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Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric
material
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A comprehensive study is presented on the decay rates of excited molecules in the vicinity of a magnetodielectric
material of spherical geometry via electrodynamic modeling. Both the models based on a driven-damped harmonic
oscillator and on energy transfers will be applied so that the total decay rates can be rigorously decomposed
into the radiative and the nonradiative rates. Clarifications of the equivalence of these two models for arbitrary
geometry will be provided. Different possible orientations and locations of the molecule are studied with the
molecule being placed near a spherical particle or a cavity. Among other results, TE modes are observed which
can be manifested via nonradiative transfer from a tangential dipole within a small range of dissipation parameters
set for the spherical particle. In addition, spectral analysis shows that decay rates at such a particle with small
absorption are largely dominated by radiative transfer except at multipolar resonances when nonradiative transfer
becomes prominent, and relatively unmodified decay is possible when negative refraction takes place.
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I. INTRODUCTION

The problem of modified decay rates for molecules in the
vicinity of a material body has been studied over several
decades since the pioneering work of Purcell.1 It has been
well established that such modification depends crucially on
both the geometry and the optical properties of the material
body (the “environment”). For a given molecule-environment
configuration, the electromagnetic interaction between them
will lead to certain modification of the photonic mode density
and hence the molecular transition rate according to Fermi’s
golden rule.2 Over the years, this phenomenon has been studied
with all kinds of materials including metals and nonmetals
as well as different kinds of geometry such as planar,2,3

spherical,4–11 and roughened surfaces.12 In addition, the elec-
tromagnetic interaction as well as the molecule-environment
system involved in the problem have been studied using
different approaches including nonlocal optics13,14 as well as
both classical3 and quantum mechanical descriptions.2,15,16

The recent realization of negative refractive metamaterials
whose possibility was first predicted in 196817 has stimulated
immense activity in the study of various optical processes
in the presence of these new materials.18 In particular, the
Purcell effect described above which is relevant to the emission
properties of the molecules has also been studied for both
planar19–21 and spherical22–24 geometry, with unique modifi-
cations discovered from the interaction with such materials
including anomalous blueshifts in the emission frequency,25

as well as the possibility for suppressed,20 enhanced,21–23,25

and relatively unmodified19,24 decay rates. With the advent of
nanoparticle technology, the understanding of these effects in
the vicinity of spherical particles is of prominent significance.
However, to our knowledge, such modified molecular decay
rates near a negative-refracting spherical particle have been
studied only rarely in the literature,22,23 and even in these
works the dissipation of the particle has been ignored. As for
the study of the molecular decay due to the interaction with a
dissipative metamaterial, we are aware of a few previous works

which were limited to planar geometry,21,25 While the work of
Moroz11 had indeed considered dissipative magnetodielectric
spheres in its formalism, the magnetic effects were not studied
in details and the relation between the total rate and the
radiative and nonradiative rates was not elaborated in the
general dissipative case. In a very recent work of Guzatov
and Klimov,26 the authors had studied the more general case
of an anisotropic and dissipative metamaterical sphere, but
again, the decomposition of the total rate into the radiative and
nonradiative rates was not considered. In an earlier work of
Dung et al.,24 which studied the decay of a molecule inside a
spherical cavity of negative refracting materials, dissipation is
considered but numerical studies were limited to the case with
the molecule located at the center of the cavity.

The study of decay rates for a molecule-sphere system has
a long history starting from the works of Gersten and Nitzan
in the early 1980s.4–10 Recent experiments with metallic
nanoparticles have studied this phenomenon down to very
close distances between the molecule and the particle.27,28

One of the simple descriptions of the phenomenon is to
model the decaying molecule as a damped harmonic oscillator
driven by the fields reflected from the particle.3 Under the
assumption that the natural and modified linewidths are small
compared to the emission frequency, the modified normalized
total decay rate can be obtained to be essentially the same as
that from a more rigorous quantum linear response theory.24,29

In another approach from energy-transfer considerations,3,5,30

the modified decay rates can be separated into each of the
radiative and nonradiative rates with the latter referring to
the energy transferred from the dipole and absorbed by the
sphere.4–7,14 While the two approaches have been available
in the literature for some time, the equivalence between
them was rigorously clarified only recently via an explicit
electrodynamic calculation of various rates for the dipole-
sphere problem.31

It is the purpose of our present work to provide a general
phenomenological theory via electrodynamic modeling for
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the treatment of modified decay rates for a molecule in
the vicinity of a spherical surface of negative refracting
magnetodielectric metamaterial. This theory will allow for
(1) arbitrary locations for the molecule (both inside and
outside the spherical surface), (2) materials with dissipation,
and (3) rigorous separation into radiative and nonradiative
rates when the molecule is outside the spherical particle. We
shall employ both the mechanical (damped-oscillator) and
the energy-transfer models and shall provide a clarification
of their equivalence (valid for magnetodielectric material of
arbitrary geometry) following the work of Barnett et al.,29

without resorting to explicit calculations as was done in most
previous works.6,11,31 Our work thus generalizes the previous
work of Klimov22,23 to dissipative metamaterials with the
calculated decay rates rigorously separated into radiative and
nonradiative components, and extends that of Dung et al.24

to the study of molecules at arbitrary positions in the cavity
so that the effect due to different molecular orientations can
be studied. For simplicity, we shall limit ourselves to linear
and isotropic magnetodielectric materials in the following
formalism.17,19–24,32

II. DECOMPOSITION OF DECAY RATES

By modeling the molecule with a dipole moment p0 as a
damped oscillator of frequency ω0 driven by the reflected field
ER from the environment, the overall decay rate (normalized
to the intrinsic rate γ0) in the presence of the environment can
be obtained in the following form (under the assumption that
both γ0,γ � ω0):3

γ

γ0
= 1 + 3

2k3
Im

(
ER

p0

)
, (1)

where we have assumed that the molecule is located in vacuum
and k is the wave number of the molecular emission. Note that
we have also assumed the ideal case with the intrinsic quantum
yield being unity and shall further simplify the calculation by
evaluating ER at the unshifted frequency ω0.3,33 It is well
known that the result in Eq. (1) can also be justified from a
more rigorous quantum mechanical approach by either solving
the two-level Schrodinger equation in the second quantized
formulation,24 or by resorting to the fluctuation-dissipation
theorem.29

In another approach within this phenomenological mod-
eling using classical electrodynamics, the total decay rate in
Eq. (1) can be calculated in a different way by considering
the energy transfer rate from the excited molecule to the
environment via radiation (to infinity) and dissipation (absorp-
tion) by the materials of the environment. One thus obtains
in this approach the following well-known expressions for
the normalized radiative and nonradiative decay rates for the
molecule:

γ R

γ0
= 3

ck4p2
0

∫
(r→∞)

d�r2 �S · n̂ (2)

and

γ NR

γ0
= 3

ck4p2
0

(
ω

8π

∫
μ′′ �H0 · �H ∗

0 dV + 1

2

∫
σ �E0 · �E∗

0dV

)
,

(3)

where �S = c
8π

Re( �E × �H ∗) is the time-averaged Poynting
vector, ω is the emission frequency, and the second term
in Eq. (3) is the well-known nonradiative rate due to joule
heating of the particle3–5,7 where the conductivity is related
to the imaginary part of the dielectric function via σ = ωε′′

4π
.

The first term in Eq. (3) is originated from the magnetic loss
of the environment material, with μ′′ being the imaginary part
of the permeability,11 and is often ignored in most previous
works3–5,7 in which only nonmagnetic materials were consid-
ered. Note that although we have quoted expressions in Gaus-
sian units, the results in Eqs. (1)–(3) are universal and have the
same values in any unit system since they are normalized rates.

While the results in Eqs. (1)–(3) are all well known, the
exact decomposition of Eq. (1) into the rates in Eqs. (2) and
(3) is a subtle issue and is not always clearly elaborated in
the literature. This issue, namely, the equivalence between the
mechanical (oscillator) model and the energy-transfer model,
has been either taken for granted4,7–9 or sometimes justified
merely via explicit tedious calculations of the various rates
subjected to certain specific configurations such as planar3

and spherical6,11,31 geometries. In the literature, we are aware
of only the work by Barnett et al.29 which had presented a clear
justification of the decomposition of the total rate in Eq. (1)
into the rates in Eqs. (2) and (3). Since the work by Barnett
et al.29 was formulated in second-quantization language and
was limited to nonmagnetic materials, we have provided in
the Appendix a classical electrodynamic decomposition of
such rates including the magnetic loss rate as displayed in
the first term of Eq. (3). In the following, we shall assume
such decomposition is valid and apply it to the calculation
of the various decay rates for a molecule in the vicinity of a
magnetodielectric spherical surface.

III. CALCULATION OF DECAY RATES

The calculation of decay rates for molecular dipoles in the
vicinity of a spherical surface with the dipole both outside and
inside the surface has a long history.4–11 In this section, we
shall provide details only for the new rates due to magnetic
loss as described in Eq. (3), and shall simply collect the other
results available in the literature with the Mie coefficients to
depend also on the permeabilities.6

A. Case for a spherical particle

Consider an emitting dipole in vacuum interacting with a
sphere of radius a and material with linear and dissipative
magnetodielectric properties as described above. To calculate
the various decay rates, one simply follows the procedures in
Ref. 5 to obtain the fields both inside and outside the sphere and
obtain similar results for the total, radiative, and the joule loss
nonradiative rates as follows (where all γ ’s below represent
normalized rates).5,7,11,31

(i) For dipoles with radial orientation,

γ⊥ = 1 + 3

2
Re

∞∑
n=1

(2n + 1)n(n + 1)bn[hn(ρ)/ρ]2, (4)

γ R
⊥ = 3

2

∞∑
n=1

(2n + 1)n(n + 1)
|jn(ρ) + bnhn(ρ)|2

ρ2
, (5)
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γ NR
⊥ = 3xε′′

2ρ2(μ′ε′′ + μ′′ε′)

∞∑
n=1

n(n + 1)|βnhn(ρ)|2

× [(n + 1)In−1 + nIn+1], (6)

where k = ω/c is the emission wave number, x = ka, x1 =√
εμka, ρ = kr , jn and hn are the spherical Bessel and

Hankel functions of the first kind, respectively, and In =
Im[x∗

1j ∗
n−1(x1)jn(x1)].31

(ii) For dipoles with tangential orientation,

γ‖ = 1 + 3

4
Re

∞∑
n=1

(2n + 1)

{
anh

2
n(ρ) + bn

(
[ρhn(ρ)]′

ρ

)2}
,

(7)

γ R
‖ = 3

4

∞∑
n=1

(2n + 1)

{
|jn(ρ) + anhn(ρ)|2

+ 1

ρ2
|[ρjn(ρ)]′ + bn[ρhn(ρ)]′|2

}
, (8)

γ NR
‖ = 3xε′′

4(μ′ε′′ + μ′′ε′)

∞∑
n=1

An, (9)

where

An = |αnhn(ρ)|2 (2n + 1)In +
∣∣∣∣βn [ρhn(ρ)]′

ρ

∣∣∣∣
2

× [(n + 1)In−1 + nIn+1] . (10)

The Mie coefficients for magnetodielectric materials are given
as6,22,23

an = μ[xjn(x)]′jn(x1) − [x1jn(x1)]′jn(x)

[x1jn(x1)]′hn(x) − μ[xhn(x)]′jn(x1)
,

bn = ε[xjn(x)]′jn(x1) − [x1jn(x1)]′jn(x)

[x1jn(x1)]′hn(x) − ε[xhn(x)]′jn(x1)
,

(11)

αn = μ
jn(x)[xhn(x)]′ − hn(x)[xjn(x)]′

μjn(x1)[xhn(x)]′ − hn(x)[x1jn(x1)]′
,

βn = √
εμ

jn(x)[xhn(x)]′ − hn(x)[xjn(x)]′

εjn(x1)[xhn(x)]′ − hn(x)[x1jn(x1)]′
.

In order to study the contribution of the magnetic loss to the
nonradiative energy transfer we have to find the magnetic field
inside the particle. Using the spherical vector wave functions
�Mν and �Nν the electric field inside the sphere can be expressed

as5

�E(�r,ω) =
∑

ν

(
fν

�M1
ν (k1r) + gν

�N1
ν (k1r)

)
, (12)

where k1 = √
εμω/c is the wave vector inside the sphere and

fν , gν, and the index ν are as defined in Ref. 5. Applying the
relations

�∇ × �Mν(k1r) = k1 �Nν(k1r), �∇ × �Nν(k1r) = k1 �Mν(k1r),

(13)

the magnetic field can be derived:

�H (�r,ω) = −(ic/ωμ) �∇ × �E
= −i

√
ε

μ

∑
ν

(
fν

�N1
ν (k1r) + gν

�M1
ν (k1r)

)
. (14)

Next, substituting �H into the first term in Eq. (3) leads to
(with γ NR

M ≡ γ NR/γ0 for this term)

γ NR
M = 3

ck4p2
0

ω

8π

∫
μ′′ �H0 · �H ∗

0 dV

= 3μ′′

8πk3p2
0

∑
ν

em

(n − m)!

n(n + 1)(n + m)!

×
{
|fν |2

∫ a

0
[(n+ 1)|jn− 1(k1r)|2 + n|jn + 1(k1r)|2]r2dr

+ |gν |2(2n + 1)
∫ a

0
|jn(k1r)|2r2dr

}
, (15)

where e0 = 1 and em>0 = 2 as defined in Ref. 5.
For the two special cases of radial and tangential dipoles,

the result in Eq. (15) can be simplified using the explicit results
of fν and gν available in Ref. 5. Together with the results in
Eqs. (6) and (9), the final results for the total nonradiative rates
in Eq. (3) can be obtained in the form

γ NR
⊥ = 3x

2ρ2(μ′ε′′ + μ′′ε′)

∞∑
n=1

n(n + 1)|βnhn(ρ)|2

×
{
ε′′[(n + 1)In−1 + nIn+1] + μ′′|ε|

|μ| (2n + 1)In

}

(16)

for radial dipoles and

γ NR
‖ = 3x

4(μ′ε′′ + μ′′ε′)

∞∑
n=1

(
ε′′An + μ′′|ε|

|μ| Bn

)
(17)

for tangential dipoles, where

Bn = |αnhn(ρ)|2 [(n + 1)In−1 + nIn+1]

+
∣∣∣∣βn [ρhn(ρ)]′

ρ

∣∣∣∣
2

(2n + 1)In. (18)

Hence the complete results for the various decay rates
for the dipole-magnetodielectric sphere problem are given in
Eqs. (4), (5), (7), (8), (10), (11), and (16)–(18).

B. Case for a spherical cavity

Next we consider the complementary problem with the
dipole in an arbitrary location inside a spherical cavity of
vacuum surrounded by a linear dissipative magnetodielectric
material extended to infinity. In this case one will have either
purely nonradiative transfer, or purely radiative transfer when
the dissipation of the material is ignored.7

It turns out that the results for this case can easily be
obtained from the above results for a dipole-sphere system
via a simple transformation based on reciprocity symmetry.7

Thus we propose that the cavity problem can simply be solved
by using the results listed above and applying the following
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FIG. 1. (Color online) Total (curve 1), radiative (curve 2), and
nonradiative (curve 3) decay rates of an oscillating dipole in the
vicinity of a sphere with (a) ε = −4 + 0.000 5i and μ = −1.05 and
(b) ε = −4 and μ = −1.05 + 0.000 05i. The dipole is along the
tangential direction and the gap between the dipole and the sphere is
set to kd = 0.1.

transformation rule:

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

jn

hn

k1,ε1,μ1

k2,ε2,μ2

x1

x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

hn

jn

k2,ε2,μ2

k1,ε1,μ1

x2

x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

The subscripts 1 and 2 in Eq. (19) denote quantities
inside and outside the spherical boundary, respectively. Hence
without worrying about the separation of the decay into
radiative or nonradiative components in this case, we easily
obtain the total decay rate by applying (19) to Eqs. (4) and (7)
for the two dipole orientations in the cavity as follows:6,7

γ⊥ = 1 + 3

2
Re

∞∑
n=1

(2n + 1)n(n + 1)En[jn(ρ)/ρ]2 (20)

and

γ‖ = 1 + 3

4
Re

∞∑
n=1

(2n + 1)

{
Fnj

2
n (ρ) + En

(
[ρjn(ρ)]′

ρ

)2}
,

(21)
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FIG. 2. (Color online) Same as in Fig. 1 but the dipole is along
the radial direction.

where En = T [bn] and Fn = T [an], respectively. As an ex-
ample, for the special case when the dipole is located at the
center of the cavity, one can easily check that either Eq. (20) or
Eq. (21) will yield7 γ = 1 + Re(E1) which leads to the same
result as that in Eq. (69) of Ref. 24. In the following, we shall
allow the dipole to be at any location inside the cavity so that
effects due to different molecular orientations will be revealed
from the results in Eqs. (20) and (21).

IV. NUMERICAL RESULTS

To illustrate the decay characteristics due to the absorption
of the magnetodielectric particle, we start by referring back
to the results of Klimov,22 which were limited to trans-
parent (nonabsorptive) particles. In Klimov’s work, which
excludes any nonradiative transfer, it was demonstrated that
for tangentially oriented (electric) dipoles, huge enhancement
of decay rates can occur at the resonance of the so-called
left-handed transverse electric (LHTE) surface modes when
the sphere acquires a negative refractive index. In Fig. 1, we
have recalculated the results using parameters as in Ref. 22
but with a small damping (imaginary part) added either to
the permittivity or the permeability of the sphere (radius a).
The results shown are for a tangential dipole with the decay
separated into the radiative and nonradiative rates. We have
located the dipole at a small distance from the particle surface
(kd = 0.1) so that the nonradiative rate remains well-behaved.
Figure 1(a) shows the results with a small imaginary part for
ε, from which we see that while the radiative rate reproduces
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FIG. 3. (Color online) Same as in Fig. 1, but the permittivity and
permeability of the sphere are (a) ε = 4 + 0.0005i and μ = 1.05,
(b) ε = −4 + 0.0005i and μ = 1.05, and (c) ε = 4 + 0.0005i and
μ = −1.05.

essentially the same LHTE resonances (at ka ∼ 1.9) as
described in Ref. 22, there appears new extra resonances in
the nonradiative rate which are due to the excitation of TE
surface modes.19,22 Note that only μ < 0 but not LH behavior
is required for these resonances (see the results below in
Fig. 3), and they also emerge when a small imaginary part
is instead added to μ as shown in Fig. 1(b). Note, however, the
damping must be very small for such peaks to prevail and is
even more restricted for the case with a complex permeability.
In this latter case, we further notice that the broadening of the
resonances is more severe compared to the case with a complex
permittivity. In addition, such resonances are characteristics
of surface TE modes of higher orders, and hence are not
manifested in the radiative rates since it is well known that such
modes are dominated by nonradiative transfers.35 We have
further confirmed (not shown) the existence of these modes
when both the permittivity and permeability are complex.
For such small damping in Fig. 1, the whispering gallery
mode (WGM) resonances22 at large ka values prevail (not
shown), but at greater damping they disappear together with the
TE surface modes becoming severely broadened and almost
disappear.

Figure 2 shows the corresponding results for a radial dipole
with the same parameters as those in Fig. 1. Since such oriented
dipole emits only TM waves, all the TE resonances observed
in Fig. 1 disappear and the decay is largely radiative for such
small damping constants. The WGM resonances at large ka
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FIG. 4. (Color online) Decay rate spectrum for (a) a tangential
dipole and (b) a radial dipole with the sphere radius and the molecule-
sphere separation set at a = 0.05λT m and d = 0.05λm, respectively.
Other parameters for the permittivity and permeability are set as
in Ref. 25: ωT e = 1.03ωT m, ωPm = 0.43ωT m, and ωPe = 0.75ωT m,
respectively.

values are again similar to those in Ref. 22 and are not shown
here.

Figure 3 is plotted for three other special cases to help
clarify the results observed in Fig. 1. In Figs. 3(a) and 3(b), the
value of the permeability is set positive and a small damping
is added to the permittivity with Fig. 3(a) being dielectriclike
and Fig. 3(b) metal-like. In either case, all the TE resonances
(LHTE and TE surface modes) disappear even for the case
with a tangential dipole. In Fig. 3(c), however, the real part
of the permittivity is set positive while the permeability is
set negative. In this case we do not have negative refraction
but the TE surface resonances are still seen as long as
we have μ < 0. Moreover, the LHTE modes disappear as
expected.

Next we study the spectral characteristics of the molecular
decay in the presence of a magnetodielectric sphere. For this
purpose, we shall adopt the same single-resonance Lorentz
models for both the permittivity and permeability as used in
Ref. 24. Thus we have

ε(ω) = 1 + ω2
Pe

ω2
T e − ω2 − iωe

(22)

and

μ(ω) = 1 + ω2
Pm

ω2
T m − ω2 − iωm

, (23)
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FIG. 5. (Color online) Similar to Fig. 4 for the tangential dipole
for (a) a “pure electric” material (μ = 1) and (b) a “pure magnetic”
material (ε = 1).

where the values for the various parameters are as given in
Ref. 24 and very small damping constants are used with
e = m = 10−3ωT m. Following the analysis of Ref. 24, we
have found the range of frequency for negative refraction
to be around 1.017 < ω/ωT m < 1.129. Figure 4 shows the
total decay rates for both a tangential and a radial dipole at a
close distance (d = 0.05λT m) from such a sphere of relatively
small size (a = 0.05λT m). It is seen that two groups of
multipole resonance emerge (centered around 1.00ω/ωT m and
1.15ω/ωT m), due each to the relative independent resonance
of the electric [Eq. (22)] and magnetic [Eq. (23)] type.
These can be confirmed by referring to Fig. 5 where each of
the “pure electric (μ = 1)” and “pure magnetic (ε = 1)” sphere
is considered for the case with a tangential dipole (see similar
illustrations in previous works).19,24,36 Note also from Fig. 4
that the resonance structure is simpler in the radial dipole
case since only TM excitation is involved in this case.19 With
the decomposition of the total rate into the radiative and
nonradiative components, it is seen that for such small damping
constants, the decay is mainly radiative in nature, except
when being close to the resonances discussed above where the
nonradiative transfer becomes dominant due to the multipolar
characteristics of these modes. This is particularly significant
at the high resonant frequencies of the electric type where the
decay is largely nonradiative. Most interestingly, one observes
that when negative refraction takes place, relative unmodified
decay rates are seen due to the “almost transparency” of the
sphere under this condition.19,24,36 We further show in Fig. 6 the

0.0 0.5 1.0 1.5 2.0
10

-2

10-1

10
0

10
1

102

103

104

d a

1

2

3

0.0 0.5 1.0 1.5 2.0
10-2

10-1

100

101

102

103

  (1)

  R (2)

 NR (3)

1

2 3

d a

D
ec

a
y 

ra
te

s
D

ec
ay

ra
te

s

(b)

(a)
g 

g 

g 

FIG. 6. (Color online) Distance dependence of the decay rates
for the same problem as in Fig. 4 under the condition of negative
refraction. The emission frequency is set at ω = 1.05ωT m at which we
have the following values for the material constants: ε = −12.51 +
0.34i,μ = −0.803 + 0.018i, and n = −3.17 + 0.08i.

distance dependence of the different rates under the condition
of negative refraction and the behaviors are seen very similar
to the case with ordinary metallic spheres with nonradiative
transfer dominates at close distances for both tangential and
radial dipoles, and the radiative rate for tangential dipoles
can dip at close distances due to the opposite polarity of the
induced dipole with respect to this orientation of the source
dipole.3

Finally, we study the decay problem with the molecule
located in vacuum inside a spherical cavity of a magnetodi-
electric material of infinite extent as described by the properties
in Eqs. (22) and (23). As explained in the above, we only need
to examine the total decay rates using Eqs. (20) and (21) in
this case. While Ref. 24 has studied this problem with the
molecule located at the center of the cavity, we shall allow it
to be at an arbitrary location so that orientation effects can be
studied.

Using the model in Eqs. (22) and (23), we have plotted the
decay rates for both oriented dipoles in Fig. 7 at positions both
a little off the center [Fig. 7(b)] and very close to the cavity
boundary [Fig. 7(c)], respectively. Figure 7(a) reproduces
the result in Fig. 3(c) of Ref. 24 for reference. While it is
seen that several higher order resonances (1.1 � ω/ωT m �
1.2) of the “electric type” [from Eq. (22)] appear once the
dipole is off the center (at r = 0.1a), these peaks fall into
the TM and TE type with the latter excited only by the
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FIG. 7. (Color online) Decay rate spectrum for a dipole inside a
vacuum cavity of material with ε and μ as in Fig. 4. The dipole is
along the radial (curve 1) or tangential (curve 2) direction and located
at (a) r = 0, (b) r = 0.1a, and (c) r = 0.8a. The radius of the cavity
is fixed at R = 0.5λT m.

tangential dipole (ω/ωT m ∼ 1.2). Note that, for cavity modes,
higher order electric multipole resonances appear at lower
frequencies. When the dipole is moved further away from the
center to lie close to the cavity boundary [Fig. 7(c)], we see
that more multipole resonances of the electric type appear.
Most interestingly, extra magnetic resonances also appear
(ω/ωT m ∼ 1.0), which are coupled only to the tangential
dipole. We have checked that these resonances occur under
the conditions with Re(n) > 0 and Re(μ) < 0, and they seem
to have the same origin as the TE surface modes observed in
Figs. 1 and 3 as described above. Again, the nearly unmodified
decay rate is seen for negative refraction regime in all the
results in Fig. 7.24

V. CONCLUSION

In this work, we have studied using electrodynamic
modeling the decay behavior of a dipole molecule in the
vicinity of a spherical magnetodielectric surface. We start by
following Barnett et al.29 to provide a rigorous justification
of the decomposition of the total rate into the radiative and
nonradiative components [Eqs. (1)–(3), and Appendix], which
is valid for any geometry and media with linear response and

can be both dispersive and dissipative. When these results
are applied to the magnetodielectric materials, we observe TE
resonances manifested in the nonradiative transfer between
the molecule and the particle which were not seen previously
when absorption was absent.22 In the event when negative
refraction takes place, relatively unmodified decay rates are
observed as reported previously in the literature.24 In the
case of a spherical cavity surrounded by such materials of
infinite extent, we have reproduced the previous results for
the decay rates in the literature via a simple transformation7

and have applied them to the decay of molecules located off
the cavity center. In this configuration, tangential and radial
dipoles are distinguishable and we have observed resonance
behavior in the decay of tangential dipoles analogous to the
LHTE modes in the particle case.22

Our study thus complements the previous ones22,24 which
together demonstrate the possibility to control the emission
characteristics using particles or cavities made of mag-
netodielectric metamaterials. Still even richer possibilities
may be available by exploring more complicated spherical
structures made of these materials such as the multishell
nanomatryoshka as in the case of plasmonic nanoshells.37 The
previous formulation using transfer matrix by Moroz will be
useful for the extension of the present study to these more
complicated structures.11 Furthermore, our decomposition into
the radiative and nonradiative rates are so far limited to
isotropic magnetodielectric materials. It will be of interest to
extend the present formulation (see Appendix) to decompose
the result obtained by Guzatov and Klimov26 for the total decay
rate at an anisotropic metamaterial particle, so that the separate
contribution from radiative and nonradiative transfers can be
studied in this more general case.
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APPENDIX

Here we provide a general proof of the decomposition
of the total decay rate in Eq. (1) into the radiative and
nonradiative rates in Eqs. (2) and (3), without resorting to
explicit calculation of these rates for a specific configu-
ration as was done previously in the literature.3,6,11,31 To
do this, we shall follow the method of Barnett et al.29 by
resorting to the Poynting theorem. We begin by assuming
the following constitutive relations: �B = μ �H and �D = ε �E
for the metamaterial environment with μ = μ′ + iμ and ε =
ε′ + iε′′, respectively, and that all the fields and source dipole
are harmonic in time: �B = �B0e

−iωt , �E = �E0e
−iωt , and �p =

�p0e
−iωt . Hence the current density and field corresponding

to the point dipole can be expressed as �J (�r ′) = −iω �pδ(�r ′)
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and �E(�r) = ω2
↔
G(�r ′,�r) · �p(�r ′), respectively, where the Green

dyadic is complex in general:
↔
G = ↔

G′ + i
↔
G′′.34

From Maxwell’s equations, one easily arrives at the
following result:

�∇ · ( �E × �H ) = −4π

c
�J · �E − 1

c

(
�H · ∂ �B

∂t
+ �E · ∂ �D

∂t

)
. (A1)

Note that, although we adopt Gaussian units here
since this was done in most previous works on this
problem,3,6,7,11,22,23,30,31 the results obtained for the normalized
rates in Eqs. (1)–(3) are universal and the same for all unit
systems. Integrating over a volume which contains the dipole
and the whole “environment” we obtain∫

dV �∇ · ( �E × �H ) =
∮

( �E × �H ) · d�a

= −4π

c

∫
dV �J · �E − 1

c

∫
dV

×
(

�H · ∂(μ �H )

∂t
+ �E · ∂(ε �E)

∂t

)
. (A2)

Now applying the following theorem for time-averaging
over products of harmonic fields (for both scalar and vector
products):

〈Re �X ⊗ Re �Y 〉 = 1
2 Re( �X ⊗ �Y ∗) = 1

2 Re( �X∗ ⊗ �Y ), (A3)

Eq. (A2) leads to∮
Re( �E × �H ∗) · d�a

= −4π

c
Re

∫
dV �J · �E∗ − 1

c
Re

∫
dV ( �H · (iωμ∗ �H ∗)

+ �E · (iωε∗ �E∗)). (A4)

Simplification of the first term on the right-hand side (RHS)
of Eq. (A4) leads to

Re
∫

dV �J · �E∗ = Re
∫

dV (−iω �p0e
−iωt δ(�rp))

·ω2
( ↔
G′ − i

↔
G′′

)
· �p0e

iωt

= −ω3
∫

dV �p0 · ↔
G′′ · �p0δ(�rp)

= −ω3 �p0 · Im
↔
G · �p0, (A5)

where all the quantities in the last row are evaluated at the
position of the dipole.

Next we consider the second term of the RHS of Eq. (A4):

Re
∫

dV ( �H · (iωμ∗ �H ∗) + �E · (iωε∗ �E∗))

= Re
∫

dV((μ′ − iμ′′) �H · (iω �H ∗) + (ε′ − iε′′) �E · (iω �E∗))

= ω

∫
dV (μ′′ �H0 · �H ∗

0 + ε′′ �E0 · �E∗
0 )

= ω

∫
dV (μ′′ �H0 · �H ∗

0 ) + 4π

∫
dV σ �E0 · �E∗

0 , (A6)

where we have used the following relation for the conductivity:
σ = ωε′′

4π
.

Substituting (A5) and (A6) into Eq. (A4), we finally obtain

c

8π

∮
Re( �E × �H ∗) · d�a

= ω3

2
�p0 · Im

↔
G · �p0 − ω

8π

∫
μ′′ �H0 · �H ∗

0 dV

− 1

2

∫
σ �E0 · �E∗

0dV . (A7)

To convert the above result in Eq. (A7) to various
normalized decay rates of the molecule in the presence of
the environment, we divide through it by the time-averaged
radiated power from a harmonic dipole: W = 1

3ck4p2
0 and

obtain the following result:

3ω3

2ck4p2
0

�p0 · Im
↔
G · �p0 = 3

ck4p2
0

c

8π

∮
Re( �E × �H ∗) · d�a

+ 3

ck4p2
0

(
ω

8π

∫
μ′′ �H0 · �H ∗

0 dV

+ 1

2

∫
σ �E0 · �E∗

0dV

)
. (A8)

Now let us separate the Green dyadic on the LHS into

the vacuum part and the scattering (reflection) part,
↔
G =

↔
GV + ↔

GR , with the vacuum part given by Ref. 8,
↔
GV = 2ω

3c3

↔
I ;

where
↔
I is the unit dyadic; then one sees that the LHS

of Eq. (A8) leads to the normalized total decay rate in
Eq. (1). Hence by introducing the normalized radiative and
nonradiative rates defined as in Eqs. (2) and (3), we see that
the result in Eq. (A8) provides a rigorous decomposition of the
total decay rate into its radiative and nonradiative components,
i.e., γ = γ R + γ NR . We remark that the above derivation is
valid for a dipole interacting with an environment of linear
material which can have arbitrary geometry, although we have
only applied them to spherical geometry in our present work.
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