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Nonlocal electrodynamic modeling of fluorescence characteristics
for molecules in a spherical cavity
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~Received 12 June 2002; revised manuscript received 6 September 2002; published 13 November 2002!

The emission characteristics for molecules in a spherical metallic microcavity are computed using a nonlocal
electrodynamic model, based on a theory previously published by Fuchs and Claro@Phys. Rev. B35, 3722
~1987!# for the multipole polarizability of a sphere. Both radially and tangentially oriented molecules at
arbitrary locations inside the cavity are considered, and the results are compared with those from both the local
response theory and those for molecules outside a spherical particle. The issue of reciprocity of the solutions
for each of the sphere and cavity cases, respectively, is examined in the light of the nonlocal effects. It is
observed that for emission frequencies below the surface plasmon frequency of the cavity material, the non-
local effects in general lead to less surface-induced modifications of the molecular properties, similar to the
situation for a spherical particle. However, the reciprocity nature between the solutions for the sphere and
cavity disappears in the presence of nonlocal effects.

DOI: 10.1103/PhysRevB.66.195106 PACS number~s!: 41.20.2q, 42.50.Ct, 42.60.Da, 33.70.Jg
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INTRODUCTION

The emission characteristics from molecules confined
microcavity have been intensively studied in the last t
decades in a variety of different contexts such as ca
quantum electrodynamics~CQED! ~Ref. 1! and semicon-
ducting microcavities.2 Due to the modification of the pho
tonic density of states in the cavity,3 subtle QED effects can
be manipulated and studied, and various molecular emis
properties can be controlled by adjusting the cavity para
eters. Aside from emissions from individual molecules, c
operative emission and energy transfer among a group o
molecular dipoles in the cavity can also be dramatica
modified by varying these parameters.4 Potential applications
by achieving such control of molecular emission and int
action properties in a cavity range over a diversity of fiel
from photochemistry to optoelectronics.5

Among the different geometries, the spherical cavity
the one which has been studied very frequently by both th
rists and experimenters. Because of the simple geometry
theoretical solution of a dipole~or a two-level system! in
such a cavity can be obtained with high accuracy and an
ticity, in both classical and quantum mechanic
approaches.6–12 In addition, experimental studies on suc
systems can also be achieved via spectroscopic monito
of dissolved ions and dyes in liquid microdroplets.13–15 Be-
sides spectroscopy, the solution to this problem can also
vide for a useful solvent model in physical chemistry.16

In our present study, we will establish a model whi
allows us to calculate the modified emission frequency
the decay rate for molecules in a spherical cavity using n
local electrodynamics. Although quantum mechanical m
els for this problem have been considered in the literatu
the classical phenomenological~CP! model often provides
simple approach which can account for many experime
with sufficient accuracy.3,17 In particular, detailed parameter
of the emitting molecule such as the relative location and
transition dipole orientation in the cavity can easily be inc
0163-1829/2002/66~19!/195106~7!/$20.00 66 1951
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porated in the CP approach. In a previous experiment
Barneset al.,14 the CP model was found to lead to a discre
ancy for droplets with dimensions much greater than
emission wavelengths of the molecules, which are dissol
inside the droplets. A subsequent theoretical investiga
based on quantum theory in the strong-coupling condit
between the dipole and cavity was reported to be able
account for the discrepancy observed.9 However, as in most
CP models,6–8,10–12 nonlocal effects were ignored in th
model applied by Barneset al., and these effects can be sig
nificant, especially for molecules near the surface of the
crodroplets. These nonlocal effects refer to the wave ve
dependence of the dielectric response of the cavity or dr
let. In our work below, we shall study these effects in the
model and shall limit our formulation to cavities with dimen
sions small compared to the emission wavelengths, so
retardation effects can be ignored. Under this limitation,
dipole-cavity interaction can be approximated using elec
static solutions and the nonlocal effects can be introduce
a relatively simple way. It is of interest to note that fluore
cence of molecules in these ‘‘nanobubbles’’ has been stud
intensively in several recent works.8,11,12 Moreover, it ap-
pears that none of these has considered nonlocal effe
which can be of significance as demonstrated below.

THEORETICAL MODEL

The nonlocal theory for the electromagnetic interacti
between a charge or dipole and a spherical particle or ca
in the CP approach has been intensively studied in the lit
ture. This includes, for example, the continuum solve
model of Basilevsky and Parsons,16 the generalized suscep
tibility ~propagator! method of Labani and co-workers,18 and
the nonlocal theory for the multipolar polarizability o
spheres introduced by Fuchs and Claro~FC!.19 Previously,
we have applied the FC model to study the emission cha
teristics of molecules near a spherical particle.20 In the fol-
lowing, we shall extend the FC model to the case of a dip
inside a spherical cavity~of radius a!, accounting for the
©2002 The American Physical Society06-1
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radial and tangential orientations of the transition dipole m
ment of the molecule. To be specific, we shall assume
inside of the cavity to be vacuum surrounded by a meta
medium.

Consider a spherical boundary atr 5a. The main idea of
the FC model is to assume a fictitious continuation of
medium ~with a nonlocal dielectric response! beyond the
geometrical boundary (r 5a). By introducing an additiona
boundary condition~ABC! to require the radial componen
of the displacement vectors (Dr) to be discontinuous~corre-
sponding to the presence of a fictitious external surf
charge atr 5a), the electric field can then be smoothly e
tended across the geometrical boundary, thus accounting
the nonlocal dielectric response of the medium.

Without loss of generality, we consider a dipole with
arbitrary location on thez axis. For a dipole (mW ) at ~d, 0, 0!
oriented radially~along thez axis! in a ~vacuum! spherical
cavity ~Fig. 1!, the electrostatic potentials can be obtained
following the FC theory19 as follows:

F~d,r ,a!5(
l

S Alr
l1m l

dl 21

r l 11 D Pl~cosu!, ~1!

F~r .a!5(
l

da2Fl~r !Pl~cosu!, ~2!

FD~r .a!5(
l

da2
1

2l 11

al

r l 11 Pl~cosu!, ~3!

where

Fl~r !5
2

p E
0

` j l~ka! j l~kr !

«~k,v!
dk. ~4!

In the above equations,d is the discontinuity ofDr into the
fictitious medium,«(k,v) is the nonlocal dielectric function
of the isotropic medium,Pl is the Legendre polynomial, an
j l is the spherical Bessel function. Note that the two pot
tials in the medium give the electric and displacement fie
via E52“F and D52“FD , respectively. The corre
sponding results for a tangential dipole at~d, 0, 0! oriented
along thex direction can be obtained as

FIG. 1. Geometry of the dipole-cavity problem.
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F~d,r ,a!5(
l

S Blr
l2m

dl 21

r l 11 D Pl
1~cosu!cosw, ~5!

F~r .a!5(
l

da2Fl~r !Pl
1~cosu!cosw, ~6!

FD~r .a!5(
l

da2
1

2l 11

al

r l 11 Pl
1~cosu!cosw, ~7!

wherePl
1 is the associated Legendre function.

Following FC, by matching the values of bothF andDr
~with Dr52¹rFD for r .a) at the geometrical boundaryr
5a, one obtains the coefficientsAl in Eq. ~1! andBl in Eq.
~5! as follows:

Al5
mdl 21

a2l 11 lD l
NL , ~8!

Bl5
mdl 21

a2l 11 D l
NL , ~9!

where D l
NL is defined as the nonlocal reflection coefficie

and is given by

D l
NL52

~j l21!~ l 11!

j l~ l 11!1 l
, ~10!

with j l(v)5@(2l 11)aFl(a)#21 being the ‘‘effective dielec-
tric function’’ obtained through the introduction of a nonloc
response«(k,v) in Eq. ~4! for Fl . Note that had one worked
in the local response theory, one would have obtained v
similar results as in Eqs.~1!–~9! except thatj l in Eq. ~10!
will be replaced by«(v), the local dielectric function of the
medium. To apply the above results to study the emiss
characteristics of a molecular dipole in the spherical cav
we resort to the CP model17 which gives the reduced molecu
lar decay rate and the frequency shifts in the form

g

g0
511

3q

2k3 Im~G!, ~11!

Dv

g0
52

3q

4k3 Re~G!, ~12!

whereq is the intrinsic quantum yield of the molecule,k the
emission wave vector, and the quantities are normalized w
respect to the free decay rate of the molecule. The functioG
in Eqs. ~11! and ~12! is defined as the field from the cavit
acted on the molecule per unit dipole moment and can
calculated from Eqs.~1! and ~5! with the results in Eqs.
~8!–~10!. The detailed results forG for the two orthogonal
dipole orientations are summarized in Table I. For the spe
case of a ‘‘centered dipole,’’ only thel 51 term survives in
both Eqs.~1! and ~5! in the limit d→0 and they yield iden-
tical results when applied to Eqs.~11! and~12!. For compari-
son and for a complete reference, we have also given
results for the case of a dipole outside a spherical part
and the corresponding results in the local response theor
the same table.
6-2
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TABLE I. Summary of results

Dipole
orientation

Geometry~of
environment! Local response theory Nonlocal response theorya

Radial Sphere
G'52(

l

~l11!2

rd
2~l12! Dl

spha2l 11 G'52(
l

~ l 11!2

r d
2~ l 12! D l

NL-spha2l 11

D l
sph52

l ~«21!

l ~«11!11
D l

NL-sph52
l ~j l21!

l ~j l11!11
Cavity

G'52(
l

l 2r d
2~ l 21!

D l
cav

a2l 11 G'52(
l

l 2r d
2~ l 21!

D l
NL-cav

a2l 11

D l
cav52

~ l 11!~«21!

l ~«11!1«
D l

NL-cav52
~ l 11!~j l21!

l ~j l11!1j l

Tangential Sphere
Gi52(

l

l ~ l 11!

2r d
2~ l 12! D l

spha2l 11 Gi52(
l

l ~ l 11!

2r d
2~ l 12! D l

NL-spha2l 11

D l
sph52

l ~«21!

l ~«11!11
D l

NL-sph52
l ~j l21!

l ~j l11!11
Cavity

Gi52(
l

l ~ l 11!

2

r d
2~ l 21!

a2l 11 D l
cav Gi52(

l

l ~ l 11!

2
r d

2~ l 21!
D l

NL-cav

a2l 11

D l
cav52

~ l 11!~«21!

l ~«11!1«
D l

NL-cav52
~ l 11!~j l21!

l ~j l11!1j l

aThe ‘‘effective dielectric function’’ in the nonlocal response theory is defined according to the FC th
~Ref. 19! as

j l5
1

(2l 1 l )aFl
5

1

(2/p)(2l 11)a*0
`@ j l

2(ka)/«(k,v)#dk
.

Note thatr d is the distance measured from the center of the sphere or cavity to the position of the d
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It is clear from Table I that in this approach, all the resu
for the nonlocal response theory can be obtained from
corresponding results in the local theory by replacing
dielectric function by the ‘‘effective dielectric function’’j l in
the FC theory.19 We have to remark that the results obtain
in our present approach are very similar to those obtai
previously by the ‘‘propagator method,’’18 except that these
latter results were expressed in terms of discrete sums
the wave numberk, which required more involved numerica
evaluation. In addition, the previous application of the resu
obtained in Ref. 18 was limited to the calculation of t
dipole-cavity interaction energy and has not been applie
the study of molecular fluorescence, which requires the
culation of also the field strength acting on the dipole.21 In-
cidentally, we note that the method of ‘‘reciprocity’’22 which
enables one to transform easily between the sphere and
ity results stops working in the nonlocal case, due to thl
dependence of the functionj l . This point can be illustrated
more explicitly by using a specific model for the nonloc
dielectric function«(k,v) such as the hydrodynamic mode
as shown in the following section.

NUMERICAL RESULTS

For illustrative purposes, we have computed Eqs.~11! and
~12! according to the hydrodynamic model for the nonloc
dielectric response:
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«~k,v!512
vp

2

v~v1 iG!2b2k2 , ~13!

where vp is the bulk plasmon frequency,G the damping
constant, andb25 3

5 vF
2, vF being the Fermi velocity of the

metallic medium.19,20 The local result~Drude model! corre-
sponds to settingb50 in Eq.~13!. Using Eq.~13!, the func-
tions Fl and hencej l andD l can be evaluated in analytica
form in terms of the modified Bessel functionsI l andKl .19

Since upon the transformationl→2( l 11) the functionsI l
andKl do not remain invariant, we see that this reciproc
transformation between the sphere and cavity results for
local case, as obvious from the results in Table I, bre
down in the presence of nonlocal effects.

In our numerical illustrations, we have assumed a vacu
cavity in silver. The numerical constants needed in Eq.~13!
for silver are given as follows:20 vp51.3631016 s21, G
52.5631013 s21, and vF51.403108 cm s21. Figure 2
shows the computed normalized decay rates~in logarithmic
values! as a function of the molecule position at a distan
measured from the center of the cavity for a fixed emiss
frequency atv50.7vsp . The diameter of the cavity is fixed
at 10 nm. It is seen that while the nonlocal effects in gene
lead to smaller surface-induced effects, they are particul
significant for molecules close to the cavity wall (d
55 nm). In addition, while the tangential dipoles experien
6-3
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a relatively smaller decay value due to the opposite orie
tion of the image dipoles,7 the results for both orientation
merge at the center of the cavity (d50) as expected. Figure
3 shows the corresponding behavior of the cavity-indu
frequency shift~in logarithmic values! in which redshifts are
obtained for an emission frequency below the surface p
mon frequency. It is of interest to note that nonlocal effe
can lead to a suppression of the surface-induced shifts b
order of magnitude for molecules close to the cavity wa
Next, in Figs. 4 and 5, we show the spectral plot of the de
rates~in logarithmic values! and frequency shifts versus th
emission frequency of the molecule. It is noted that while
multipole resonance structures are more pronounced in
nonlocal theory as was observed before in the case

FIG. 2. Normalized decay rate as a function of the position
the molecule at emission frequency~normalized to the surface plas
mon frequency! fixed at 0.7. Distance is measured from the cen
of the Ag cavity with diameterD510 nm. Note that logarithmic
values are used for they axis.
19510
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spherical particle,20 all the resonance frequencies are blu
shifted in the case of a cavity. This can be understood sim
by comparing the dipolar surface plasmon resonance o
spherical particle with that of a spherical cavity. While th
resonance condition for the sphere in the local theory
«(v)1250, that for the cavity can be obtained via a ‘‘rec
procity transformation’’«→1/« ~Ref. 23! as 112«(v)50.
Thus, using the ideal undamped Drude model, the form
predicts a resonance frequency ofvsp5vp /), while the

latter predicts a frequency ofvsp8 5A2
3 vp5&vsp

'1.4vsp . In comparison, the resonance according to the
cal theory is shifted to about 1.2vsp for the cavity case as
shown in Figs. 4 and 5. The small discrepancy arises s
damping is included in the dielectric function we used. F
nally, shown in Figs. 6 and 7 are the emission proper
~with the normalized decay rate in logarithmic values! as a
function of the cavity size for diameters up to 10 nm. No

f

r

FIG. 3. Frequency shift~normalized to the free decay rate! as a
function of distance. The details are the same as those in Fig.
n
-

0

or
FIG. 4. Normalized decay rate as a functio
of normalized emission frequency for a fixed lo
cation of the molecule atd54.6 nm from the
center of the Ag cavity of diameter equal to 1
nm for ~a! a radial dipole and~b! a tangential
dipole. Note that logarithmic values are used f
the y axis.
6-4
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FIG. 5. Normalized frequency shift as a func
tion of normalized emission frequency atd
54.6 nm from the center of a Ag cavity o
diameter510 nm with results for~a! a radial di-
pole,~b! a tangential dipole, and~c! a comparison
between the radial and tangential cases in
nonlocal theory.

FIG. 6. Normalized decay rate as a functio
of the diameter~D! of the cavity with fixed emis-
sion frequency atÃ50.7 and fixed distance 0.4
nm from the cavity wall. Note that logarithmic
values are used for they axis.
195106-5
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M. H. HIDER AND P. T. LEUNG PHYSICAL REVIEW B66, 195106 ~2002!
that here the molecule is fixed at a distance (D/22d
50.4 nm) from the cavity wall. While it is seen that th
surface-induced effects decrease with the increase in ca
size, in agreement with previous results established in
literature,14 one sees that the nonlocal effects once again l
to an overall decrease in such effects. Though this is i
direction leading to an account of the discrepancy obser
between theory and experiment in the work of Barnset al.,14

our current theory is not applicable to cavities with siz
much greater than the emission wavelengths as is the ca
the work of Barnset al.14 Thus it would be of interest to
extend the present nonlocal model to go beyond the lo
wavelength limit to account for all electrodynamic effects
the phenomena. Although retardation effects in the contex
nonlocal electrodynamics have been studied before,24,25most
of these previous works are limited to either plane-wave
cidence and/or plane-boundary geometry. To our knowled
the same kind of effects for dipolar emissions in the vicin
of a spherical boundary have not yet been studied previo
in the literature.26

DISCUSSION AND CONCLUSION

Within a simple model based on the theory of Fuchs a
Claro for the multipolar polarizability of a sphere19 and the
hydrodynamic model~HDM! for free electrons, we have il
lustrated the nonlocal effects on the interaction betwee
molecular dipole and a spherical cavity. It is now appropri
to give an assessment of the accuracy and the limitatio
the results obtained from this simple model. First of all, t
Fuchs-Claro theory is an application of the semiclassical
finite barrier~SCIB! model, which is known to be imperfec
in several aspects, such as in the abrupt drop of the electr
density across the geometrical boundary.27 Recent work on
the modification of the SCIB model to accommodate
smooth variation of this density across the surface28 can
therefore provide one way of improving the accuracy of o
present results. In addition, there also exist in the literat
many different approaches going beyond the SCIB mo
which treat the surface nonlocal effects more accurately.27,29

Even within the SCIB model, one could have used m

FIG. 7. Same as in Fig. 6, but results for the normalized f
quency shift.
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accurate nonlocal dielectric functions other than the HDM
is well known that the HDM is accurate only for free
electron metals like aluminum and will be limited for nob
metals such as silver where the interband transitions fros
andd electrons~and their mutual interaction! are important.
In fact, there exist many models~e.g., the Lindhard-Mermin
model! in which both plasmon and exciton can be accoun
for and with respect to which the HDM is only the lowes
order approximation in the wave vector.30 In addition, Lieb-
sch has established an approach based on the den
functional theory which can treat thes-d electronic
interaction and lead to a more accurate description of
surface plasmon excitation for silver.31

Hence we see that there is plenty of room for one
improve on our present SCIB-HDM model which will lea
to more accurate modeling results for the nonlocal effe
However, our intention here is to limit to a qualitative illus
tration of these effects using the simplest possible appro
In spite of this, we believe that our model should have so
limited validity, even for noble metals, since it has been
tablished experimentally that the free-electron model can
count for the optical conductivity of these metals in the
frared and visible regions.32 In addition, there has bee
speculation that the errors due to application of the SC
model may in some case cancel, fortuitously, with those fr
the use of the HDM when applied to silver, leading to
reasonable prediction of the dipolar surface plasmon sh
for silver particles as the particle radius decreases.27

Thus, in summary, the present results should have
evance to the fluorescence from molecules embedde
nanocavities.8,11,12 We also remark that our results can b
easily extended to the case with ‘‘nanodroplets’’ by simp
replacingj l by j l

21 in the expression forD l
cav ~with similar

changes for the local results!. For those experiments usin
liquid droplets of sizes in microns or tens of microns, o
present model must be generalized to take into account e
trodynamic retardation effects before they can be applied
such microcavities. However, the two general features
have observed with nonlocal effects—that is,~i! their signifi-
cance for molecules near the cavity wall and~ii ! the decrease
in surface-induced effects—should have some general va
ity. In addition, we have observed that in the presence
nonlocal effects, the simple ‘‘reciprocity relation’’ betwee
the results for the case of a sphere and those for a cavit
longer exists, and one must solve the two boundary va
problems independently to obtain solutions for each of
two cases.
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