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Abstract

A phenomenological model for the optical response of composite materials with metallic nanoparticles is presented. This

model applies the conventional effective medium theories (EMT) but takes into account the spatial dispersion effects in the

dielectric response of the metallic nanoparticles. This leads to an EMT that depends on the size of the particles. Numerical

results from a model computation shows that this effect due to the nonlocal optical response of the nanoparticles can increase

the resonant absorption frequency of the composite significantly for particles of very small sizes; and can lead to resonant

absorption even in the Bruggeman symmetric EMT—a feature which is believed to be absent in the conventional treatment

where local response for the metal particles has been assumed.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The theoretical study of the optical/dielectric properties

of composite materials containing tiny metallic particles

embedded in a dielectric host, such as cermet, is over a

century old. Since the first publication of various effective

medium theories (EMT) at the beginning of the twentieth

century [1,2], there have been many extensions and

modifications proposed in the literature over the last thirty

years [3]. These include, for example: detailed treatment of
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the particle shape beyond that of a sphere [4,5]; consider-

ation of the possibility of particle coalescence [5,6]; account

for particle correlation through multiple scattering effects

[7]; improved treatment of percolation threshold in these

models [8]; generalization to an anisotropic effective

dielectric response for the composite [9]; implication of

the significance of multipolar response which is neglected in

the conventional EMT [10]; and the various generalizations

to include electrodynamic effects leading to an EMT which

depends on the sizes of the embedded particles [11].

Particle-size dependent EMT’s for composite materials

are of considerable interest. The one emerging from

electrodynamic effects mentioned above is significant

when the particle size a is large compared to the optical

wavelength l under consideration. For metallic nanoparti-

cles with sizes much smaller then l in the visible and IR
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regime, a different kind of size effect becomes significant

which has to do with the wave nature of the metallic

electrons. While in the literature, this quantum size effect

has been studied in the context of dielectric response for

nanoparticles [12] and composites with such particles [7], it

is the purpose of the present work to study a different kind of

size effect which arises from the increasing significance of

the particle surface. Due to the simple fact that the surface-

to-volume ratio (w1/a) of the particle increases as the size

decreases, the nonlocal optical effects become highly

significant for nanoparticles. Here nonlocal effect refers to

the wave vector dependence of the dielectric constant 3ð~k ;

uÞ leading, ideally, to smoothly continuous charge and field

distributions across the geometric boundary of the particle.

To our knowledge, none of the previous works has devoted

to the study of this effect since they have all assumed a

dielectric function of the form 3(u) for the particles in which

spatial dispersion is ignored. Note that this effect also differs

from the one originated from scattering of the free electrons

at particle boundaries [12,13], which also leads to a size-

dependent EMT. We should point out that in a series of

works on the study of electron energy loss spectroscopy
Fig. 1. Plot of the complex dielectric function as a function of

wavelength, according to the Maxwell-Garnet theory for a

composite with a concentration of metal particle fZ0.05. The

host is assumed vacuum for simplicity, and the Drude parameters

are used as in Ref. [20]. The local response (Drude) is plotted in

dotted line, and the nonlocal response according to the hydrodyn-

amic model is plotted in solid line (for particle size aZ25 nm) and

in dashed line (for aZ5 nm).
(EELS) from composite materials [14–16], Fuchs and

collaborators have studied a different kind of nonlocal

effects which arise from inter-particle interaction/corre-

lation among the particles in the composite. The dielectric

function for the individual particle is still a local one. As

discussed in Ref. [14], these effects studied by Fuchs et al.

are insignificant for optical experiments.

In the following, we shall apply a simple phenomen-

ological model for the dielectric response of a sphere due

first to Fuchs and Claro [17] to study these nonlocal effects

in a composite as described above.
2. Theoretical model

For simplicity, we shall assume that in the case of local

electrodynamics, the dielectric response for the metallic

particles is described by the Drude model:

3ðuÞZ 1K
u2
p

uðuC igÞ
(1)

In this case, it is well-known that 3(u) is independent of

the size of the particle and is the same for all multipolar

responses. In the case of nonlocal dielectric response,

however, this is no longer true and 3ð~k ;uÞ depends on both

the particle size and the multipole order of the response in

general. Following the theories of Fuchs and coworkers, an

‘effective local dielectric function’ can be obtained for a

sphere using the ‘semi-classical infinite barrier’ (SCIB)

approximation as follows [17]:

x[ðuÞZ
2

p
ð2[C1Þa

ðN
0

j2[ ðkaÞ

3ðk;uÞ
dk

� �K1

(2)

where [ is the order of the multipolar response, a the radius

of the sphere, j[ the spherical Bessel function, and 3(k,u) the

isotropic nonlocal dielectric function which will incorporate

certain quantum effects of the electrons in the metal sphere

depending on the model adapted [18]. In the following, we

shall use Eq. (2) to study the size effect due to the increasing

significance of the surface response from the nanoparticles,

and shall explore the implication of this effect on the

comparison between theory and experiment using various

models for the EMT in the literature.

To study the effects of Eq. (2) in composite materials

with metallic nanoparticles, we shall adopt both the

Maxwell-Garnett (MG) [1] and the Bruggeman (BG) [2]

models. According to these, we have the effective dielectric

function �3 for the composite given implicitly through the

following algebraic equations:

�3MG K30

�3MG C230
Z f

3K30

3C230
(3)

f ð3K �3BGÞ

3C2�3BG
Z

ðf K1Þð30 K �3BGÞ

30 C2�3BG
(4)
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In the above equations, f is the volume fraction of the

metal particles, 3 and 3 0 are the dielectric constants of the

metal and the host material, respectively. We shall study

the nonlocal optical effects for the composite material by

using Eq. (2) for 3, and compared with those from using

Eq. (1). Since only the dipolar response of the metal

particles is considered in the models in Eqs. (3) and (4), one

simply has to substitute 3 by x1 (i.e. x[ in Eq. (2) with [Z1)

into them and compare the results from using Eq. (1) for the

metallic dielectric function. As for the nonlocal response,

we shall use both the hydrodynamic model and the

Lindhard–Mermin (RPA) model for 3(k,u) in Eq. (2), in

the same way as done in Ref. [17] where the multipolar

polarizability of these metal particles was studied.
3. Numerical results

To illustrate the aforementioned nonlocal effects in

composite materials, we refer to the pioneering works of

Abeles and coworkers [4,19,20] which are often cited [21]

as one of the earlier works in elucidating various EMT’s

(e.g. the Maxwell-Garnett (MG) and the Bruggeman (BG)

theories) via comparison with experimental results. Fig. 1

shows the complex dielectric function of a composite with

low metallic concentration (fZ0.05) according to the MG

theory and the hydrodynamic (H) model for the nonlocal

metallic response. The parameters for the host material and
Fig. 2. Same as in Fig. 1, except that the nonlocal results are those

from using the Lindhard–Mermin dielectric function.
the local (Drude) dielectric function are taken from Ref.

[20], with upZ9.4!1015 sK1 and gZ1.0!1014 sK1.

While it is well-known that the resonance frequency

predicted by the MG theory is in general red-shifted from

the one for the bulk metal, it is observed that the nonlocal

effects will ‘blue-shift’ the resonance back appreciably for

very small metal particles (aZ5 nm). This blue-shift of the

dipolar surface plasmon frequency (usp) for the nanoparti-

cles has been well-established in the nonlocal theories based

on the SCIB formulation [22]. The physical origin of the

phenomenon arises from the k-dependence of usp, and the

fact that this dependence becomes more significant as

the particle size decreases. It turns out that this

k-dependence of usp can be related to that of the bulk

plasmon modes whose dispersion relation has the frequency

to increase with k. Fig. 2 presents a calculation similar to

that in Fig. 1 except that the nonlocal response of the metal

is now described by the Lindhard–Mermin (LM) theory.

This RPA theory is believed to be more accurate for it

accounts not only for the collective plasmon excitation, but

also the single-particle (e–h pair) excitation of the free

electrons in the metal [18]. The results show that while the

resonance frequencies in both the H and the LM models are

pretty much the same, the LM model leads to smaller

absolute values for both the real and the imaginary parts of

the dielectric functions. Note that the closeness in resonance
Fig. 3. Similar plot as in Fig. 1, but for a composite with higher

metallic concentration (fZ0.4) and the Bruggeman EMT has been

applied.
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frequency between the two models occurs since we only

consider the dipolar (lZ1) response in the metal particles

[17].

Figs. 3 and 4 show similar calculations as in Figs. 1 and

2, but for a higher metallic concentration (fZ0.4) where the

Bruggeman EMT has been applied to compute the effective

dielectric function for the composite. While the size-

dependent effects due to nonlocal optical response of the

metal particles are seen pretty similar to the case with low

metallic concentration described by the MG theory (e.g. the

LM model leads to smaller values but similar resonance

frequencies compared to those from the H model;. etc.);

the most dramatic result in this case is that this nonlocal

effect yields a size-dependent absorption resonance fre-

quency in the dielectric function of the composite—which is

known to be absent in the Bruggeman theory for composite

dielectric functions [4,19,20]. In addition, it is seen the

difference in absolute values for the dielectric functions

between the H and LMmodels is more significant in the case

with higher metallic concentration as shown in Figs. 3 and 4,

with the ‘widths’ in the imaginary part much broader in the

LM case due to the inclusion of both the collective and

single-particle excitations of the free electrons.

We speculate that the disappearance and the present re-

appearance of the resonant absorption frequency in the

Bruggeman theory has to do with the percolation threshold
Fig. 4. Same as in Fig. 3, except that the nonlocal results are those

from using the Lindhard–Mermin dielectric function.
which exists only in the Bruggeman theory but not in the

MG theory. It is well-known that when the volume fraction

(f) of the metal particles increases beyond a critical value of

1/3, the Bruggeman theory predicts a metallic transition for

the composite material; whereas there is no such transition

for any value of f in the MG theory [3]. To illustrate this, we

have plotted in Figs. 5 and 6 the imaginary part of the

composite dielectric function over a large range of f values

according to both the MG and Bruggeman theories, with

both local and nonlocal results shown according to the

hydrodynamic model. It is clear from Fig. 5 that the resonant

absorption frequency due to localized surface plasmons

(LSP) of the particles always exists in the MG theory, in

both the local and nonlocal cases, for all the values of f. For

small values of f, these frequencies are close to the single-

particle LSP frequency [23]. As f increases, the interaction

among the metal particles leads to a resonance at longer

wavelengths. The nonlocal theory [Fig. 5(b)] simply blue-

shifts the peaks as explained before. In contrary, in the

Bruggeman theory, we see in Fig. 6(a) that the LSP peak

starts to be broadened significantly in the usual local theory,

due again to the inter-particle interactions. When f exceeds

1/3, an extra resonance takes place towards the zero

frequency end (i.e. the well-known ‘Drude peak’ [23]),
Fig. 5. Plot of the imaginary part of the composite dielectric

function according to the Maxwell-Garnet theory as a function of

wavelength, over a large range of volume fraction values, according

to (a) the local response and (b) the nonlocal response for particle

size aZ25 nm.



Fig. 6. (a) and (b) Similar to Fig. 5, but for the Bruggeman EMT. (c)

The magnification of the part enclosed by dotted line in 6(b).

Fig. 7. Plot of the composite dielectric function as a function of the

radius of the metal particles at a fixed wavelength (lZ0.345 mm)

and low metal concentration (fZ0.05). Note that the Maxwell-

Garnet theory has been applied. The nonlocal results are represented

by the solid curve (from the Lindhard–Mermin model), and by the

dashed curve (from the hydrodynamic model); while the local

(Drude) result is a constant and is shown as the dotted line.
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with the original LSP resonance gradually disappears for

larger values of f. This we interpret as a ‘de-localization’

phenomenon of the LSP peak due to percolation in the

Bruggeman theory which leads to metallic transition.

However, once the particle response becomes nonlocal,

we see in Fig. 6(b) and (c) that the Drude peak does no

longer exist, and instead a new strong absorption peak

appears at a fixed long wavelength of about 2.7 mm, almost

independent of the concentration of the metal particles. It is

obvious that this deviation from the ‘Drude behavior’ after

the percolation transition is caused by the nonlocal dielectric

response of the metal particles, which, as a result, leads to an

extra resonance structure on top of the broadened LSP peak.

It will be of interest to study further quantitatively how such

long-wavelength resonance depends on the various nonlocal

models.

To further demonstrate this ‘size-dependent’ effect, we

have plotted the composite dielectric function as a function
of the metal particle size for fixed concentration and

wavelength in Figs. 7 and 8, respectively. It is seen that

while the Drude model is of course independent of the

particle size, both the nonlocal models H and LM give very

different results for small particle sizes. It is also seen that

the difference between the two nonlocal models disappear

for large particles, a phenomenon due possibly to the

dominance of the collective over the single-particle

excitation for large particles. Furthermore, it is observed,

as expected, that these nonlocal effects will disappear as the

particle size increases. This is particularly obvious in the

Bruggeman model calculation (with large metal concen-

tration) as shown in Fig. 8.
4. Conclusion

In this communication, we have studied a new type

particle size-dependent effect in the dielectric response of

composite materials. Unlike the other size-dependent effects

which have been studied previously in the literature, such as

the multipolar electrodynamic effect [11], the quantum size



Fig. 8. Same as in Fig. 7, but for a higher metallic concentration (fZ
0.4) and the Bruggeman EMT has been applied. Note that the

wavelength here is fixed at lZ1.8 mm.
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effect [12], and the surface scattering effect [12,13]; the

present effect arises mainly from the wave nature of the

surface electrons, leading to significant nonlocal dielectric

response from the metal particle when its surface-to-volume

ratio increases as a result of decrease in size. We believe the

present result has significant implication to the comparison

of various theories with experiments, in any optical study of

composite materials with metallic nanoparticles. In particu-

lar, we have shown that, even in the Bruggeman EMT,

resonant absorption can occur in a composite with large

metallic concentration if the present nonlocal size-depen-

dent effect is taken into account for particles with sizes in

the order of a few nanometers.
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