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Abstract
Expressions for Maxwell’s equations independent of the unit system are
presented and compared with those given in Jackson’s book. Both the cases
of electromagnetism in vacuum and in a medium are considered through the
introduction of two sets of proportional constants: the set of empirical constants
and that of ‘conventional constants’. The latter set is needed to account for the
different conventions adopted in different unit systems for the definitions of
various electromagnetic quantities in the presence of a medium.

It is a well-known fact that one major hurdle for students in a class of electromagnetism (EM)
is to get familiar with the adopted unit system, and to move from one unit system to another
(e.g. SI to Gaussian). The complexity of this issue can be attested simply by referring to the
recent publication of a whole text exclusively devoted to this issue [1]. This problem is further
intensified with the appearance of the latest edition of Jackson [2], which adopts a mixture of
unit systems with the first 10 chapters in SI and the last six in Gaussian units.

While there have been publications in the literature from time to time on the subject of
transforming Maxwell equations from one unit system to another [3], it will be valuable if one
can just formulate the equations in a ‘system-free’ approach independent of any unit system
adopted. Indeed, this was done in Jackson’s appendix in terms of four empirical constants [2]
for the case of EM in vacuum. In this note, we shall present a different and slightly simplified
formulation of these ‘system-free’ equations. In addition, we shall also discuss the case in a
medium and shall see that such a formulation becomes too messy due to various definitions
and conventions adopted previously in the different unit systems.

As is well-known, the origin of the difference in the various unit systems arises from the
different choices of the proportional constants in expressing various empirical laws in the form
of an equation. In the case of EM in vacuum, it is easy to see that one only needs to introduce
three such constants: kE, kB, and kEM (which stand for electric, magnetic, and electromagnetic
constants) to express all the equations for both the fields (Maxwell’s equations) and the source
(Lorentz force law). Note that the choice of constant for Faraday’s electromagnetic induction
law is intimately related to that for Lorentz force law via the concept of ‘motional electromotive
force’ [4], and one needs only one empirical constant for both these two laws. This can easily
be shown by considering the induced emf on a constantly moving wire, which completes a
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Table 1. Definitions of various empirical constants.

SI Gaussian esu emu Heaviside

kE
1

4πε0
1 1 c2 1

4π

kB
µ0
4π

1
c

1
c2 1 1

4πc

kF 1 1
c 1 1 1

c

Table 2. Definitions of various ‘conventional’ constants.

SI Gaussian esu emu Heaviside

kD ε0 1 1 1/c2 1

kM 1 c 1 1 c

kH 1/µ0 1 c2 1 1

circuit located in a uniform magnetic field. Hence, instead of kE, kB, and kEM, we may as well
use kE, kB, and kF to formulate the field equations where kF is the ‘force constant’ defined
through the equation �F = q( �E + kF �v × �B). In addition, kE is defined through Coulomb’s law

( �E = kE
q
r2 r̂ ) and kB through the Biot–Savart law (

−→
d B = kB

I
−→
dl ×r̂

r2 ), respectively. Using this
set of three constants, it is not difficult to show that Maxwell’s equations in vacuum can be
expressed in the following way:

�∇ · �E = 4πkEρ

�∇ · �B = 0

�∇ × �E + kF
∂ �B
∂ t

= 0

�∇ × �B − kB

kE

∂ �E
∂ t

= 4πkB �J .

(1)

The expressions for the three constants in the five common unit systems are given in table 1.
Next let us consider the modifications to the two ‘source equations’ in the presence of

a medium. By introducing the polarized charge density ρP = −�∇ · �P into Gauss’s law, we
obtain

�∇ · ( �E + 4πkE �P) = 4πkEρ. (2)

Further complication now arises due to the lack of a consistent definition of the displacement
vector ( �D) in various systems. For example, while �D is identified with �E in vacuum in Gaussian
units, it is defined to be distinguished from �E even in vacuum ( �D = ε0 �E) in SI units1. In order
to account for this artificial discrepancy, we have to introduce another constant, kD, to keep
track of the different definitions of �D in different systems as follows:

�D = kD( �E + 4πkE �P), (3)

and the modified Gauss law takes the form

�∇ · �D = 4πkDkEρ. (4)

Expressions for kD in various systems are given in table 2.

1 Some authors claim that to have �D and �E as well as �B and �H to be differentiated (even in the vacuum case) is
an added advantage for the SI system (e.g. Vanderlinde in [4]). We cannot agree with this. These vectors should
be differentiated only in the presence of polarization and magnetization of a medium. It is not wrong to have them
identified with each other in vacuum.
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The situation will be still more complicated in the case of the magnetic medium since
even the definition of the magnetic dipole moment ( �m) varies from system to system. For
example, while �m for a constant current loop is simply the product of the current and area in
the SI system, it is defined with an extra factor 1/c (c being the speed of light in vacuum)
in the Gaussian system. Just to account for this we have to introduce an extra constant kM

(see table 2) in the relation between the magnetization current and the magnetization vector as
follows:

�JM = kM �∇ × �M. (5)

To obtain a complete modification of Ampère’s law, we have to introduce one extra constant
kH (see table 2) to take care of the different definitions of the �H vector in various systems, just
like the situation with the �D vector in the electric case. Thus we have

�H = kH ( �B − 4πkBkM �M), (6)

and the modified Ampère’s law is finally obtained as follows:

�∇ × �H −
(

kBkH

kEkD

)
∂ �D
∂ t

= 4πkBkH �J . (7)

Thus the complete set of ‘system-free’ Maxwell equation in a medium is given by the two
sourceless equations in (1) together with equations (4) and (7).

In summary, we have introduced a set of ‘system-free’ Maxwell equations in vacuum
using three empirical constants as displayed in equation (1) which is slightly simpler than
the one found in Jackson [2]. Jackson introduces the magnetic constant through the Ampère
force law which thus mixes the two constants kB and kF as defined here. Hence Jackson ends
up requiring four constants for the complete formulation of the equations, and only reduces
to three constants with further dimensional analysis making use of the wave equation. In
addition, the connection between the electromagnetic constant kEM and the force constant kF
is not utilized in Jackson’s approach.

We would like to further comment on the ‘empirical nature’ of these constants. Strictly
speaking there is only one fundamental constant needed in the whole Maxwell equation in
vacuum which is the speed of light c.2 This is particularly clear in the Gaussian system by
noting that only the two ‘curl equations’ are independent equations, and each of which contains
only c as the empirical constant. Together with the continuity equation for the conservation
of charge, the two ‘divergence equations’ can then be derived. In the ‘system-free’ case, one
can also see this by deriving the wave equation from equation (1) which yields the identity:
kFkB
kE

= 1
c2 . This can also be checked explicitly from table 1. From this relation it is clear that

out of the three constants kE, kB, kF, two are actually fixed by convention in the various unit
systems. For example, one can fix kE by defining the unit for charge in Coulomb’s law, and kB
by defining the strength of the magnetic field in the Biot–Savart law. kF is then automatically
fixed by the above relation3.

For the case with a medium, the situation becomes much more complicated due,
unfortunately, to the conventional distinction in the definitions of the magnetic dipole moment
as well as the �D and �H vectors in various systems. Because of this, we have to introduce three
more ‘conventional constants’ kD, kM and kH (in contrast to empirical constants) to formulate
the whole system of equations in a ‘system-free’ format. This thus makes the result not as
appealing as that obtained in the vacuum case, and it may be preferable as well to work with
one specific unit system in practice, and then learn to transform from one to another system as
is done in the literature [3].

2 We thank an anonymous referee for pointing this out to us.
3 A similar argument is also presented by Jackson in [2].
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