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Abstract

We have investigated the theory of energy loss of charged particles in matter due to ionization of the medium,

integrating the work of other authors over several decades. We describe the most important corrections to standard

energy-loss formulae. We compare our calculations to an improved measurement of the range of 1 A GeV U ions and to

other codes and tabulations. We show that calculations based on the theory of ionization energy loss are at least as

accurate as tabulations extrapolated from empirical data for the stopping of uranium ions in matter. We have made

available the computer code resulting from our investigations. � 2002 Elsevier Science B.V. All rights reserved.

PACS: 34.50.Bw
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1. Introduction

The theory of energy loss has been developed
in many parts, since there are many phenomena
which must be included in a complete description
of energy loss. Since these phenomena are de-
scribed in many different publications over many
decades, we have collected here the mathematical
expressions of these phenomena with modern and
uniform notation. As we will show, good agree-
ment with experimental results and with tables of
extrapolated empirical ranges can be obtained
from calculations based on the most relevant

portions of the theory of energy loss. In the course
of this investigation we have developed a new,
open-source code based on this theory which
has applications in cosmic-ray instrumentation,
among other applications.

2. Theory of energy loss

2.1. The overall form

The overall form of the energy-loss formula can
be obtained from classical arguments [1]. In SI
units, that formula is

� dE
dx

¼ Z2
1e

4ne
4p�20mev2

L: ð1Þ

Here, Z1 is the charge of the projectile, and me and
ne are the electron mass and number density,
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respectively. The minus sign on the left-hand side
is simply a reminder that the formula gives the
energy lost by the particle and is therefore an
overall negative quantity. The factor L is the
stopping logarithm, defined classically by

L ¼ ln
bmax

bmin

; ð2Þ

where bmax and bmin are the maximum and mini-
mum impact parameters, respectively. Typically we
use units of AMeVg�1 cm2, (‘‘AMeV’’ is to be read
‘‘MeV per nucleon’’) in which case this becomes

� dE
dx0

¼ 4pNAmec2r2e
Z2
1Z2

A1A2

1

b2
L; ð3Þ

where we have made the replacement x ! x0 ¼ qx.
Here, Z2 and A2 are the atomic number and atomic
mass, respectively, of the target material, A1 is the
atomic mass of the projectile, NA is Avogadro’s
number, and re ¼ e2=4p�0mec2 is the classical elec-
tron radius.

The devil, they say, is in the details. In this case,
the detail is the stopping logarithm L. Following
Lindhard and Sørensen [2], we define

L0 ¼ ln
2mec2b

2c2

I

� �
� b2 � d

2
: ð4Þ

This is the form of L derived originally from
quantum perturbation theory – the first two terms
are typically called the Bethe result. The third term
is the density effect (see Section 2.3). The notation,
�d=2, for the magnitude of the density effect, is
historical. Here, I is the effective ionization po-
tential of the target material. Although there are
theoretical means to determine I, the experimen-
talist should regard it as an empirical parameter.
Throughout what follows, we will refer to the form
L ¼ L0 as the ‘‘Bethe’’ form of dE=dx.

For an accurate calculation, further corrections
of the form L ¼ L0 þ DL are required. It will be
useful here to define the quantity

g 	 aZ1

b
; ð5Þ

where a ¼ e2=4p�0�hc is the usual fine-structure
constant. It is most desirable to find formulae for
DL which will be valid for all values of g, since for
heavy ions we cannot assume aZ1 
 1.

2.2. Composite materials

Often we must deal with target materials which
are not pure elements. Glasses, plastics, and alloys
are all common targets. For these, energy loss may
be calculated by the so-called Bragg rule: The total
energy loss is the weighted sum of the energy lost
due to each element in the target [3]. Since it is the
number of electrons which is important in stop-
ping, it is most sensible to start with the expression
(Eq. (1)) which contains the electron number den-
sity explicitly.

The most important application of the Bragg
sum rule is the derivation of the effective mean
ionization potential for composite materials:

Z2 ln I ¼
X

i

fiZi ln Ii; ð6Þ

where fi is the mole fraction of the ith element.
It has been recommended [4] that the value
Ii ¼ 1:13IEi be used in Eq. (6), where IEi is the value
of I used for the pure element.

2.3. The density effect

Although we have included the density effect
as part of the ‘‘Bethe’’ form of the total energy
loss, it is worthwhile to discuss it separately since
it is important to the discussion of relativistic rise.
Unlike many high-energy corrections, the density
effect can actually be at least qualitatively derived
in classical electrodynamics. Such a derivation
may be found in Jackson [1]. In dense media, the
field which perturbs electrons far from the pro-
jectile track is modified by the dielectric polariza-
tion of the atoms between the distant electron and
the projectile. The magnitude of the density effect
was originally calculated by Fermi [5] and exten-
ded by Sternheimer and Peierls [6].

At high energies, the density effect correction
has the form

� d
2
¼ � lnðbcÞ þ ln

I
�hxp

þ 1

2
; ð7Þ

where xp is the plasma frequency of the medium.
The density effect reduces the relativistic rise
from �ln c2 to �ln c and substitutes the plasma
frequency for the mean ionization potential. At
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somewhat lower energies, the density effect is more
complicated, but typically a parametric fit to the
full density effect can be obtained. This parame-
terization was developed by Sternheimer and
Peierls [6]. They define X 	 log10 ðbcÞ, and the
density effect takes the form

� d
2
¼ � dhigh

2
� a
2
½X1 � X �m ðX0 < X < X1Þ; ð8Þ

where X0, X1, a, and m are parameters which de-
pend on the medium, and dhigh is obtained from
Eq. (7). Typically, X0 
 0:1, X1 
 3, a 
 0:1 and
m 
 3. In addition, there is a small low-energy
density effect for conductors,

� d
2
¼ � 1

2
dðX0Þ102ðX�X0Þ ðX 6X0Þ; ð9Þ

with the additional parameter dðX0Þ 
 0:1. For
insulators, d ¼ 0 for X 6X0. The most recent
available tabulations of these density effect pa-
rameters may be found in [7]. Recent advances in
computing power have made this parameterization
essentially obsolete except for historical purposes.
The density effect may now be computed by direct
tabular interpolation for a single medium or by
computing the complete density effect a priori [8].

2.4. The Bloch correction

This correction was derived by Bloch [9] in
an investigation of the similarities and differences
between classical and quantum-mechanical range-
energy calculations. The full story can be found in
Ahlen [10]. This correction may be placed in the
form

DLBloch ¼ wð1Þ �Rewð1þ igÞ; ð10Þ

where

wðzÞ 	 d

dz
lnCðzÞ: ð11Þ

The numerical value of wð1Þ ¼ �0:5772157 . . . 	
�cE is the negative of Euler’s constant.

Although there are robust and highly accurate
algorithms for computing values of the Gamma
function (Appendix A), it is somewhat simpler to
implement the Bloch correction as a sum, which
can take two forms,

DLBloch ¼
X1
l¼1

l
l2 þ g2

�
� 1

l

�

¼ �g2
X1
l¼1

1

l
1

l2 þ g2

� �
: ð12Þ

These are, of course, exactly equivalent. The sec-
ond form of Eq. (12) suggests a common approx-
imation to the Bloch correction. If g is small, the
sum can be approximated by fð3Þ ¼ 1:202057. . .,
and thus we find a form frequently encountered,

DLBloch ’ �1:202g2 ðg 
 1Þ: ð13Þ

2.5. The Mott correction

Corrections to energy loss of order higher than
Z2 at high energies first became apparent a few
decades ago [11,12]. The origin of these higher
order corrections is simply the Dirac equation
which is, after all, the correct theory of the elec-
tron; the Mott cross-section is most appropriate
for discussing the scattering of electrons off of
highly charged nuclei. Ahlen [13] calculated a cor-
rection to energy loss using a parameterization of
the Mott cross-section derived by Doggett and
Spencer [14] and Curr [15]. Another derivation of
the Mott correction is given in [16], but both forms
contain minor typos. Here we give the form re-
commended by Ahlen [10],

DLMott

¼ 1

2
gb2 1:725

��
þ 0:52

�
� 2 sin

h0

2

�
p cos v

�
þ g2b2ð3:246� 0:451b2Þ

þ g3b3 1:552b

�
þ 0:987

b

�

þ g4b4 4:569

�
� 0:494b2 � 2:696

b2

�

þ g5b5 1:254b

�
þ 0:222

b
� 1:170

b3

��
: ð14Þ

The parameter h0 is the same as in the Ahlen
correction described in Section 2.6. Also

cos v ¼ Re
C 1

2
� ig

� 	
C 1þ igð Þ

C 1
2
þ ig

� 	
C 1� igð Þ

" #
: ð15Þ
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This can be placed in a somewhat more tract-
able form. Recognizing that Cðz�Þ ¼ ½CðzÞ��, Eq.
(15) reduces to

v ¼ 2 argC
1

2

��
� ig

�
þ argC 1ð þ igÞ

�
: ð16Þ

An algorithm for computing the argument of
the complex Gamma function is given in Appendix
A. Finally, let us note that by rearranging the
factors of g and b the term may be put in a form
more tractable to calculation,

DLMott ¼
1

2
gb2 1:725

��
þ 0:52

�
� 2 sin

h0

2

�
p cos v

�

þ gð3:246� 0:451b2Þ

þ g2ð0:987þ 1:552b2Þ

þ g3
�
� 2:696þ b2ð4:569� 0:494b2Þ



þ g4

�
� 1:170þ b2ð0:222þ 1:254b2Þ


�
:

ð17Þ

It is recommended [13] that the Mott correc-
tion not be used for Z1=b > 100, since the Mott
correction becomes very large and negative at low
energies, resulting in not only an incorrect but also
an unphysical form for the energy loss.

2.6. The relativistic Bloch correction

It has been experimentally demonstrated that
the Bloch correction is inadequate in regimes of
both high charge and high energy [17]. An addi-
tional relativistic correction to the Bloch correc-
tion is necessary. This was first calculated by
Ahlen [16]. Unfortunately, the original paper is
not very accessible to the programmer who may
wish to implement his formulae. Furthermore, it
contains two free parameters which are not present
in more sophisticated theories. Nevertheless, for
historical reasons and comparisons with previous
calculations, it is necessary to understand the form
of this correction.

The overall form of what we will call the Ahlen
correction is

DLAhlen ¼
p
2

b2g
pgepg

sinh pg
½ð4g ln 2ÞReL1

þ ðpg � 1ÞImL1 þ 2gReL2�; ð18Þ

where

L1 ¼ �h0

i

1þ i2g
h0

2

� �i2g

þ i
a

bck

� �1þi2g
ei2r

1þ i2g

¼ � i

1þ i2g
2

h0

2

� �1þi2g
"

� a
bck

� �1þi2g

ei2r

#

ð19Þ

and

L2 ¼ �h0

i

1þ i2g
h0

2

� �i2g

ln
h0

2

�
� 1

1þ i2g

�

� i
a

bck

� �1þi2g
ei2r

1þ i2g
ln
4bck

a

�
þ cE � 1

þ 1

1þ i2g

�

¼ � i

1þ i2g
2

h0

2

� �1þi2g

ln
h0

2

�"
� 1

1þ i2g

�

þ a
bck

� �1þi2g

ei2r ln
4bck

a

�
þ cE � 1

þ 1

1þ i2g

�#
: ð20Þ

In both expressions

r ¼ argCð1þ igÞ: ð21Þ
The two free parameters are h0 and k. The first

arises from considerations of Mott scattering, and
can be thought of as an angular cut-off above
which transverse momentum components may be
neglected in the electron momentum. The param-
eter k ¼ b1=a0 represents the choice of close versus
distant collision regimes, relative to the Bohr ra-
dius. These parameters are not completely inde-
pendent since it is assumed 1=ðk0b1Þ 
 h0 
 1,
where k0 is the electron wave number in the center-
of-mass frame of the problem. Ahlen [16] recom-
mends h0 ¼ 0:1 and k ¼ 1:0. An energy-dependent
form for h0 is given in [18]
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h0 ¼
ffiffiffiffiffiffiffiffi
a

bck

r
; ð22Þ

that is, the geometric mean between a=bck and 1.
Extracting the real and imaginary parts of these

expressions is laborious. To evaluate these terms,
first we define

/1 ¼ 2g ln
h0

2
ð23Þ

and

/2 ¼ 2r þ 2g ln
a

bck
: ð24Þ

Then the desired real and imaginary parts can
be expressed as

ReL1

¼
�h0ð2g cos/1 � sin/1Þ þ a

bck ð2g cos/2 � sin/2Þ
1þ 4g2

ð25Þ

and

ImL1

¼
�h0ð2 g sin/1 þ cos/1Þ þ a

bck ð2g sin/2 þ cos/2Þ
1þ 4g2

:

ð26Þ

The third term, ReL2, is

ReL2 ¼
�
� h0 ln

h0

2

��

� 1

1þ 4g2

�
ð2g cos/1 � sin/1Þ

� 2g
1þ 4g2

ð2g sin/1 þ cos/1Þ
�

� a
bck

ln
4bck

a

��
þ cE � 1

þ 1

1þ 4g2

�
ð2g cos/2 � sin/2Þ

þ 2g
1þ 4g2

ð2g sin/2

þ cos/2Þ
��

1

1þ 4g2
: ð27Þ

As one might imagine, there are numerous av-
enues for algebraic errors to enter here, especially

during the process of translating these formulae
into computer code. In fact, the coder may find it
more worthwhile to implement complex arithmetic
so that the complex expressions (19) and (20) may
be written directly into the code. While this does
not reduce the complexity of the calculation, it
dramatically increases the readability, resulting in
fewer errors.

The Bloch, Mott and Ahlen corrections form
what we will call hereinafter the BMA group both
because of their common thread of development
and the necessity for all three to be included to-
gether for precision calculations.

2.7. The Lindhard–Sørensen correction

The Lindhard–Sørensen (LS) correction, DLLS,
replaces the BMA group. In their paper Lindhard
and Sørensen [2] show that the low-energy limit of
the LS correction is exactly the Bloch correction.
Furthermore, by using exact solutions to the Dirac
equation, the LS correction automatically incor-
porates Mott scattering and is relativistically cor-
rect. (This definition of the LS correction differs
from that of [19], where the Bloch and Mott cor-
rections are still considered as separate.) The LS
correction is given by

DLLS ¼
X1

k¼�1ðk 6¼0Þ

jkj
g2

k � 1

2k � 1
sin2 ðdk

�
� dk�1Þ �

1

2jkj

�

þ 1

g2

X1
k¼1

k
4k2 � 1

sin2 ðdk

�
� d�kÞ

�
þ b2

2
;

ð28Þ

where

dk ¼ nk � argCðsk þ 1þ igÞ þ p
2
ðl� skÞ; ð29Þ

and with

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðaZ1Þ2

q
;

ei2nk ¼ k � ig=c
sk � ig

;

l ¼
k ðk > 0Þ;
�k � 1 ðk < 0Þ:

� ð30Þ

The quantity dk is a relativistic Coulomb
phase shift and the summation over k is simply a
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summation over a parameterization of the angular
momentum quantum numbers (including spin). It
is possible to show that

tanðdk � d�kÞ ¼ � g
ck

; ð31Þ

so that the second term of Eq. (28) becomes

X1
k¼1

k
4k2 � 1

1

c2k2 þ g2
: ð32Þ

When we take the difference in phase shifts we
find

dk � dk�1 ¼
1

2
arctan

gðsk�1 � skÞ
sksk�1 þ g2

þ 1

2
arctan

g=c

kðk � 1Þ þ ðg=cÞ2

� argC skð þ 1þ igÞ
þ argCðsk�1 þ 1þ igÞ

� p
2

sk

�
� sk�1 �

k
jkj

�
: ð33Þ

For ease of computation, it is simple to combine
the summation terms in Eq. (28) into a single sum
over positive k. Accordingly, we have

DLLS ¼
X1
k¼1

k
g2

k � 1

2k � 1
sin2 ðdk

�
� dk�1Þ

þ k
g2

k þ 1

2k þ 1
sin2 ðd�k � d�k�1Þ

þ k
4k2 � 1

1

c2k2 þ g2
� 1

k

�
þ b2

2
: ð34Þ

In this form, DLLS converges roughly as k�3.
Note however, that some special care is required
for the k ¼ 1 term only. The phase shift d0 enters in
the first summed term of Eq. (34) and because of
the definition of sk, it will be a complex number.
Fortunately, the factor in front of sin2 ðd1 � d0Þ is
zero. Thus, it is recommended that for k ¼ 1 only,
the first term should be set to zero identically, ra-
ther than trying to force the computation of d0. A
smoother evaluation of DLLS will also be obtained
if the correction is evaluated up to a particular
value of k, rather than up to some fractional pre-
cision.

2.8. The finite nuclear size correction

In their paper Lindhard and Sørensen [2] also
derive a correction due to the finite size of atomic
nuclei. This is possible because exact solutions to
the Dirac equation exist for any spherically sym-
metric potential [20,21]. We take the nuclear radius
to be R ¼ 1:18A1=3 fm, and the dimensionless nu-
clear radius to be the ordinary radius divided by
the electron Compton wavelength, R0 ¼ Rmec=�h ¼
0:003056A1=3. The effect of finite nuclear size ap-
pears as a modification to the Coulomb phase
shifts, Eq. (29). In this way, we can continue to use
the summation in Eq. (28), but with new phase
shifts given by

dk ¼ arg eid
r
k

�
þ Hke

idsk



¼ arctan
sin dr

k þ Hk sin ds
k

cos dr
k þ Hk cos ds

k

; ð35Þ

where dr
k is given by Eq. (29) ds

k can be obtained
from Eq. (29) by the replacement sk ! �sk
throughout (including nk). Note however, that we
must sum Eq. (28) and not Eq. (34), since the re-
lationship in Eq. (31) no longer applies. The phase
shift ds

k is the phase shift arising from the solution
to the Dirac equation in the Coulomb potential
which is singular at the origin. The real number
Hk, which provides the connection between the
interior uniform sphere potential and the exterior
Coulomb potential, is very complicated to evaluate
in comparison to dr

k. First, the main expression for
Hk is

Hk ¼
F r=Gr � F i=Gi

F i=Gi � F s=Gs

Gr

Gs
: ð36Þ

The four ratios – F r=Gr, F i=Gi, F s=Gs and
Gr=Gs – are themselves complicated expressions
which we define below. First we consider the ratio

F r

Gr
¼

ffiffiffiffiffiffiffiffiffiffiffi
c � 1

c þ 1

s
ReKr

ImKr : ð37Þ

We define the quantity

Kr 	 exp½iðnr
k � bcR0Þ�

�Mðsk þ 1þ ig; 2sk þ 1; i2bcR0Þ; ð38Þ
where M is the confluent hypergeometric function
(Appendix B). In addition, the ratio F s=Gs may be
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obtained from Ks by the substitution sk ! �sk
throughout Eq. (38). The ratio Gr=Gs is given by

Gr

Gs
¼ Cðsk þ 1þ igÞj j

Cð�sk þ 1þ igÞj j
Cð�2sk þ 1Þ
Cð2sk þ 1Þ

ImKr

ImKs

�ð2bcR0Þ2sk : ð39Þ

The ratio F i=Gi depends sensitively on the sign
of k. We define sgnk 	 k=jkj ¼ �1, so that

F i

Gi
¼

P1
n¼0 bnP1
n¼0 an

� ��sgn k

; ð40Þ

where the summands are given by the recursion
relations,

b0 ¼ 1;

a0 ¼
2jkj þ 1

R0ðc sgnk þ 1Þ þ sgnkð3bg=2Þ b0;

a1 ¼
1

2
½R0ð�c sgnk þ 1Þ � sgnkð3bg=2Þ�b0;

bn ¼
½R0ðc sgnk þ 1Þ þ sgnkð3bg=2Þ�an � sgnkðbg=2Þan�1

2jkj þ 2nþ 1
;

anþ1 ¼
½R0ð�c sgnk þ 1Þ � sgnkð3bg=2Þ�bn þ sgnkðbg=2Þbn�1

2ðnþ 1Þ :

ð41Þ
The convergence of Eq. (28) including nuclear

size effects has been demonstrated out to cmax ’
10=R0 [22]. Above this value of the Lorentz factor,
evaluation of the confluent hypergeometric
function can be problematic. However, even for
uranium cmax ’ 528, this is well into the ultrarel-
ativistic limit, which is the topic of Section 2.9.

2.9. The ultrarelativistic limit

Sørensen [23] has shown that for ultrarelativ-
istic ions, a (careful) perturbation treatment of
the problem of energy loss is possible. In partic-
ular, because of finite nuclear size effects the
potential energy experienced by an electron has
a maximum depth of order 4Z1A

�1=3
1 mec2 �10

MeV, while the kinetic energies involved are very
much greater than this. Thus, the energy loss cal-
culation should be amenable to perturbation
methods.

For a uniformly charged nucleus, the pertur-
bation treatment leads to a correction

DLultra ¼
1

2

Z 1

�1

1� ð1� lÞb2=2

1� l

� 9

2ðbcR0Þ2
j21

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1� l

p
bcR0� 	

1� l

"
� 1

#
dl:

ð42Þ

The limiting behavior of this expression is given by

DLultra ¼ � lnðbcR0Þ � 0:2þ b2=2: ð43Þ
The LS correction with the finite nuclear size

modification tends toward this same limit. This
correction cancels the density effect correction in
the ultrarelativistic limit, so that the entire stop-
ping logarithm becomes

L ¼ L0 þ DL ¼ ln
2c
Rxp

� 0:2; ð44Þ

where xp is the plasma frequency of the target
material. The physical interpretation is that the
impact parameters range from a minimum of
order R out to a maximum of order c=xp. The
remarkable simplicity of Eq. (43) allows us to
‘‘sweep under the rug’’ the misbehavior of the
confluent hypergeometric function at high Lorentz
factor.

The prediction of an energy-independent energy
loss in the ultrarelativistic regime has been con-
firmed with >100 A GeV Pb ions at the CERN-
SPS accelerator [24,25]. A comparison of these
relativistic effects may be found in Figs. 1 and 2.

2.10. Other ultrarelativistic effects

Although the finite nuclear size effect is the most
important modification to energy loss at very high
energies, there are a few additional effects which
can make a small but significant contribution to
slowing.

Ahlen [10] discusses two of these effects and
gives approximate formulas. First is a quantum
electrodynamical (QED) effect, or radiative cor-
rection. The primary physical manifestation of this
correction is bremsstrahlung of scattered electrons
during electron–projectile collisions. In the deri-
vation of Jankus [26], he gives the correction as an
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entirely separate form of energy loss. In SI units,
the energy loss is given by

� dEQED

dx
¼ aZ2

1e
4ne

4p2�20mec2
LQED; ð45Þ

with the dimensionless factor LQED given by

LQED ¼ 1

3
½lnð2cÞ�3

(
þ 29

12
½lnð2cÞ�2

� 217

36

�
þ p2

8

�
lnð2cÞ � p2

3

�
� 7

4

�
ln q

þ 899

108
þ p2

12
� 39

16
fð3Þ � 1

4

X1
k¼1

1

2kk3

)
: ð46Þ

The parameter q, which is a momentum integral
cut-off in units of the electron mass, may take on
the values 1 < q < 2c, but values of q in this range
make only a small change in the value of Eq.
(45). The sum in the last term has the valueP

1=2kk3 ¼ 0:5372132 . . . . Combining Eq. (45)
with Eq. (1) we find

DLQED ¼ ab2

p
LQED: ð47Þ

The other small ultrarelativistic effect is the ki-
nematic correction. This accounts for the finite
mass of the nucleus in electron–projectile colli-
sions. We take the projectile mass to be M1 ¼
A1mu, where mu ¼ 931:4943 MeV=c2. This correc-
tion has the form

DLkin ¼ � 1

2
ln 1

�
þ 2

cme

A1mu

�
� 1

2

me

A1mu

b2

c
: ð48Þ

We can expect the finite mass correction to
become important when the energy of electrons in
the rest frame of the projectile is comparable to the
mass of the projectile. If we set cme ¼ A1mu, then
c ¼ 1823A1. This corresponds to approximately
400 ATeV for uranium! At such high energies,
other electromagnetic effects are much more im-
portant as we will see in Section 2.11. Further-
more, the kinematic effect may actually be damped
by finite nuclear size effects. As pointed out by
Lindhard and Sørensen [2], the momentum trans-
fer in an electron–nucleus collision should have a
maximum of roughly �h=R. Starting from the initial
rest frame of the projectile, after the encounter, the
recoil velocity of the projectile will be of order
vnuc=c ’ 0:18A�4=3. For uranium this is vnuc=c 

10�4. Thus we can expect recoil effects to be en-
tirely negligible for nuclei heavier than hydrogen.

Fig. 1. dE=dx as calculated with several important corrections

for uranium slowing in aluminum. All computations included

the Sternheimer et al. density effect and the HBG electron

capture correction.

Fig. 2. The high-energy portion of Fig. 1.

292 B.A. Weaver, A.J. Westphal / Nucl. Instr. and Meth. in Phys. Res. B 187 (2002) 285–301



2.11. Projectile bremsstrahlung

There are a few ways in which a projectile can
lose energy electromagnetically besides Coulomb
collisions with electrons. The most important of
these are projectile bremsstrahlung and pair pro-
duction. Projectile bremsstrahlung is distinct from
the QED electron bremsstrahlung correction. Here
the bremsstrahlung is emitted directly from the
projectile in the effective field of the target nuclei.
Some of the details of the quantum theory of
bremsstrahlung may be found in Heitler [27].

Following Heitler, then, the energy loss due to
bremsstrahlung can be placed in the form (in units
of AMeVg�1 cm2)

� dErad

dx
¼ aNAmuc2r2e

me

mu

� �2 Z4
1

A2
1

Z2
2

A2

cB; ð49Þ

where B is a dimensionless factor analogous to L.
It is most interesting to note that unlike the Z2

1=b
2

dependence in atomic collisions, bremsstrahlung
scales as Z4

1c. Thus although ion bremsstrahlung is
suppressed relative to electron bremsstrahlung by
ðme=muÞ2, bremsstrahlung can become important
for very highly charged ions at energies which are
not ‘‘too’’ ultrarelativistic (i.e., energies accessible
to present-generation heavy ion accelerators such
as CERN-SPS and RHIC).

The explanation of the Z4
1 dependence is very

straightforward. Classically the power radiated by
an accelerated particle with charge q is propor-
tional to q2jaj2. The acceleration is simply due to
the Coulomb force, so jaj is proportional to q.
Altogether power scales like q4. There is an exact
quantum mechanical correspondence. In terms of
matrix elements, one must multiply the coupling of
the ion to the electromagnetic radiation field (�Z1)
by the coupling of the ion to the Coulomb field of
the target nucleus (�Z1Z2). Then we square the
matrix element to obtain rates and cross-sections,
so altogether we have Z4

1Z
2
2 .

The dimensionless factor B is given by

B ¼ 12c2 þ 4

3bc2

�
� 6b þ 8

3b2c2
lnðc þ bcÞ

�
lnðc þ bcÞ

� 4

3
þ 2

bc2
Fb 2bc2ð1
�

þ bÞ
	
; ð50Þ

where the ‘‘bremsstrahlung function’’, Fb, is de-
fined by

FbðxÞ ¼
Z x

0

lnð1þ yÞ
y

dy: ð51Þ

This integral may be represented by the sum

FbðxÞ ¼ �
X1
n¼1

ð�xÞn

n2
; ð52Þ

for x < 1. For x > 1 the identity

FbðxÞ ¼
p2

6
þ 1

2
ln xð Þ2 � Fb

1

x

� �
ð53Þ

may be used.
There are a few corrections to this formula

which Heitler discusses. The first is the correction
due to bremsstrahlung off of atomic electrons. This
may be included by making the replacement Z2

2 !
Z2ðZ2 þ CÞ where C 
 0:75. Another correction is
due to the use of the first Born approximation in
deriving Eq. (49). A correction of the form

DBBorn ¼ �4:828ðaZ2Þ2 ð54Þ

accounts for the inadequacy of the first Born ap-
proximation for large Z2. We may also expect
further substantial corrections due to finite nuclear
size effects, but this takes us beyond the scope of
the present work.

Pair production, sometimes called ‘‘sparking
the vacuum’’ is basically a small correction to
projectile bremsstrahlung. Ahlen [10] gives the
ratio of pair production loss to bremsstrahlung
loss,

dEpair

dErad

’ A1

1000Z2
1

mu

me

; ð55Þ

for ultrarelativistic nuclei.

2.12. Electron capture

With the possible exception of certain low-
energy corrections, the influence of electron cap-
ture may be the least well understood correction to
energy loss. It may not be possible to formulate the
influence of electron capture as an additive cor-
rection. Intuitively, however, we can imagine that
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electron capture may be made manifest as a de-
crease in the projectile charge: the bare nuclear
charge Z0 is replaced by the effective projectile
charge Z1 in all expressions containing the pro-
jectile charge. For energies significantly in excess
of 1 AGeV, the effective charge will be very nearly
equal to the bare charge. For lower energies,
the empirical formula of Pierce and Blann [28] is
available,

Z1 ¼ Z0 1

"
� exp

 
� 0:95b

aZ2=3
0

!#
: ð56Þ

The power Z2=3
0 in the exponential is derived from

Thomas–Fermi calculations on the target atoms
[29,30]. It has been shown experimentally that Z1

depends on the target material [31]. Anthony and
Landford derive the empirical formula [31],

Z1 ¼ Z0 1

"
� AðZ2Þ exp

 
� BðZ2Þb

aZ2=3
0

!#
; ð57Þ

with the functions A and B given by

A ¼ 1:16� 1:91� 10�3Z2 þ 1:26� 10�5Z2
2 ;

B ¼ 1:18� 7:5� 10�3Z2 þ 4:53� 10�5Z2
2 :

ð58Þ

Note that both Eqs. (56) and (57) depend only
on projectile velocity, not projectile energy. Thus,
these forms for the effective charge will approach a
constant value at high energies. For large charges,
the resulting difference Z0 � Z1 may be non-negli-
gible.

More recently, using a fit to a large dataset of
energy loss and range data, Hubert et al. [32,33],
have proposed the formula

Z1 ¼ Z0 1½ � x1 exp ð � x2Ex3Z�x4
0 Þ�; ð59Þ

where E is the kinetic energy in AMeV, and the x
parameters are given as follows:

x1 ¼ Dþ B expð�CZ0Þ;
D ¼ 1:164þ 0:2319 expð�0:004302Z2Þ;
B ¼ 1:658;

C ¼ 0:05170;

x2 ¼ 8:144þ 0:09876 ln Z2;

x3 ¼ 0:3140þ 0:01072 ln Z2;

x4 ¼ 0:5218þ 0:02521 ln Z2;

where these parameters should be considered valid
for all targets except beryllium and carbon which
are given in Table 1. A comparison of the effective
charge in all three models described here is given in
Fig. 3.

2.13. The Barkas correction

The Barkas effect was first noticed as a differ-
ence in energy loss between positive and negative
pions [34,35], indicating that the energy loss con-
tained odd powers of Z1. The independent analyses
of Ashley et al. [36–38] and Jackson and McCar-
thy [39] concluded that target polarization effects
for low-energy distant collisions would produce a
multiplicative correction to the energy loss, that is

dE
dx

! dEBarkas

dx
¼ dE

dx
1

�
þ Z1ffiffiffiffiffi

Z2

p F ðV Þ
�
: ð60Þ

Table 1

Effective charge parameters for the HBG formula for beryllium

and carbon

Target D B C x2 x3 x4

Be 2.045 2.000 0.04369 7.000 0.2643 0.4171

C 2.584 1.910 0.03958 6.933 0.2433 0.3969

Fig. 3. Effective charge of uranium in aluminum as a function

of energy for the different electron capture models described in

this work.
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The variable V is a reduced momentum defined
by

V ¼ bc

a
ffiffiffiffiffi
Z2

p : ð61Þ

The ‘‘universal’’ function F ðV Þ is a ratio of two
integrals over a Thomas–Fermi model of the atom.
A figure showing values of V 2F ðV Þ is given in [39].
Also, values of V 2F ðV Þ may be found in Table 2.
Jackson and McCarthy do not consider their cal-
culations to be reliable for V < 0:8. Interestingly,
their calculation also found the close-collision
correction to be nearly the same as the first term of
the Mott correction (the term proportional to gb2).

The Barkas effect was actually given its name
several years after the Jackson and McCarthy
article by Lindhard, who showed [40] that the
correction factor should be multiplied by 2 (i.e.
F ðV Þ ! 2F ðV Þ) to give better agreement with both
theoretical results and experimental data. Basi-
cally, Jackson and McCarthy should have included
close collisions even in the low-energy regime. This
was confirmed with a more detailed calculation by
Morgan and Sung [41]. Because of the way the
Barkas correction is formulated, it has been ques-
tioned [42] whether the effect can be deconvolved
from the effects of electron capture (i.e. the effec-
tive charge Z1).

2.14. The shell corrections

Shell corrections arise when the velocity of the
projectile is comparable to velocities of electrons
in target atoms. Two regimes are possible: first, the

velocity of the projectile may be low enough so
that inner (K, L) shell electrons have velocities
comparable to the projectile; second, the inner
shell electrons may actually have relativistic ve-
locities for sufficiently heavy target atoms.

For the first type of shell correction, Fano [43]
proposed a correction of the form

DLshell ¼ �C=Z2; ð62Þ

where C is a complicated function of the various
parameters. Fano also showed that DLshell does not
vanish at high energies, as was assumed when shell
corrections were first discussed. This fact led to
widespread use of the ‘‘adjusted’’ shell correction,
which is defined by

ln I þ C=Z2 	 ln Iadj þ Cadj=Z2; ð63Þ

demanding limb!1 Cadj=Z2 ¼ 0. Theoretical cal-
culations of C exist [43–45], as well as some
experimental values [46]. In every formulation in-
vestigated, C is independent of Z1. Since most
other correction terms we have investigated scale
as a positive power of Z1, it is probably reasonable
to assume that the shell correction is not as im-
portant as other low-energy corrections, especially
the Barkas term. The version of Barkas and Berger
[44] is fairly widely accepted,

Cadj

¼ ð4:22377� 10�7b�2c�2 þ 3:04043� 10�8b�4c�4

� 3:8106� 10�10b�6c�6ÞI2adj
þ ð3:858019� 10�9b�2c�2

� 1:667989� 10�10b�4c�4

þ 1:57955� 10�12b�6c�6ÞI3adj; ð64Þ

where the formula should be considered valid for
bc > 0:13.

The second situation mentioned above was ad-
dressed by Leung [47,48] who found an additional
relativistic shell correction,

DLLeung ¼ � 5

3
ln

2mec2b
2

I

� �
Btotj j

Z2mec2
þ I2

4m2
ec4b

2
;

ð65Þ
where Btot < 0 is the total ground-state electronic
binding energy. Again, it is not clear how this

Table 2

Values of the Jackson–McCarthy ‘‘universal’’ function

V V 2F ðV Þ F ðV Þ
1.0 0.33 0.33

2.0 0.31 0.078

3.0 0.27 0.03

4.0 0.23 0.014

5.0 0.21 0.0084

6.0 0.19 0.0053

7.0 0.17 0.0035

8.0 0.16 0.0025

9.0 0.15 0.0019

10.0 0.14 0.0014
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result scales with projectile charge. In addition
we have omitted a term �b2 which appears in
the correction as defined in [48], since this is
probably part of the Bethe form (the derivation
is not highly relativistic in the projectile veloc-
ity).

3. Comparisons with experiment

We first compared the results of energy loss
calculations to experiments already performed. The
most useful is the experiment of Ahlen and Tarl�ee
[17], in which a beam of uranium was brought to
rest after passing through a series of targets (listed
in Table 3). The beam energy was determined to be
955:7� 2:0 AMeV by means other than range-
energy.

The primary interest of Ahlen and Tarl�ee was the
importance of the BMA group of corrections to
dE=dx, so several steps were taken to reduce the
importance of additional low-energy corrections.
The mean ionization potential I for each target
was taken to have its adjusted value Iadj (listed
in Table 3) as the high-energy limit of the shell
correction. The effective projectile charge due to
electron capture was computed from the Pierce
and Blann formula [28]. Finally all (very uncer-
tain) low-energy corrections were effectively cir-
cumvented by using a measured range [49] below
150 AMeV. That is, integrations of dE=dx were
carried out only between 150 and 1000 AMeV.
Ignoring all corrections in the BMA group, they
found a reconstructed beam energy of 903.5
AMeV. Including only the Mott correction the
beam energy became 1003.9 AMeV. Clearly, Mott
corrections alone are not sufficient for the energy
loss of uranium. Finally, they calculated the beam
energy including all components of the BMA

group with a resulting theoretical energy of 952.8
AMeV, a fractional error of only 0.3%. Although
the theoretical uncertainty was not quoted, the
uncertainty due to electron capture alone encom-
passes the measured energy value as they show in
their Fig. 2.

As a first test of our own range-energy calcu-
lations we sought to reproduce the calculations of
Ahlen and Tarl�ee so that we would have a solid
basis against which we could compare other sorts
of range-energy calculations. The primary com-
plication is not in the theoretical construction of
range-energy code, but in the empirical range used
below 150 AMeV. For this we must look to the
results of Ahlen et al. [49]. This experiment was
also performed at the Bevalac with a beam of
147.7 AMeV uranium. The experimental setup is
summarized in Table 4. Note that the range was
measured not in Lexan but in CR-39, a somewhat
different plastic track-etch detector.

The details of how the conversion of CR-39
range to Lexan range was performed are not
described in [17]. There are a variety of ways to
perform the range conversion. These include set-
ting the range in Lexan equal to the total range at
147.7 AMeV from [49], setting the range in
Lexan equal to the range only in CR-39 (at the
appropriate energy) from [49], correcting the
range in CR-39 for the different hA2=Z2i in Lexan,
and correcting the range in CR-39 by the ratio of
dE=dx in the two materials. For each technique
considered, we computed the beam energy using
corrections due to the BMA group or its re-
placement, the LS correction. The resulting beam
energies agreed with the original calculation
typically to better than a few tens of AMeV.
Furthermore, for each technique the BMA
calculation and the LS calculation agreed to
typically better than 1 AMeV. Thus, we feel it is

Table 3

Experimental setup in the Ahlen and Tarl�ee experiment

Target Thickness (g cm�2) Iadj (eV)

Al (beam window) 0:137� 0:020 166� 1

Air 0:0426� 0:0020 85:4� 1:0

Cu 8:3162� 0:0010 323� 2

Lexan 2:327� 0:002 67:0� 1:0

Table 4

Experimental setup in the Ahlen, Tarl�ee and Price experimenta

Target Thickness (g cm�2)

Al (beam window)þAir 0:2039� 0:014

CR-39 0:3771� 0:0005
Total range 0:581� 0:014

a The individual thicknesses of Al beam-pipe window and air

were not quoted in the article.
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quite valid to replace the BMA group with the LS
correction.

Because of the uncertainty of the range con-
version, we also considered the direct integration
of dE=dx. As there is no suggestion of how shell
corrections scale with projectile charge, we ignored
these entirely. More significant, however, is the
Barkas correction which was included for some
calculations. Results are summarized in Table 5.
The ‘‘Bethe’’ method uses the bare Bethe formula
plus the density effect correction. ‘‘BMA’’ is
‘‘Bethe’’ plus the BMA group. ‘‘LS’’ is ‘‘Bethe’’
plus the LS correction (finite nuclear size effects
are negligible at this energy and were not in-
cluded). Each method was performed with and
without the Barkas correction.

In 1999 we had the opportunity to repeat Ahlen
and Tarl�ee’s experiment. We made use of the 1.0
AGeV uranium beam at the GSI laboratory in
Darmstadt, Germany. Table 6 shows the experi-
mental setup in the 1999 GSI exposure. The details
of the beam window and wire chamber are from
Schardt [50]. In addition, the beam energy was
1000:0� 0:5 AMeV with a spread of 0.15% about
this central value.

The Lexan target consisted of 103 sheets of
Lexan plastic, each about 260 lm in thickness. The
range in Lexan was determined by scanning the
sheets near the stopping point of the main beam,
determined by visual comparison of track density
on upstream and downstream sheets. The posi-
tions of events found in the scans were matched
on adjacent sheets. A steep decline in the number
of matches was observed to begin at around 2.7
g cm�2 and continue to about 2.75 g cm�2. The
midpoint of this decline was taken to be the
stopping point for the purpose of calculating
energy, with the uncertainty determined by the
thickness of one Lexan sheet to either side of the
stopping point.

The results of the energy reconstruction are
shown in Table 7. The various effects included
in the reconstruction are also shown. In both
cases, the range was integrated up from 8 AMeV,
with the energy at 8 AMeV given by the Benton
and Henke [52] range code.

Table 5

Beam energy reconstructions by the method of direct integra-

tion

Method Energy (AMeV)

No Barkas

Bethe 899.4

BMA 931.9

LS 947.3

With Barkas

Bethe 908.5

BMA 948.6

LS 957.0

Beam energy 955:7� 2:0

Table 6

Experimental setup in the 1999 GSI exposure

Target Substance Thickness (mg cm�2) I (eV)

Beam window Hostaphan (C10H10O4) 22.8 72.3

Kevlar (C14H14N2O2) 12.1 71.7

Air Air 7.23 85.4

Wire chamber Kapton (C22H10N2O5) 3.55 75.9

Mesh 5.16 223.0

Ar (80%) CO2 (20%) 19.0 174.7

Kapton (C22H10N2O5) 3.55 75.9

Air Air 32.5 85.4

Copper absorber Cu 8669:7� 4:5 323.0

Lexan target Lexan (C16H14O3) 2725� 32 73.1
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4. Comparisons with theory

To test the general accuracy of the code devel-
oped as part of this study we compared range and
energy loss to the code developed by Benton and
Henke [52] (hereinafter BH) and to the tables of
Hubert, Bimbot and Gauvin (hereinafter HBG).
The HBG tables cover the energy regime 2.5–500
AMeV, so the comparison was performed only in
this region. Both BH and HBG ranges are based on
experimental measurements. In the case of BH, the
code is based on parametric fits to the range tables
of Barkas and Berger [51]. HBG extrapolated their
tables from a large experimental data set. The
comparison was performed using the LS correction
(without finite nuclear size which is negligible at
these energies), the density effect of Sternheimer
et al. [7], and HBG’s own version of electron
capture.

Fig. 4 shows the comparison among all three
sources. This log–log plot is only intended to show
the overall shape of the curves in this energy
region. Fig. 5 shows the fractional differences
ðR� RBHÞ=RBH and ðR� RHBGÞ=RHBG, where R is
the range computed with our own code. Since the
code developed in this work is based on the BH
ranges below 8 AMeV, that fractional difference is
extremely small at low energies. Fig. 6 shows a
comparison of dE=dx computed from the three
sources. The BH code contains three different pa-

rameterizations covering different energy regions.
The dip in the BH value of dE=dx at about 7
AMeV is due to a slight imperfection in the join-
ing of two parameterization regions. The join be-
tween the different parameterization regions is
optimized for continuity in range and dE=dx, so it
is not surprising to see a discontinuity in the value
of d2E=dx2.

Table 7

Results of energy reconstruction from range in the 1999 GSI

exposure

Effects included Energy (AMeV)

LS

Electron capturea

Density effectb 1009:0� 2:7

LS

Electron capturec

Density effect b

Shell Effectd

Leung effect 1002:2� 2:7

Beam energy 1000:0� 0:5

aVersion of Hubert et al. [32,33].
b Version of Sternheimer et al. [7].
c Version of Anthony and Landford [31].
d Version of Barkas and Berger [51].

Fig. 4. Comparison of ranges of uranium in aluminum from

three different sources.

Fig. 5. Fractional differences (in percent) for the range code

developed in this work compared to two other sources.
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5. Conclusion

The code developed as part of this study is cer-
tainly accurate enough for applications in cosmic-
ray astrophysics and most other purposes. It is
accurate to 
0.2% in the reconstruction of energy
as a function of range in actual experiments and
agrees to better than 10% with existing codes and
tables in the theoretically troublesome low-energy
region. Fig. 6 is especially revealing when com-
pared to Fig. 1. Without the LS correction (which
reduces to the Bloch correction in the energy region
of Fig. 6) there would be a disagreement of roughly
a factor of 2 between the code developed in this
work and older codes and tabulations. With the
exception of electron capture, the LS correction
completely dominates all low-energy effects. This is
to be expected, since the Bloch correction scales as
Z2
1 , the Barkas effect scales as Z1 and the shell and

Leung corrections, which are primarily concerned
with the velocity of inner shell electrons of the
target atoms, should not be expected to scale as Z1

at all.
The code developed during this study can be

found at http://ultraman.ssl.berkeley.edu/�weav-
er/dedx/. The code requires the use of a C compiler
to run.
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Appendix A. Gamma function

The complex Gamma function appears fre-
quently in these calculations. In particular, the
argument of the Gamma function appears in the
Mott correction, the Ahlen correction, and the LS
correction. To very high precision the Gamma
function is given by [53]

Cðzþ 1Þ ¼ z
�

þ c þ 1

2

�zþ1
2

exp

�
� z
�

þ c þ 1

2

��

�
ffiffiffiffiffiffi
2p

p
c0

"
þ
XN
k¼1

ck

zþ k
þ �

#
: ðA:1Þ

For special choices of c, N, and the parameters
ck, the error term j�j < 2� 10�10 everywhere in the
right complex plane, Re z >0. The special choices
are c ¼ 5, N ¼ 6, and

c0 ¼ 1:000000000190015;

c1 ¼ 76:18009172947146;

c2 ¼ �86:50532032941677;

c3 ¼ 24:01409824083091;

c4 ¼ �1:231739572450155;

c5 ¼ 0:1208650973866179� 10�2;

c6 ¼ �0:5395239384953� 10�5:

ðA:2Þ

With some effort, the real and imaginary parts
can be extracted from this formula and from these,
the absolute value and the argument. If we let
z ¼ xþ iy, then we must define two parameters

Fig. 6. Comparison of energy loss of uranium in aluminum

from three different sources.
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T ¼ �y
X6
k¼1

ck

ðxþ kÞ2 þ y2
ðA:3Þ

and

B ¼ c0 þ
X6
k¼1

ckðxþ kÞ
ðxþ kÞ2 þ y2

: ðA:4Þ

Now we have

ln jCðzþ 1Þj ¼ 1

2
x
�

þ 1

2

�
ln ðx
h

þ 5:5Þ2 þ y2
i

� y arctan
y

xþ 5:5
� ðxþ 5:5Þ

þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p T 2 þ B2ð Þ

p
ðA:5Þ

and

argCðzþ 1Þ ¼ y
2
ln ðx
h

þ 5:5Þ2 þ y2
i

þ x
�

þ 1

2

�
arctan

y
xþ 5:5

� y

þ arctan
T
B
: ðA:6Þ

For operations taking place in the left complex
plane Re z <0, it is handy to know the reflection
formula

Cð1� zÞCð1þ zÞ ¼ pz
sin pz

: ðA:7Þ

The Gamma function has poles at zero and all
negative integers, and that behavior is reproduced
faithfully in this formula.

Appendix B. Confluent hypergeometric function

The confluent hypergeometric function, Mða;
b; zÞ ðalternatively 1F1ða; b; zÞÞ appears in the finite
nuclear size correction to the LS correction. The
simplest representation is

Mða; b; zÞ ¼ 1þ CðbÞ
CðaÞ

X1
n¼1

Cðaþ nÞ
Cðbþ nÞ

zn

n!
; ðB:1Þ

with a, b, z complex numbers. The implementation
of this formula would seem to require an excessive
number of calls to the Gamma function, but we
recognize here the so-called Pochhammer symbol

Cðzþ nÞ
CðzÞ ¼ zðzþ 1Þðzþ 2Þ � � � ðzþ n� 1Þ

	 ðzÞn; ðB:2Þ

so that Eq. (B.1) becomes

Mða; b; zÞ ¼ 1þ
X1
n¼1

ðaÞn
ðbÞn

zn

n!
: ðB:3Þ

Each term in the series can be obtained from
the previous one by multiplying by ðaþ n� 1Þz=
ðbþ n� 1Þn and thus requires only complex mul-
tiplication. Further properties of the confluent
hypergeometric function may be found in [54].
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