
General Least Squares

We now derive the least-squares solution, and illustrate that it provides the best numerical
estimate for the constants. Suppose we have an equation of the form:

 Ai1C1 + Ai2C2 + Ai3C3 + Ai4C4 + ... + AiΚCK= Di

Where Aij  is a coefficient to a constant , Cj is a constant and Di  is the driving term. K is
the number of undetermined constants. For a series of data points, we can imagine the following
set of equations where N > K:

A11C1 + A12C2 + A13C3 + A14C4 + ... + A1ΚCK = D1
A21C1 + A22C2 + A23C3 + A24C4 + ... + A2ΚCK = D2
A31C1 + A32C2 + A33C3 + A34C4 + ... + A3ΚCK = D3

.

.

.
AΝ1C1 + AΝ2C2 + AΝ3C3 + AΝ4C4 + ... + AΝΚCΚ = DΝ

This set of equations can be written using subscript notation:

AijCj  =  Di

where i ranges from 1 to N,  and j ranges from 1 to K.
We define a residual, R, which is the difference between the actual value D,  and the

value computed using some estimate of the constants, Cj. A single equation becomes

Ai1C1 + Ai2C2 + Ai3C3 + Ai4C4 + ... + AiΚCK – Di = Ri

Ri, Di, and Cj must all have the same dimensions. This implies that Aij is dimensionless. For the
entire multilayer the equations become, in subscript notation:

Aij Cj – Di = Ri (1)

An estimate of the total error is the sum of the R values. However, individual R values
may have different signs, so an unbiased measure of the error, M, is the sum of the squares of the
residuals, R.
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The total error, M, is minimized when ∂M/∂Cj is zero. For the differentiation, the actual
values of constants, Cj, need not be known. Taking the derivative of M with respect to the first
constant, C1, gives
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Similar expressions can be derived for the other terms:



∂R2
2

∂C1
 =   = 2A21(A2jCj - D2),    

∂R3
2

∂C1
 =  = 2A31(A3jCj - D3),    etc.

Summing terms,
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In general,
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The error is minimized when 
∂M
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 is zero:

2Aip(AijCj – Di) = 0

This can be written in the following form:

AipAijCj – AipDi = 0

The subscripts p and j  range from 1 to K, the number of constants, and the subscript i
ranges from 1 to N, the number of matching equations. This equation gives the following square
matrix:

Ai1Ai1    Ai1Ai2 ... Ai1AiΚ 
Ai2Ai1   Ai2Ai2 ... Ai2AiΚ 
Ai3Ai1   Ai3Ai2 ... Ai3AiΚ
.
.
.

 AiΚAi1   AiΚAi2 ... AiΚAiΚ

C1
C2
C3
.
.
.

CΚ

=

Ai1 Di
Ai2 Di
Ai3 Di

.

.

.
AiK Di

Comparing the cell (2,1) (row 2, column 1) with cell (1,2), and cell (4k,1) with cell (1,4k),
it can be seen that they are identical. This indicates that the matrix is diagonally symmetric.  For
any cell in the matrix, the only repeated subscript is i, the row counter. Thus, for any cell in the
matrix, we sum on i. This indicates that the matrix can be generated by manipulating only one
row of the A matrix at a time, rather than multiplying two complete A matrices.

The constants, Cj, which minimize the residuals (eq. 1) can then be solved for by
inverting the coefficient matrix. Computationally, it is unnecessary to completely invert the
matrix, and we use a LU-decomposition with back substitution to solve for the constants.

From an examination of the above coefficient matrix we see that it is:

AT A C = AT D

Solving gives

C = (AT A)-1 AT D

Thus finding the coefficients of the general polynomial is a simple operation in Excel.


