## General Least Squares

We now derive the least-squares solution, and illustrate that it provides the best numerical estimate for the constants. Suppose we have an equation of the form:

$$
\mathrm{A}_{\mathrm{i} 1} \mathrm{C}_{1}+\mathrm{A}_{\mathrm{i} 2} \mathrm{C}_{2}+\mathrm{A}_{\mathrm{i} 3} \mathrm{C}_{3}+\mathrm{A}_{\mathrm{i} 4} \mathrm{C}_{4}+\ldots+\mathrm{A}_{\mathrm{iK}} \mathrm{C}_{\mathrm{K}}=\mathrm{D}_{\mathrm{i}}
$$

Where $A_{i j}$ is a coefficient to a constant, $C_{j}$ is a constant and $D_{i}$ is the driving term. $K$ is the number of undetermined constants. For a series of data points, we can imagine the following set of equations where $N>K$ :

$$
\begin{aligned}
& \mathrm{A}_{11} \mathrm{C}_{1}+\mathrm{A}_{12} \mathrm{C}_{2}+\mathrm{A}_{13} \mathrm{C}_{3}+\mathrm{A}_{14} \mathrm{C}_{4}+\ldots+\mathrm{A}_{1 \mathrm{~K}} \mathrm{C}_{\mathrm{K}}=\mathrm{D}_{1} \\
& \mathrm{~A}_{21} \mathrm{C}_{1}+\mathrm{A}_{22} \mathrm{C}_{2}+\mathrm{A}_{23} \mathrm{C}_{3}+\mathrm{A}_{24} \mathrm{C}_{4}+\ldots+\mathrm{A}_{2 \mathrm{~K}} \mathrm{C}_{\mathrm{K}}=\mathrm{D}_{2} \\
& \mathrm{~A}_{31} \mathrm{C}_{1}+\mathrm{A}_{32} \mathrm{C}_{2}+\mathrm{A}_{33} \mathrm{C}_{3}+\mathrm{A}_{34} \mathrm{C}_{4}+\ldots+\mathrm{A}_{3 \mathrm{~K}} \mathrm{C}_{\mathrm{K}}=\mathrm{D}_{3}
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{N} 1} \mathrm{C}_{1}+\mathrm{A}_{\mathrm{N} 2} \mathrm{C}_{2}+\mathrm{A}_{\mathrm{N} 3} \mathrm{C}_{3}+\mathrm{A}_{\mathrm{N} 4} \mathrm{C}_{4}+\ldots+\mathrm{A}_{\mathrm{NK}} \mathrm{C}_{\mathrm{K}}=\mathrm{D}_{\mathrm{N}}
$$

This set of equations can be written using subscript notation:

$$
\mathrm{A}_{\mathrm{ij}} \mathrm{C}_{\mathrm{j}}=\mathrm{D}_{\mathrm{i}}
$$

where $i$ ranges from 1 to $N$, and $j$ ranges from 1 to $K$.
We define a residual, $R$, which is the difference between the actual value $D$, and the value computed using some estimate of the constants, $C_{j}$. A single equation becomes

$$
\mathrm{A}_{\mathrm{i} 1} \mathrm{C}_{1}+\mathrm{A}_{\mathrm{i} 2} \mathrm{C}_{2}+\mathrm{A}_{\mathrm{i} 3} \mathrm{C}_{3}+\mathrm{A}_{\mathrm{i} 4} \mathrm{C}_{4}+\ldots+\mathrm{A}_{\mathrm{iK}} \mathrm{C}_{\mathrm{K}}-\mathrm{D}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}}
$$

$R_{i}, D_{i}$, and $C_{j}$ must all have the same dimensions. This implies that $A_{i j}$ is dimensionless. For the entire multilayer the equations become, in subscript notation:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{ij}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

An estimate of the total error is the sum of the $R$ values. However, individual $R$ values may have different signs, so an unbiased measure of the error, $M$, is the sum of the squares of the residuals, $R$.

$$
\mathrm{M}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{R}_{\mathrm{i}}^{2}=\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}+\mathrm{R}_{3}^{2}+\ldots+\mathrm{R}_{\mathrm{N}}^{2}=\mathrm{R}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}}
$$

The total error, $M$, is minimized when $\partial \mathrm{M} / \partial \mathrm{C}_{\mathrm{j}}$ is zero. For the differentiation, the actual values of constants, $C_{j}$, need not be known. Taking the derivative of $M$ with respect to the first constant, $C_{l}$, gives

$$
\begin{aligned}
\frac{\partial \mathrm{M}}{\partial \mathrm{C}_{1}}=0 & =\frac{\partial \mathrm{R}_{1}^{2}}{\partial \mathrm{C}_{1}}+\frac{\partial \mathrm{R}_{2}^{2}}{\partial \mathrm{C}_{1}}+\frac{\partial \mathrm{R}_{3}^{2}}{\partial \mathrm{C}_{1}}+\ldots+\frac{\partial \mathrm{R}_{N}^{2}}{\partial \mathrm{C}_{1}} \\
\frac{\partial \mathrm{R}_{1}^{2}}{\partial \mathrm{C}_{1}}=\frac{\partial}{\partial \mathrm{C}_{1}}\left(\mathrm{~A}_{11} \mathrm{C}_{1}\right. & \left.+\mathrm{A}_{12} \mathrm{C}_{2}+\mathrm{A}_{13} \mathrm{C}_{3}+\ldots+\mathrm{A}_{1(4 \mathrm{k})} \mathrm{C}_{4 \mathrm{k}}-\mathrm{D}_{1}\right)^{2} \\
& =2 \mathrm{~A}_{11}\left(\mathrm{~A}_{1 \mathrm{j}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{1}\right)
\end{aligned}
$$

Similar expressions can be derived for the other terms:

$$
\frac{\partial \mathrm{R}_{2}^{2}}{\partial \mathrm{C}_{1}}==2 \mathrm{~A}_{21}\left(\mathrm{~A}_{2 \mathrm{j}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{2}\right), \quad \frac{\partial \mathrm{R}_{3}^{2}}{\partial \mathrm{C}_{1}}==2 \mathrm{~A}_{31}\left(\mathrm{~A}_{3 \mathrm{j}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{3}\right), \quad \text { etc. }
$$

Summing terms,

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{C}_{1}}=2 \mathrm{~A}_{\mathrm{i} 1}\left(\mathrm{~A}_{\mathrm{ij}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{\mathrm{i}}\right)
$$

In general,

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{C}_{\mathrm{p}}}=2 \mathrm{~A}_{\mathrm{ip}}\left(\mathrm{~A}_{\mathrm{ij}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{\mathrm{i}}\right)
$$

The error is minimized when $\frac{\partial M}{\partial C_{p}}$ is zero:

$$
2 \mathrm{~A}_{\mathrm{ip}}\left(\mathrm{~A}_{\mathrm{ij}} \mathrm{C}_{\mathrm{j}}-\mathrm{D}_{\mathrm{i}}\right)=0
$$

This can be written in the following form:

$$
\mathrm{A}_{\mathrm{ip}} \mathrm{~A}_{\mathrm{ij}} \mathrm{C}_{\mathrm{j}}-\mathrm{A}_{\mathrm{ip}} \mathrm{D}_{\mathrm{i}}=0
$$

The subscripts $p$ and $j$ range from 1 to $K$, the number of constants, and the subscript $i$ ranges from 1 to $N$, the number of matching equations. This equation gives the following square matrix:

$$
\left|\begin{array}{lll}
\mathrm{A}_{\mathrm{i} 1} \mathrm{~A}_{\mathrm{i} 1} & \mathrm{~A}_{\mathrm{i} 1} \mathrm{~A}_{\mathrm{i} 2} \ldots & \mathrm{~A}_{\mathrm{i} 1} \mathrm{~A}_{\mathrm{iK}} \\
\mathrm{~A}_{\mathrm{i} 2} \mathrm{~A}_{\mathrm{i} 1} & \mathrm{~A}_{\mathrm{i} 2} \mathrm{~A}_{\mathrm{i} 2} \ldots & \mathrm{~A}_{\mathrm{i} 2} \mathrm{~A}_{\mathrm{iK}} \\
\mathrm{~A}_{\mathrm{i} 3} \mathrm{~A}_{\mathrm{i} 1} & \mathrm{~A}_{\mathrm{i} 3} \mathrm{~A}_{\mathrm{i} 2} \ldots & \mathrm{~A}_{\mathrm{i} 3} \mathrm{~A}_{\mathrm{iK}} \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
\mathrm{~A}_{\mathrm{iK}} \mathrm{~A}_{\mathrm{i} 1} & \mathrm{~A}_{\mathrm{iK}} \mathrm{~A}_{\mathrm{i} 2} \ldots & \mathrm{~A}_{\mathrm{iK}} \mathrm{~A}_{\mathrm{iK}}
\end{array}\right|\left|\begin{array}{c}
\mathrm{C}_{1} \\
\mathrm{C}_{2} \\
\mathrm{C}_{3} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{C}_{\mathrm{K}}
\end{array}\right|=\left|\begin{array}{c}
\mathrm{A}_{\mathrm{i} 1} \mathrm{D}_{\mathrm{i}} \\
\mathrm{~A}_{\mathrm{i} 2} \mathrm{D}_{\mathrm{i}} \\
\mathrm{~A}_{\mathrm{i} 3} \mathrm{D}_{\mathrm{i}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{~A}_{\mathrm{iK}} \mathrm{D}_{\mathrm{i}}
\end{array}\right|
$$

Comparing the cell $(2,1)$ (row 2, column 1) with cell $(1,2)$, and cell $(4 k, 1)$ with cell $(1,4 k)$, it can be seen that they are identical. This indicates that the matrix is diagonally symmetric. For any cell in the matrix, the only repeated subscript is $i$, the row counter. Thus, for any cell in the matrix, we sum on $i$. This indicates that the matrix can be generated by manipulating only one row of the $A$ matrix at a time, rather than multiplying two complete $A$ matrices.

The constants, $C_{j}$, which minimize the residuals (eq. 1) can then be solved for by inverting the coefficient matrix. Computationally, it is unnecessary to completely invert the matrix, and we use a LU-decomposition with back substitution to solve for the constants.

From an examination of the above coefficient matrix we see that it is:

$$
A^{T} A C=A^{T} D
$$

Solving gives

$$
\mathrm{C}=\left(\mathrm{A}^{\mathrm{T}} \mathrm{~A}\right)^{-1} \mathrm{~A}^{\mathrm{T}} \mathrm{D}
$$

Thus finding the coefficients of the general polynomial is a simple operation in Excel.

