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Dynamical theory for modeling dipole-dipole interactions in a microcavity:
The Green dyadic approach
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Department of Physics, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
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A dynamical theory for modeling the dipole-dipole interaction in a microcavity is formulated using the
Green dyadic approach. To our knowledge, this theory is one of the most general in many aspects of modeling
the phenomenon. It accommodates an arbitrary number of layers adjacent to the cavity, constant but arbitrary
dielectric properties within each layer, inclusion of retardation effects, arbitrary dipole orientations, and an
unlimited number of interacting dipoles. Numerical results for the emission properties of interacting molecular
dipoles in a microcavity are presented to illustrate the capability of the method.
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I. INTRODUCTION

It has been well known that molecular emission proper
can be significantly modified in the vicinity of a surface
inside a microcavity.1 For example, recent studies hav
shown that significant control of spontaneous emission2 and
Raman-scattering enhancement3 can be achieved from emit
ting dipoles confined in planar metallic and semiconducti
as well as dielectric microcavities. Theoretical studies of t
phenomenon have been extensive, including both class
and quantum mechanical modeling, for both well-defin
~planar, spherical, etc.! and arbitrary geometrica
boundaries.4–8 Moreover, these modeling studies have co
sidered most of the time a single~molecular! dipole interact-
ing with the multistack ‘‘environment.’’

Besides modified dipolar emission characteristics, rec
experimental studies have also shown significant surfac
cavity-induced effects on the dipole-dipole interaction b
tween the molecules or particles confined to such a prox
ity. These studies include the observation of the surfa
mode-modified dipole-dipole interaction among adsorb
silver nanoparticles,9 that of the enhanced energy-transf
process between donors and acceptors,10 and that of the un-
ambiguous confirmation of enhanced nonradiative For
transfer between molecules confined in plan
microcavities.11 As Barnes and Andrew explained in the
commentary,12 such control of energy transfer is of high si
nificance and may lead to many and varied applications
areas as diversified as photochemistry and optoelectroni

There has also been a large number of theoretical wo
on the modeling of dipole-dipole interaction for molecul
confined in the vicinity of planar surface or microcavitie
However, due to the complexity of the dynamics and g
metrical boundaries, most of these previous works were l
ited in some aspects. These limitations include, for exam
~i! the assumption of perfect conducting13 or realistic ~but
symmetrical! boundaries14 for the microcavity,~ii ! the limi-
tation to a single medium~of infinite extent! on each side of
the microcavity,13,14and~iii ! the modeling of a single pair o
interacting dipoles.13,14In addition, as pointed out in Ref. 10
the total dynamical~retarded! dipole-dipole interaction has
not been fully accounted for in these previous works.
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It is the purpose of this work to present a relatively po
erful method for the modeling of the interaction among t
molecular dipoles confined in a planar microcavity or pho
nic band-gap material structure. This method will allow t
modeling in principle to incorporate any number of intera
ing dipoles in arbitrary orientations, any number of ‘‘adj
cent layers’’ of realistic dielectric properties on each side
the microcavity, and the full incorporation of retardation e
fects. We will present the method and demonstrate its ap
cability via numerical computations with respect to the g
ometry used in the experiment in Ref. 10. Though o
following theory is based on a classical phenomenolog
approach, yet it is well known that this approach is as ac
rate as a quantum-mechanical approach as long as on
interested only in emission properties normalized to the f
decay rates of the molecules.4

II. THEORY

Let us refer to the geometry of Ref. 10 as depicted in F
1, where a number of molecular dipoles are embedded
microcavity which is formed by a multistack reflector at th
bottom and a metallic superstrate at the top. Our approac
to use the Green dyadic for solving Maxwell’s equations
such a multilayer system which has been deriv
previously.15 The calculation of the Green dyadic for
multilayer system is a problem of high significance and h
been investigated extensively in the literature.16 The work we
base on has reformulated this problem in a slightly simp
fashion, leading to more efficient numerical implementatio
Briefly, the dyadic for a multilayer system can be express
as follows:15

G~R,R8!5d~ j ,s!Gso~R,R8!1Gj~R,R8!, ~1!

whereR is contained in slabj, the current source atR8 is
contained in slabs, andd( j ,s) is the Kronecker delta. The
source termGso(R,R8) for a source in slabs takes the well-
known form17
©2001 The American Physical Society08-1
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lhs~l! (
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1 S M l ,n,l~1hs!M l ,n,l8t ~2hs!1Nl ,n,l~1hs!Nl ,n,l8t ~2hs!

M l ,n,l~2hs!M l ,n,l8t ~1hs!1Nl ,n,l~2hs!Nl ,n,l8t ~1hs!
D z>z8
z<z8

~2!

where the prime indicatesR8 dependence, the absence of a prime indicatesR dependence, andt indicates matrix transpose
The functionshj5Akj

22l2, and thatM andN are defined as before,4,17 wherekj5vAm j« j denotes the wave number. In th
previous approach to calculate the scattering part ofG in Eq. ~1!, we have carried out the expansion by reassociating it w
the source current as follows:15

Gj~R,R8!J~R8!5
i

4p E
l50

1`

dl (
n50

1`
22d~n,0!

lhs~l! (
l 50

1

@M l ,n,l~1hj ! M l ,n,l~2hi ! Nl ,n,l~1hj ! Nl ,n,l~2hj !#FCl ,n,l, j

Fl ,n,l, j
G , ~3!
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Cl ,n,l, j[Fcl ,n,l, j

cl ,n,l, j8 G ,
Fl ,n,l, j[F f l ,n,l, j

f l ,n,l, j8 G ,
and the radiation boundary condition requires that, at
slabsj 50 and j 5N,

cl ,n,l,05cl ,n,l,N8 5 f l ,n,l,05 f l ,n,l,N8 50. ~4!

Note that square-brackets will be used to exhibit matrice
terms of their entries and that Eq.~3! contains products o
334 and 431 matrices. Also note that the vectorsM andN
in Eq. ~3! are functions ofR, whereasCl ,n,l, j and Fl ,n,l, j
depend on bothR andR8. By matching the boundary con

FIG. 1. Geometry of the multistack planar microcavity acco
ing to Ref. 10. The cavity dimensionL and the designated dipoleX
are as labeled.
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ditions for the transverse fields, i.e., the continuity ofẑ
3E(R) and ẑ3“3E(R) at each interface, the coefficien
@Fl ,n,l, j

Cl ,n,l, j # can be obtained through some recursion relation15

Note that the arbitrary current sourceJ is also contained in
@Fl ,n,l, j

Cl ,n,l, j # so thatGj can be extracted from Eq.~3!.

To apply the above result for the dyadic to our modeli
of the dipole-dipole interaction in the geometry of Fig. 1,
us focus on one of the emitting molecular dipoles~dipoleX!
in the cavity. According to the classical phenomenologi
approach,4 the frequency shift and decay rate of this dipo
normalized to the free decay value, can be obtained in te
of the real and imaginary parts of the total~excluding its
own! field E acting at the dipole site as~in SI units!:

Dv

g0
52

3p«0qns
2

p0ks
3 Re~E!, ~5!

g

g0
511

6p«0qns
2

p0ks
3 Im~E!, ~6!

whereq is the intrinsic quantum yield andks5nsv/c, with
ns the real refractive index of the medium containing t
dipole. Note thatp0 andv are the dipole moment and emis
sion frequency of the molecule, and the only quantity nee
to be calculated in this model is the field acting onX, which
can be obtained from the Green dyadic equations~1!–~3! of
the problem as follows:

E~Rx!5 ivmE G~Rx ,R8!J~R8!dV~R8!, ~7!

wherem is the magnetic permeability for the vacuum, whe
we have restricted ourselves to nonmagnetic media.
model our problem as described in Fig. 1, we write the c
rent density in Eq.~7! in the form

J52(
i

ivpid~R82Ri !, ~8!

wherepi is the molecular dipole moment located atRi . Note
that a time dependence of the forme2 ivte2gt/2 has been

-
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assumed in Eqs.~7! and ~8!. Thus, using Eqs.~1!–~8! and
excluding the ‘‘self-field’’@i.e. contribution fromG0(Rx ,Rx)
in Eq. ~2!#, we can simulate the emission properties of t
specific dipoleX in the microcavity. Note that this coopera
tive decay rate in Eq.~6! is directly linked to the energy
transfer rate ofX to the other molecules as well as to th
cavity environment, and the frequency-shift in Eq.~5! re-
veals the interaction energy betweenX and the other mol-
ecules as well as the environment, when they are all confi
by the microcavity geometry.18 Furthermore, Eq.~8! implies
that this approach is very general and can include in p
ciple an arbitrary number of interacting dipoles random
oriented inside the microcavity.

III. NUMERICAL RESULTS

To demonstrate the capability of the above method,
have computed Eqs.~5! and ~6! for the cases of two and
three dipoles interacting in the microcavity~Fig. 1!, respec-
tively. For each case, the emission properties of the de
nated dipoleX are calculated as a function of cavity dime
sion ~L! with all other parameters fixed. The emissio
wavelength~612 nm! and the values for the dielectric con
stants for various materials of the cavity are used in acc
with Ref. 10. Figures 2 and 3 show the results for the ca
when the two dipoles are parallel and perpendicular to
cavity boundaries, respectively. From the results,
‘‘cavity-resonance effect’’ can be clearly seen, and it is m
obvious in the parallel dipole case.13 In addition, the fre-
quency shifts of the designated dipoleX, which reveals the
dipole-dipole interaction within the cavity, are seen to d
pend drastically on the dipole orientations. In this case
obtain mostly blueshifts for parallel dipoles and redshifts
perpendicular dipoles. This happens sinceX remains close to
one of the boundaries and the result is dominated by its o

FIG. 2. Results for two parallel dipoles located at (x,z)
5@0,(L1d)/2# and @0,(L2d)/2#, respectively, where d
5(emission wavelength in the PC medium)/2p. The one at@0,(L
1d)/2# is our designated dipoleX.
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image fields from this boundary~recall that a parallel dipole
has its image opposite while a perpendicular dipole has
image along its own orientation18!. The result, however, is
sensitive to the location of this dipoleX relative to the cavity
boundary as well as to the other dipoles in the cavity. F
example, Fig. 4 shows the results for three parallel dipo
with the X dipole located at the middle of the cavity and o
the axis joining the other two dipoles. In this case, we s
that even for dipoles oriented parallel to the cavity boun
aries, redshifts in their emission frequencies can result u
interaction with the other dipoles in the same cavity. W
want to remark that while the incorporation of a large nu
ber of dipoles is rather straightforward~though computation-
time consuming! in our present formalism, it is not clear i

FIG. 3. Results for two perpendicular dipoles located at (0,L/2)
and (d,L/2), respectively, withX located at (d,L/2).

FIG. 4. Results for three parallel dipoles located at@0,(L
1d)/2#, @0,(L2d)/2#, and (d,L/2), respectively, withX located at
(d,L/2).
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the same is true in the previous approaches appeared i
literature.

IV. CONCLUDING REMARKS

We have thus in the above demonstrated how the Gr
dyadic solution for a multilayer system can be applied
model the interaction of a system of dipoles confined in
planar microcavity. In particular, we have illustrated how
complicated multistack structure and collection of dipo
can be systematically simulated in this approach. As is c
from the above, the results for the cooperative decay
frequency shift are very sensitive to the presence of the c
ity and the other dipoles, consistent with the observati
reported previously in the literature.10–14Apparently, the re-
sponse function approach of Agarwal and Gupta14 can also
be generalized to such an extent for simulating an arbitr
F
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multilayer of planar geometry and a collection of arbitra
dipoles, but it has yet to be carried out. At the completion
our work, it came to our attention that in a very rece
paper,19 Bennettet al. have also applied the Green dyad
approach to simulate interacting dipoles~up to two dipoles!
in a planar microcavity. However, their superlattice geome
is restricted to a periodical system of infinitely many laye
whereas our present formulation can accommodate a fi
number of stratified layers of irregular thickness. Hence
believe our present approach has some usefulness in
modeling of actual experimental situations such as thos
the experiment of Hopmeieret al.10
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