Corrigendum

H.Y. Chunga,b, H.Y. Xiea,c, P.T. Leunga,*, D.P. Tsaia,b,c

a Department of Physics, National Taiwan University, Taipei 10617, Taiwan, ROC
b Instrument Technology Research Center, National Applied Research Laboratory, Hsinchu 300, Taiwan, ROC
c Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC

\textbf{A R T I C L E I N F O}

Article history:
Received 19 November 2009
Accepted 28 February 2010
by B.-F. Zhu
Available online 17 March 2010

After the above paper was published, we discovered an error in our Mathematica program in which a factor $\varepsilon_h = 1.93$ was inadvertently missing in one of the equations. As a consequence, the results presented in Figs. 2 to 4 should actually be normalized values with respect to ε_h, i.e. $\varepsilon \rightarrow \varepsilon/\varepsilon_h$. In addition, a richer interference pattern now appears in the transmission coefficient through the composite film as shown in the corrected Fig. 5. Other conclusions in the original paper remain valid in spite of these changes.

Furthermore, we should have stated that the quantity f' defined in the paper is only related to the volume fraction of the particle in the cluster and that its relation to f_C should be given by $f_C = f \cdot (f')^{1/3}$ and not f/f'. The correct definition of these volume fractions had actually been used in all the calculations in the paper.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig_5}
\caption{Fig. 5.}
\end{figure}