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The concept of reciprocity symmetry for matter-wave propagation is established for nonrelativistic quantum
mechanics with previous results in the literature extended to include nonlocal interactions. Examples are given
for cases with both local and nonlocal potentials, where we show in particular that reciprocity can be violated
for the motion of a charged particle in an external electromagnetic field. In addition, this symmetry is applied
to interpret a recent analysis �Phys. Rev. A 64, 042716 �2001�� on the symmetry of transmission through
one-dimensional complex potentials, with the emphasis that the validity of reciprocity can go beyond that of
time-reversal symmetry, such as in the presence of absorption in which the latter symmetry breaks down.
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I. INTRODUCTION

In any wave propagation from a source to a receiver �de-
tector� with both fixed at separate locations, the wave can
undergo various scattering processes via interaction with tar-
gets in the environment. In such a process, reciprocity sym-
metry refers to the equality in the signal received when the
source and detector are reversed �i.e., with their respective
positions switched� �1,2�. This is a rather powerful symmetry
which finds many interesting applications based on either its
validity or its breakdown, in a large number of areas involv-
ing transmission of signals ranging from classical optics �1�
to quantum-mechanical scattering problems �2�. Hence the
understanding of the applicability and limitation of this sym-
metry principle is of high significance in any domain of
wave physics.

Mathematically, while this principle can be expressed in
different forms �1�, one of the most general and unified ways
is to refer to the symmetry of the Green’s function for the
associated wave equation. This is so because of the fact that
any signal transmitted can be expressed as an integral over
the product of the appropriate Green’s function and the
source �e.g., in electrodynamics we have the vector potential

expressed as A� �r����G�r� ,r���J��r���d3r���. In optics, while the
study of reciprocity has a long history starting from Stokes’
study on transmission and reflection symmetry and the pub-
lication of the Lorentz lemma more than a century ago �1�,
recent revival in the interest of this principle has focused on
the wave propagation through various complex media such
as photonic crystals in which both anisotropic and nonlocal
electrodynamic responses may be involved �3–5�. In particu-
lar, we have recently clarified that within linear optics, reci-
procity can be invalidated only by certain failure of symme-
try conditions in the dielectric tensors, but otherwise remains
valid even in the presence of dissipation and nonlocal re-
sponse from the medium involved �4,5�.

In quantum mechanics �QM�, however, this symmetry
seems to have received less attention in the literature. Except

for the very nice work of Bilhorn et al. many years ago �2�,
which had clarified the concepts of reciprocity, time-reversal
symmetry, and the Hermiticity of the Hamiltonian in one
context, the importance of this symmetry seems to have been
somewhat overlooked over the years �6�. For example, a re-
cent study on the symmetry between the left and right inci-
dence of the projectile in a one-dimensional �1D� quantum
�complex� potential scattering problem seemed to have com-
pletely ignored the role of reciprocity underlying all the re-
sults as obtained in the author’s work �7�. The purpose of this
Brief Report is to reemphasize the importance of this sym-
metry principle �2� in the understanding of various phenom-
ena involved in 1D QM scattering �7� and to generalize the
previous work �2� to cover the case when a nonlocal inter-
action is involved. We shall limit ourselves to problems with
nonrelativistic potential scattering.

II. THEORY

We start by considering the following stationary
Schrödinger equation:

−
�2

2m
�2��r�� +� V�r�,r�����r���d3r�� = E��r�� , �1�

where we have introduced a nonlocal interaction potential
which is also allowed to be generally complex. This kind of
model finds application in many realistic physical problems,
notably in nuclear physics where it is known as the velocity-
dependent nonlocal optical potential �8�. Let us now intro-
duce the Green’s function of the problem defined via

−
�2

2m
�2G�r�,r��� +� V�r�,r�1�G�r�1,r���d3r�1 − EG�r�,r���

= ��r� − r��� . �2�

We want to establish the conditions for the symmetry of the
Green’s function: i.e.,

G�r�,r��� = G�r��,r�� . �3�

Note that we will use the symbols �� ,�� � , . . . to denote differ-
entiation operators with respect to the coordinates r� ,r�� , . . .. In
addition, the Green’s function we consider here is very gen-
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eral and may not observe translational invariance in the co-
ordinates except for some special potential functions. To es-
tablish the conditions for �3� to be valid, we consider a
similar equation for G�r� ,r��� as follows:

−
�2

2m
�2G�r�,r��� +� V�r�,r�1�G�r�1,r���d3r�1 − EG�r�,r���

= ��r� − r��� . �4�

Following similar steps as in our previous works on optical
reciprocity �5�, we multiply �2� by G�r� ,r��� and �4� by
G�r� ,r���, taking the difference of the result leads to

−
�2

2m
�G�r�,r����2G�r�,r��� − G�r�,r����2G�r�,r����

= −� d3r�1�G�r�,r���V�r�,r�1�G�r�1,r���

− G�r�,r���V�r�,r�1�G�r�1,r���� + G�r�,r�����r� − r���

− G�r�,r�����r� − r��� . �5�

Next we integrate over the coordinates r� and rearrange the
result to obtain

G�r��,r��� − G�r��,r��� = −
�2

2m
� d3r��G�r�,r����2G�r�,r���

− G�r�,r����2G�r�,r����

+� d3r�� d3r�1�V�r�,r�1�

��G�r�,r���G�r�1,r���

− G�r�,r���G�r�1,r����	 . �6�

The first volume integral on the right-hand side can be con-
verted to a surface integral using Green’s theorem and made
to vanish by assuming appropriate boundary conditions on S
�2�:

G�r��,r��� − G�r��,r��� = −
�2

2m



S

da�n̂ · �G�r�,r����� G�r�,r���

− G�r�,r����� G�r�,r����	

+� d3r�� d3r�1�V�r�,r�1�

��G�r�,r���G�r�1,r��� − G�r�,r���G�r�1,r����	

=� d3r�� d3r�1�V�r�,r�1��G�r�,r���G�r�1,r���

− G�r�,r���G�r�1,r����	 . �7�

Hence by imposing the following symmetry for the potential,

V�r�,r�1� = V�r�1,r�� , �8�

the integrand in the last double integral will be antisymmet-
ric in r�↔r�1 and the integral simply vanishes, thus establish-
ing the result claimed in Eq. �3�. Note that the condition in
�8� is the same sufficient condition for the orthogonality of

the eigenfunctions of the system as shown by Brown and de
Dominicis �8�.

III. APPLICATIONS

One of the most interesting applications of the reciprocity
theorem in quantum mechanics is the prediction of the “left-
right symmetry” in the transmission coefficients of a 1D po-
tential scattering problem as observed recently in an explicit
calculation �7�. It is important to distinguish this with the
time-reversal symmetry by noting that the validity of Eq. �3�
is unaffected even with complex potentials for which time-
reversal symmetry breaks down in the presence of absorption
�1,2�. On the other hand, in the case of a nonlocal interaction,
reciprocity can fail if the symmetry for the potential in Eq.
�8� is not fulfilled—even time reversal may remain valid in
the case of real potentials. We shall illustrate these features
with the following examples.

A. Local potentials

Let us consider a particle of energy E scattered by a 1D
local potential function V�x� which can be arbitrary �i.e.,
asymmetric about x=0� and complex. This problem has been
studied recently for the symmetry between the scattering of a
particle incident from either the left or right side of the po-
tential �7�. For this case, the condition in Eq. �3� is guaran-
teed to hold �2�, which leads immediately to the assurance of
the symmetry between the transmission coefficients for the
particle to be incident from either side of this arbitrary com-
plex potential. Such an intimate connection between reci-
procity and transmission symmetry has been noted previ-
ously in the literature of optics �4,9�. Note that although in
the explicit calculations of �7� plane waves are used for the
incoming and outgoing particles, the symmetry in transmis-
sion established here in our approach using reciprocity is
more general, which goes beyond the plane-wave approxi-
mations for the particles. Furthermore, our result also pre-
dicts the “left-right symmetry” for the tunneling coefficients
through a general asymmetric complex potential in case the
energy of the particle is below the “barrier height.” Al-
though, in principle, reciprocity does not imply any symme-
try for the reflection coefficients, conservation of probability
will imply such symmetry in the case of a real potential �10�.
However, when the potential is asymmetric and complex, the
asymmetric absorptions at different sides of the potential will
imply asymmetric reflections for the two cases, leaving only
transmission to remain symmetric for incidence from either
side because of the condition in Eq. �3�. We emphasize again
that time-reversal symmetry is not essential for this transmis-
sion symmetry since it actually breaks down for complex
potentials. Thus we see that the simple application of the
reciprocity principle explains all the results concluded in the
previous work �7� without any tedious explicit calculations
as carried out there.

B. Nonlocal potentials

To illustrate reciprocity in the presence of nonlocal inter-
actions, we cite the following examples.
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1. Potentials satisfying Eq. (8)

There exists a large class of nonlocal optical potentials in
nuclear physics which satisfy the symmetry condition in Eq.
�8�. A well-known example can be found from that suggested
by Perey and Buck �11�:

V�r�,r��� = U� �r� + r���
2

 exp�− � r� − r��

�
2�

�3/2�3 , �9�

where U� �r�+r���
2 � is a Saxon-Woods-type function and � a

Gaussian width parameter. Hence reciprocity symmetry can
be applied to establish the symmetry for the reaction matrix
of this potential �2�. For the 1D case, the nonlocal problem
has also been studied in the literature. For example, the po-
tential V�x ,x��=V0�x−x��2e−�x − x��2/�2

has been studied by
Baseia for the phase transition between a localized and an
extended state �12�. For a problem like this, it will be highly
nontrivial to calculate explicitly the various transmission and
reflection coefficients to demonstrate the “left-right symme-
try.” However, such symmetry is guaranteed according to our
result from reciprocity symmetry for this potential which sat-
isfies the condition in Eq. �8�.

2. Potentials violating Eq. (8)

In the literature of electron-atom scattering, asymmetric
nonlocal potential has been introduced via the polarized or-
bital method based on the Hartree-Fock formalism in which
V�r� ,r����V�r�� ,r�� in Eq. �1� �13�. Here we consider a more
common example of a velocity-dependent potential with an
electron moving in an external electromagnetic field as de-
scribed by the following Schrödinger equation:

−
�2

2m
�2� + � e2

2m
A2 −

ie�

m
A� · �� − e�� = E� , �10�

where A� and � are the vector and scalar potentials, respec-
tively. We want to show that Eq. �10� can be put into a form
as in Eq. �1� with a kernel in the nonlocal interaction which
is not necessary symmetric: i.e., V�r� ,r����V�r�� ,r��. To show
this, let us first introduce explicitly the “local part” of the
potential in Eq. �1� via a � function as follows:

� V�r�,r�����r���d3r�� =� �U�r�����r� − r��� + W�r�,r������r���d3r��

= U�r����r�� +� W�r�,r�����r���d3r��. �11�

Next, we make change of variable, r��=r�+a� , and perform a
Taylor expansion of the wave function in the nonlocal inte-
gral to obtain

� W�r�,r�����r���d3r�� =� W�r�,r� + a����r� + a��d3a�

=� W�r�,r� + a�����r�� + a� · �� ��r��

+
�a� · �� �2

2
��r�� + O�a3��d3a� . �12�

Hence, for potentials of weak nonlocality, where W�r� ,r�
+a���0 only for a� within a small neighborhood about r�,
higher-order terms in Eq. �12� can be ignored �3� and we
recover the well-known equivalence between a nonlocal and
a velocity-dependent potential �through the gradient term

�� �� p���v��� �8�:

� W�r�,r�����r���d3r�� � ��r�� � W�r�,r� + a��d3a�

+ �� ��r�� ·� W�r�,r� + a��a�d3a� .

�13�

Hence the Hamiltonian in Eq. �10� can be put into the
nonlocal form with local part

e2

2m
A2 − e� → U�r�� +� W�r�,r� + a��d3a� �14�

and nonlocal part

A� �r�� → −
m

ie�
� W�r�,r� + a��a�d3a� . �15�

Next, we show that the potential function W so defined in
Eq. �15� is not necessary symmetric in its arguments. Let x�
�r� and y� �r�+a�; then, the integral

� A� �r��d3r� �� W�r�,r� + a��a� d3a� d3r�

=� W�x�,y���y� − x��d3y� d3x� = 0 �16�

if W�x� ,y��=W�y� ,x��. But since the integral of the vector po-
tential over all space does not necessary vanish except for
special cases such as when rotational invariance is valid �14�,
we conclude that the kernel W in the integral for A� �r�� in Eq.
�15� is not necessary symmetric in its arguments. Hence,
based on the result we proved in the previous section, we
conclude that the reciprocity symmetry is not necessary valid
for the motion of a quantum particle in an external electro-
magnetic field �15�.

IV. CONCLUSION

In this work, we have established the condition for reci-
procity to be valid for quantum systems involving nonlocal
interactions, extending results previously published in the lit-
erature �2�. In particular, we have shown that reciprocity is
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not guaranteed and can fail for velocity-dependent potentials,
such as that involved in the motion of a charged particle
interacting with an external electromagnetic field. Further-
more, we have pointed out that the 1D transmission symme-
try reported in a recent publication can be trivially under-
stood by referring to reciprocity symmetry—without all
those tedious calculations as performed in Ref. �7�. It would
be of interest to find more interesting applications of this
symmetry to other problems, especially to those when non-
local potentials are involved.
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