profile 

before its failure (Figure 36). Its area is about 161,250 

m2 and its volume is estimated at approximately 1.9 

million m3 based on an estimated depth of 12 m.  The 

Old Greenleaf Basin Rock Slide is at least 78 years old 

based on a 1934 Aerial Photo (Figure 38) and estimated 

to have an age 100 to 150 years based on the 

vegetation cover in 1934.   
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4.6 Did Greenleaf Basin Rock Avalanche cause movement to the Red Bluff Landslide?  

The question to whether the Jan 3, 2008 Greenleaf Creek Rock Avalanche event 

contributed to the overall winter 07’/08’ movement of the slide is uncertain. InSAR 

interferograms were analyzed from periods 06 November 2007 to 23 March 2008 and 

08 November 2008 to 08 February 2009. Figure 39 shows the first flyover was on 06 

Nov. 2007 and the second flyover was on 23 Mar 2008. The difference between the two 

dates yields movements for that period. The greenish pixels represent no movement 

while the cayenne-colored pixels represent the most movement. The purplish blue 

represents intermediate movement (Lu, U.S.G.S., personal communication, 2011). The 

Greenleaf Basin Rock Avalanche occurred on January 3, 2008, the period shown in 

Figure 39a. 

There are distinct differences between the two InSAR images in Figure 39. These 

differences lead one to sense that movement is differential as proposed in this thesis. 
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Some parts move one winter while other parts move the following winter or have 

moved in preceding winters, dependent on the amount of precipitation that winter. For 

example, the eastern portion of the reactivated upper lobe shows definite movement 

winter 08’/09’ compared to winter 07’/08’ (Black ellipses in Figure 39). The area just 

east of the rockfall in winter 07’/08’ shows very little movement compared to the 

movement in winter 08’/09’ (Red ellipses in Figure 39). The southeast portion of the 

slide in winter08’/09’ appears to be more active relative to the winter of 07’/08’. Both 

images show movement in the rock slide area, but there is no indication the rockfall was 

a cause of any movement of the reactivated upper lobe during the period from 06 Nov 

07’ to 23 Mar 08’.  

While driving forces are expected from the north northwest since dip is to the 

south southeast, the bulk of the slide mass comes off the west wall and is considered to 

be driving movement of the slide. The Greenleaf Basin Rock Avalanche on the Red Bluff 

Landslide can be considered as a contributor to driving forces. Resisting forces appear to 

be a feature resembling a compression wedge at the bottom of the slide backed up by a 

huge block of Columbia River Basalt on the Bonneville Landslide mapped by Wise (1961) 

(Figure 3). This compression wedge just north of the basalt shows no movement in 

either of the InSAR images shown in Figure 39.  

While the Greenleaf Basin Rock Avalanche has contributed to the load on the 

Red Bluff Landslide, it was not the cause of the winter 07/08 movement of the upper 

lobe. The driver and the principal cause of movement is most likely pore water pressure 

due to seasonal precipitation (Burns, 2010 personal communication) (Table2). Referring  
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to Figure 40 and Table 2, Figures 40b and 40c interferograms are the first to show any 

recordable movement. In the winter of 07’/08’ when November total precipitation was 

a light 25.4 cm (10 in), Mid-November 07’ indicates an accumulation of 15.75 cm (6.2 in) 

of rain in an eleven-day period and a four–day period receiving 7.1 cm (2.8 in) of 

precipitation. Early December of 07’ received a three-day period of 16.26 cm (6.4 in) in a 

month that received and estimated 49.4 cm (19.45 in) of precipitation. Towards mid-

January 08’, the month of the January 3, Greenleaf Basin Rock Avalanche, 17.73 cm (5.8 

in) of precipitation fell in a five-day period. It was a light month with an estimated 

monthly total of 31.24 cm (12.30 in). The late November 07’ precipitation event of 7.1 

cm (2.8 in) and the early December 07’ precipitation event of 16.26 cm (6.4 in) can be 

thought of as a nine-day period bringing in 23.37 cm (9.2 in). 

The image representing winter 08’/09’ recorded the same movement of 15-25 

cm/yr (Pierson and Lu, 2009) as did the image representing winter 07’/08’. Early 

November saw an eleven-day period of 21.1 cm (8.3 in) and there was no precipitation 

of movement data that were significant in December 08’ or January 09’. The rain for the 
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months of November through January of winter 08’/09’ were less helpful due to 

qualifiers included in the data. 

If one were to consider movement in winter 07’/08’, it most likely occurred 

during the late November – early December nine-day period of 23.37 cm (9.2 in). At this 

phase of research, we have to pick a maximum rain event to provide the minimum 

precipitation it would take for movement. One of the drawbacks for InSAR is that we 

have to accept the times of fly-overs, often months apart, and InSAR has to be used 

together with rain data to get information on slide movement. 

 Less significant short term drivers of movement are addition of loads and 

seismic. It becomes apparent that the Greenleaf Basin Rock Avalanche, 0.058 percent of 

the total slide mass, was insignificant, and not a driver of movement on the Red Bluff 

Landslide. 

4.7 Southwest movement of the upper lobe onto the Bonneville Landslide 

Based on morphological features on the southern portion of the active upper 

lobe, the upper lobe is moving over the Bonneville Landslide. Figure 41 indicates a 

region of compressional ridges probably caused by an area of resistance mapped by 

Wise (1961) as a massive block of basalt (Figures 3, 29,39). The overlap and cross cutting 

features onto the Bonneville Landslide appear to be an extensional features. Jim 

O’Connor (written communication, 2012) believes the southwest margin of the 

topographically higher Red Bluff Landslide is ‘relaxing’ (extending) south into the space 

resulting from the Bonneville Landslide”. One would think that the Bonneville Slide 

would show cross cutting features over an older part of the Cascade Landslide Complex. 
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If one can estimate the original border between the Bonneville Landslide and the Red 

Bluff Landslide, one can estimate an average rate of movement since 1450 AD.  

The original border between the Red Bluff Landslide and the Bonneville 

Landslide was interpolated by observations of present day features along the common   

border of both slides. For an estimated rate of movement, the upper portion of the 

border was selected that indicated the most movement. The border was brought in 

towards the estimated original border position between the red dots as indicated in 

Figure 41. Measurements were then taken from tools available in ArcGIS. Based on 560 

years that have passed since 1450 AD, and a distance of 150 meters from the 
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conceptualized original border to the leading edge of the overlap, rate of movement is 

roughly 25 cm/yr in a southwesterly direction.  

4.8 Southeast Movement of the Upper Lobe from West Headwall 

The Red Bluff Landslide possibly took its shape in late Pleistocene time, less than 

150,000 years ago, during an interglacial period, when the Red Bluff Volcanoes were 

fresh, intact, stable, and the main headscarp was considerably closer to the Columbia 

River. A Red Bluff Volcano has been age dated to 146,000 years (Russ Evarts, U.S.G.S., 

2011). During the years of Missoula Floods, flood waters raged through this area 

scouring out large parts of the region’s terrain with heights up to 253 meters (830 feet) 

in elevation. The interpolated height of flood waters passing through the area was 253 

meters (830 feet) based on reconstructed water heights at Dog Mountain and Crown 

Point (Benito and O’Connor, 2003). The flood waters are likely to have reached 

elevations of up to 267 meters (875 feet) or more in areas such as the north and west 

headwalls of the Red Bluff Landslide, as the town of Stevenson and the Cascade 

Landslide Complex locate themselves on the outside bank of the Columbia River.  

Before Missoula Flood time, I conjecture that the wall of the head scarp was 

considerably closer to the Columbia River due to the continual erosion seen today in the 

unraveling of sediment, rocks, cobbles and eagle creek slide blocks. This is at least true 

for the north wall of the Red Bluff Landslide. The west wall is different because it 

sustained a series of failure events of the volcanoes onto the upper lobe (Figure 28). 

Once the first floods began, they scoured the landslide material off Ohanapecosh type 

surfaces. The andesitic basalt present then from the collapsed Red Bluff Volcanoes 
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(event two – Figure 28) stayed in place during Missoula Flood time as it probably 

occupied a higher elevation and consisted of large massive boulders. Events three, four, 

and five are probably post Missoula Flood features. The orientation of event number 

two suggests that it may have been dislodged, nudged or rotated in a counter clockwise 

direction. The cross sectional shape of the Red Bluff Landslide most likely took on a 

configuration as shown in Figure 41. 

Large boulders of Eagle Creek Formation litter the slide area, mostly in the 

eastern portion of the slide and also present themselves as pimples or what has been 

referred to as hummocky topography on the lower portions of the slide. These are 

presumably remnants of Eagle Creek Formation slide blocks that have dislodged from 

the main scarp headwall and have made their way down the slide gravitationally.  

Referring to Figure 10, one can see that the town of Stevenson and the Cascade 

Landslide Complex is on the outside bank of the Columbia River and the interpolated 

heights of Missoula Flood waters reached the elevations of 253 meters. I believe the 

flood heights reached up to 267 meters based on the westward trajectory of the 

Columbia River towards the Red Bluff Landslide.  The floods probably did not reach the 

scarp headwall. The difference between the upper lobe today and the lobe right after 

Missoula Flood time works out to be approximately 1000 meters (Figure 42).  Missoula 

Floods occurred approximately 15,000 years ago so; the approximate rate of movement 

of the upper lobe in an easterly direction in the last 15,000 years is an average of one 

meter every 15 years or an average of 6.6 cm per year.  
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The reactivated portion (upper lobe) of the Red Bluff Landslide today, is almost 

certainly 15,000 years of accumulated debris from a receding headwall. The Red Bluff 

Landslide is a work in progress that originally started at the Columbia River, has been 

receding since late Pleistocene.  

4.9 Stevenson Landslide 

The area to the east and adjacent to the Cascade Landslide Complex is a dip 

slope identified by Wise (1961).  It is defined by Wise (1961) as underlain by one or 

more lava flows interbedded with the soft sedimentary rocks of the Weigle Formation. 

In other words it is an Ohanapecosh surface and extends northward for a total length of 

about 6 km from the Columbia River (Figure 43).  It had to have, at one time, carried an 

overburden, slipped into the Columbia River, and the evidence was lost in time. The 

surface is likely to have been exposed in the Pleistocene based on the lack of any 
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evidence. A lineation of a series 

of scarps indicated in Figure 44 

probably occurred and formed 

coincidently at the maximum 

flood level during Missoula Flood 

time. Emanating from these 

headscarps is visual evidence of 

up to five flows down towards 

the Columbia River.  A close look 

at the area indicates the scarps on the dip slope of the Stevenson Slide area extend into 

the Red Bluff Landslide forming a continuous feature with the flow and trajectory of 

Missoula Flood waters (Figure 44).   



53 

 

The dip slope also appears to extend into the lower portion of the Red Bluff 

Landslide. The lower portion of the Stevenson Landslide was mapped by Wise (1970) as 

in-place Eagle Creek Formation (Figure 45) and can probably be carried over onto the 

Red Bluff Landslide based on the local topography and a feature that appears to 

continue on to the Red Bluff Landslide. It is my judgment that the lower portion of the 

Red Bluff Landslide is probably mostly in-place Eagle Creek Formation with a thin veneer 

of overlying Eagle Creek landslide debris. Outcrops of Eagle Creek Formation on the Red 

Bluff Landslide are difficult to identify because the slide is covered by debris and 

outcrops that seem to be Eagle Creek Formation are most likely to be transported blocks 

or boulders that have originated off the headwall. The only outcropping of Ohanapecosh 

Formation appears to be along La Bong Creek (Figure 32).  

I have included the “Stevenson Landslide” as an addition to the Cascade 

Landslide Complex and have called this area the “Greater Cascade Landslide Complex” 

(Figure 46), the upper boundary being the lineation of scarps (Figure 44) and defined in 

(Figure 45). 

In my judgment, you cannot separate the Stevenson Landslide from the Cascade 

Landslide Complex. There is too much of a relationship there. First they are adjacent to 

each other. Secondly, in my view, the Red Bluff Landslide and the Stevenson Landslide 

share two things that are common to each other: they apparently share the same 

geology in the southern portion of each slide and seem to share Missoula Flood features  

that are continuous to each other. They also share a chronological relationship and are 

related to each other in a process (sec. 4.11). 
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4.10 Reactivation of the Stevenson Slide at Rock Creek 

The Stevenson Landslide is not without risk as it is being undermined with landslide 

activity at Rock Creek (Figures 47 and 48), on the lower portion of the Stevenson 

Landslide (Figure 45).  The Rock Creek Slide has been characterized as sediment failing 

over an Ohanapecosh surface into Rock Creek presenting a problem for the town of 
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Stevenson. The Ohanapecosh in this location is also being cut through, forming the walls 

along Rock Creek.  It has been seasonally active and has taken out quite a few homes 

along a retreating scarp. The upper portion of the Stevenson Landslide appears to be 

stable because it is all vegetated with old growth forest, and there have been no reports 

of activity except for the Rock Creek area. It would probably take an extreme moisture 

event to get the flows on the Stevenson Landslide to get going again. It may be prudent 

on the part of the town of Stevenson to initiate a study in the area.  
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4.11 Chronological Age Order of Landslides of the Cascade Landslide Complex 

Wise’s (1961) dip slope, east and adjacent to the Red Bluff Landslide assisted in 

making a judgment on the relative ages of the landslides in the Greater Cascade 

Landslide Complex. I assert that the oldest landslide feature in the complex is the 

Stevenson dip slope, followed by the Red Bluff Landslide and finally to the youngest 

Bonneville Landslide. Two factors led me to this conclusion: overburden and landslide 

debris. 
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The south trending Stevenson dip slope area is the oldest feature being an 

Ohanapecosh surface with no overburden, with  Ohanapecosh sediment flows on the 

Stevenson Landslide. The youngest Bonneville Landslide has the greatest overburden as 

it is still saddled with a massive basalt headscarp. The landslide debris of the Bonneville 

Landslide in Figure 15 illustrates that basalt is a significant component of debris 

fragments. The Red Bluff Landslide has overburden and debris characteristics that are 

intermediary between the Bonneville and Stevenson Landslides. The main debris 

component of the Red Bluff Landslide is Eagle Creek sediments. The basalt capped 

Greenleaf Peak is considerable less than found on the Bonneville Landslide.  

4.12 Soils 

Four soils pits were excavated and analyzed for this study; two from the active 

upper lobe and two from the lower semi-fixed area and shown in Figure 20. All four pits 

yielded sand (S) textures (USDA) or a SW textural designation (USCS) of very low clay 

content and displayed characteristics of minimal development. All four pits were 

Inceptisols (Table 3) with A over Bw profiles and one pit with a A over Bw over Cox 

profile. Based on the development of the soils, all four pits age from 1,600 to 15,000 
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years old (Figure 49) (Burns et al., 2008), and support the idea that the upper lobe is less 

than or close to 15,000 years old and the same for the sediments below the lobe. The 

proposition that the lower semi-fixed portion of the slide is older than the overtaking 

lobe has not been satisfied and therefore inconclusive. This does not, however, negate 

my suggestion that there is an upper lobe overtaking a lower fixed portion. Photos of 

each of the four soil pits are shown in Figure 50 and in Figure 51. 

The engineering properties of these soils were acquired through soil texture 

analysis (Birkeland, 1999) and are shown in Table 4.  Summary of soil pit data is shown 

in Table 5. Texturally (USDA), all soils are field classified as sand (S). The textural 

classification results were also confirmed by the lab results of particle size analysis 

(Figure 52). The moisture content of the soils was relatively low, as were the plastic and 

liquid limits. The results for the soil density of each soil pit are as shown in Table 6.  
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4.13 Trees and Sag Ponds 

Other features that must be mentioned on the Red Bluff Landslide are the trees 

(Figure 53) and the sag ponds.  

The re-activated upper lobe portion of the slide noticeably displays plenty of 

pistol-butted and leaning trees with heavier concentrations around the downslope 

perimeter (Figure 53). All lean or are pistol- butted in different directions not showing a 

preferential direction to establish overall direction of movement or to be valuable 

information with respect to time of movement since the slide has been active for 

thousands of years.  

The sag ponds (Figure 54) are an interesting feature not discussed in this thesis 

because they did not contribute to the study. I did however notice the largest of the 
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Mosley Lakes and Crescent Lake are all longer than they are wide and are in areas where 

compressional forces are present. 
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Chapter 5.0 Summary/Conclusions  

The Red Bluff Landslide, nestled in between the Bonneville Landslide and the 

Stevenson Landslide, covers an area of 18.67 km2 of the 43.0 km2 Greater Cascade 

Landslide Complex and is located where the Columbia River cuts through the central 

uplifted core of the Cascade Mountains. The region is typified by Grande Ronde Basalts 

overlying older incompetent Eagle Creek Formation and the older Ohanapecosh type 

volcaniclastic rocks and sediments allowing large landslides to move towards the 

Columbia River on southward dipping slopes averaging 7 degrees (Palmer 1977).  

Two units characterize the Red Bluff Landslide: An upper lobe moving across and 

spreading over a lower semi-fixed portion of the slide. The Red Bluff Landslide can be 

loosely classified as a deep seated translational slide, creeping in a southerly direction 

overlapping the Bonneville Landslide, and spreading laterally in an eastwardly direction 

over the lower portion of the slide. The lower portion is covered by a relatively thin 

veneer of Eagle Creek landslide sediments most likely underlain by Ohanapecosh type 

rocks/sediments and/or parts of in-place Eagle Creek Formation.  

The Red Bluff Landslide likely had its origin in the Pleistocene, with the Missoula 

Floods (18,000 - 15,000 years ago) accelerating the erosional process. The maximum 

flood level from the largest floods probably reached levels in excess of the 250 meters 

a.s.l. (820 feet). It was during this time that the Red Bluff Landslide was probably 

washed out and re-accumulating mass, forming an upper lobe. 

The movement of the Red Bluff Landslide before the Missoula Floods is unknown 

but each flood event during Missoula Flood time probably brought debris down covering 
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the slide with a thin layer of Eagle Creek sediment debris. The last Missoula Flood 

probably eroded and “smoothed” the lower surfaces of the landslide. Since that time, 

the upper lobe has been actively spreading across the smoothed lower surface. 

The debris, eroding from the main headscarp of Red Bluff Landslide, is composed 

mostly of andesitic basalt from the west headwall volcanoes and Eagle Creek Formation 

sediments from the north head wall.  This is the source material for the upper lobe. The 

debris, accumulated off the headwall, presently represents over 15,000 years of 

accumulation forming an active upper lobe covering an area of 8.6 km2 of the 18.76 km2 

area taken up by the Red Bluff Landslide. This upper lobe is the active portion of the 

slide. Failure of the Red Bluff Landslide area is progressive, occurring in increments, 

having begun at the Columbia River and progressing headward. It continues to undergo 

deformation from water-saturated layers during times of heavy precipitation. 

With respect to the history of the Red Bluff Landslide, the earliest most 

significant event initiated with the formation of the Red Bluff Volcanoes approximately 

146,000 years ago (Evarts, 2010, personal communication). Shortly afterwards, the 

volcanoes started to undergo a series of collapses. I have identified five collapse events, 

each identifiable relative to the location of the Red Bluff Volcanoes neck. Two of these 

events are likely pre-Missoula Flood and three are probably post Missoula Flood (Figure 

28). 

Not only is the Red Bluff Landslide composed of andesitic basalt from the 

volcanoes, it also is a matrix of Eagle Creek Formation sediments that have sifted 

through the landslide debris. Movement of the upper active lobe is not steady. It moves 
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only when there is enough water in the system for movement. When it does move, it 

moves in a differential manner. Different parts of the active upper lobe move at 

different places at different times. It is moving at a rate close to 25 cm/yr in a southerly 

direction, overlapping the Bonneville Landslide, and spreading laterally close to 6 cm/yr, 

in an eastwardly direction. 

The last relatively big event that occurred on the Red Bluff Landslide is what we 

refer to as the Old Greenleaf Basin Rock Avalanche (Figure 37, 38). It was a failure event 

estimated to have occurred 100 to 150 years ago based on vegetation cover. It was 

present on the slide in 1934 based on an aerial photo provided by the Corps of 

Engineers (Figure 39). It has an area of 161,250 m2, and a volume of 1.9 million m3.  It 

has a length of 750 m, an average width of 215 m and is the surface upon which the 

January 2008 Greenleaf Basin Rock Avalanche flowed. 

The recent January 2008 Greenleaf Basin Rock Avalanche, on the southern 

portion of the Red Bluff Landslide, was the last event to have deposited a considerable 

amount of material onto the Red Bluff Landslide at one time. It failed in a southerly 

direction with a runout length of 730m, a volume of 375,000m3, an average width of 

140 m, and covered an area of 99,500m2.  The average surface depth of the rockslide is 

1.22m with some deposits up to 10 m in depth and the scarp length is 116m. It 

contributed approximately 0.058% of the total volume and 0.01% of the surface area to 

the active portion of the Red Bluff Landslide. The failure surface of the rockfall on the 

western headwall is suspected as perched water from a spring fed part of the lower 

Eagle Creek Formation. A case was made that the Greenleaf Basin Rockfall Avalanche 
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was insignificant in movement of the active part of the Red Bluff Landslide winter of 

2007-2008, based on it being only 0.058 % of the total reactivated volume, and the 

InSAR images, which indicated different parts of the slide move at different times. The 

Greenleaf Basin Rock Avalanche contributed to the load on the Red Bluff Landslide but 

likely did not cause the reactivation of the Red Bluff Landslide that winter of 2007-2008. 

Wise’s Mosley Lakes Landslide is non-existent based upon analysis of imagery, 

profiles created from tools in ArcGIS and field truthing. It didn’t have a headscarp and 

was mapped flowing almost perpendicular to dip.  

Whereas the Red Bluff Landslide is active and the Bonneville Landslide recently 

failed catastrophically, the Stevenson Slide is relatively stable having lost all of its 

overburden from former sliding. The Stevenson Slide has, however, locally reactivated in 

the very lower portions along Rock Creek, where it cuts through in-place Eagle Creek 

Formation and into the Ohanapecosh Formation. I propose increasing the size of the 

complex area by 7.5 km2, by adding the Stevenson Landslide. With this, I have renamed 

the Cascade Landslide Complex to the “Greater Cascade Landslide Complex” making it a 

total of 43 km2 (Figure 54). Not including the Stevenson Slide into the complex would be 

incomprehensible because it shares a history, it is connected, related in a process, and 

has the same dip slope. Although not conclusive, it is coincidental that the headscarps 

along the northern boundary of the Stevenson Slide match Missoula Flood heights and 

the lineation of those scarps line up with the trajectory of the largest Missoula Flood off 

the Columbia River. 
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Chapter 6.0 – Future Work 

The groundwork in this thesis has been laid for the Red Bluff Landslide, but there 

is yet future work to do. With respect to infrastructure,  I suggest the town of Stevenson 

be aware of the work being done by the Cascade Volcano Observatory, specifically the 

InSAR data yet to be released. Over time, the InSAR data together with rain data should 

help define the creep and the minimum threshold of precipitation for movement. 

Future work should also include a characterization of the Carpenters Landslide and a 

possible small slide to the immediate northwest of it.  A study of the Skamania 

Landslide, immediately to the west of the Cascade Landslide Complex is another 

unknown. It has hummocky hills of broken and deformed highly permeable Columbia 

River Basalts on top of Eagle Creek and/or Ohanapecosh Formations. The Washougal 

Landslide, west of the Skamania Landslide is another slide that lacks detailed 

information. All of these slides including the Cascade Landslide Complex involve the 

same geological units, and failure is thought to occur in similar units. A study of the 

Washougal and Skamania slides may also provide further insight to the Cascade 

Landslide Complex and the region. Cosmogenic isotope dating is another possibility for 

future work on the Red Bluff Landslide for a better handle on the ages of the five 

collapse events of the Red Bluff Volcano on the upper lobe. 
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