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Addendum: ‘‘Bethe stopping-power theory for heavy-target atoms’’
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~Received 26 March 1999!

Our previous result on the correction of the Bethe stopping power theory for heavy target elements is
amended, with the application of a more consistent version of the semirelativistic Bethe sum rule worked out
recently@Phys. Rev. A57, 4994~1998!#. This correction is found to be significant for high-Z target atoms and
relatively high-energy incident particles.@S1050-2947~99!01409-2#

PACS number~s!: 32.70.Cs, 34.90.1q
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In spite of its applicability to relativistic incident particles
it is well known that the Bethe stopping power theory
limited to nonrelativistic target elements with eigenstates
isfying the Schro¨dinger equation for many-electron atom
This limitation arises mainly from the derivation of the orig
nal Bethe theory, which has applied the various nonrela
istic sum rules~the Bethe and TRK sum rules! @1#. For heavy
elements, one would expect a nontrivial correction to
Bethe theory due to the fast motion of the inner shell el
trons. This problem was first pointed out by Fano in 1964
a review of the outstanding unsolved problems in stopp
power theory which existed at that time@2#. Since then, to
the knowledge of the author, not much effort has been
voted to the study of this problem until recently@3–5#. As
also pointed out by Fano in the same review@2#, the diffi-
culty in solving this problem lies right in the possible gene
alization of the various sum rules to the relativistic doma

Indeed, the relativistic generalization of various atom
sum rules has been an intriguing problem over the pas
years since the first work on the generalization of the T
sum rule@6#. It has been studied extensively in the literatu
using both the single-particle and many-particle~field-
theoretic! approaches@7–11#. In a previous attempt, we hav
used a semirelativistic single-particle approach to obtain
leading relativistic correction terms to the Bethe sum rule@9#
and applied the results to derive corrections to the Be
stopping power theory for heavy target atoms@3#. Unfortu-
nately, it was pointed out later@10# that in most of these
previous works based on the same approach@6,7,9,11#, there
exists an inconsistency in that the transformation of the
erator was not included in the Foldy-Wouthuysen transf
mation performed, which leads to the semirelativistic corr
tion terms for the sum rules. Very recently@12#, this error
has been corrected and it was found that while the prev
corrections to the TRK sum rule were not affected by t
error, those for the Bethe sum rule have to be modified.

It is the purpose of this paper to apply these latest c
rected results for the semirelativistic sum rules to amend
previous work published in the correction to the Bethe st
ping power theory@3#. As before, we shall limit ourselves t
the single-particle case and apply the results to a real a
by adopting the independent-particle, local-potential desc
tion. Though this seems to be an oversimplified picture
does have some success in the literature in the analys
x-ray scattering data using the TRK sum rule@13#. In any
case, our preliminary attempt will at least give a first es
PRA 601050-2947/99/60~3!/2562~3!/$15.00
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mate to this effect~due to the relativistic nature of the atom
electrons! as Fano@2# and Bichsel@4# had urged people to
study in the previous literature.

We begin by limiting ourselves to the case with nonre
tivistic incident particles. In this case, the stopping pow
obtained from the Bethe theory leads to@1#
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wherezeandZe are, respectively, the charge of the incide
particle and the target atom,v the velocity of the incident
particle,m the mass of the electron,N the number density,
and I the mean excitation energy of the target atom. T
integration limits for Q ([\2q2/2m) are given byQmax
52mv2 and Qmin5I2/2mv2, respectively@14#. In deriving
Eq. ~1!, we have employed the Bethe sum rule over tar
atomic states in the form@1#

S1~qW !5(
n

U K nU(
i 51

Z

eiqW •rW iU0L U2

~En2E0!5Z
\2q2

2m
[ZQ.

~2!

Although the Bethe sum in Eq.~2! is often defined with the
factor (\2q2/2m) moved to the left so as to obtain a sum
generalized oscillator strength to depend only on the to
charge of the atom, we retain the form as in the above
more convenient application to our present calculation
stopping power to include the correction terms~see below!.
Note that Eq.~2! is correct only for nonrelativistic targe
atoms, sinceun& in the summation are taken to be eigensta
of the Schro¨dinger equation for the atoms, and completen
has been applied in its derivation. The generalization of
~2! to account for the relativistic nature of the atomic ele
trons is nontrivial as already first pointed out by Fano@2#.

In our previous works@3,9#, we have adopted a semirela
tivistic single-particle approach to obtain leading-order c
rections to Eq.~2!, and hence to Eq.~1!, by applying the
Foldy-Wouthuysen~FW! transformation to the Dirac Hamil
2562 ©1999 The American Physical Society
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TABLE I. Comparison of the corrections to the Bethe theory atKp52 MeV.

Target
Element
~Z! I ~eV!a

uEtotu
~MeV!b DR C/Zc zL1

c zL2
c

Al ~13! 164 6.631023 9.731023 2.331021 1.131021 2.231022

Cu ~29! 317 4.531022 1.831022 2.831021 8.831022 1.731022

Ag ~47! 469 1.531021 2.731022 2.931021 1.131021 2.131022

Au ~79! 770 5.231021 4.131022 2.231021 9.831022 1.831022

aReference@16#.
bReference@17#.
cReference@15#.
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tonian. It was later pointed out by Aucar, Oddershede,
Sabin@10# that in most of these previous FW approache
deriving relativistic sum rules@6,7,9,11#, there lies an incon
sistency in that only the Hamiltonian but not the ‘‘multipo
operator’’ ~i.e., eiqW •rW in our case! was subjected to the FW
transformation.

Recently@12#, we have fixed this inconsistency and ha
obtained a more correct version for the semirelativistic
rections to Eq.~2!. For a one-particle system with the grou
state being described by a spherical symmetric hydrog
wave function, the Bethe sum rule toO(v2/c2) of the atomic
electron can be obtained as

S1~qW !5
\2q2

2m
2

5\4q2Z2

12m3c2a22
\4q4

4m3c2 , ~3!

where a is the Bohr radius. The only correction from th
more consistent treatment in this case occurs in theq4 term,
which is twice as large compared to the previous result@3,9#
where the operatoreiqW •rW was not transformed. To apply th
result to the case of a many-electron atom, we follow
independent-particle, local-potential approach of Smith@13#,
which has been found to be reasonable in the analys
anomalous x-ray scattering data. Adopting this picture
with the application of the virial theorem@3,13#, we then
obtain a corrected form of Eq.~2! to O(v2/c2) of the atomic
electrons in the form

S1~qW !5(
n
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where Etot(,0) is the ground-state binding energy of
atom. Applying this result to the calculation of stopp
power in Eq.~1!, we finally obtain the semirelativistic co
rection terms for heavy target elements to the Bethe no
ativistic formula as follows:
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which leads to a correction of a factor 2 for the last te
compared with previous result@3#, where the more consisten
sum rule Eq.~4! was not applied. To put these correctio
terms in the right perspective, let us rewrite the Bethe f
mula to incorporate several other well-known corrections
gether with those as revealed in Eq.~5! in the following form
@15,16#:

2S dE

dxD5
4pz2e4

mv2 NZF l nS 2mv2

I D
2C/Z1zL11z2L22DRG , ~6!

where2C/Z is the shell correction,zL1 the Barkas effect,
and z2L2 the Bloch correction, respectively.DR is the
present correction term given by

DR5 5
3 l nS 2mv2

I D uEtotu
Zmc2 1

~Qmax2Qmin!

2mc2 . ~7!

Note that although the previous result did not derive the
term in Eq.~7! correctly, it was nevertheless neglected in t
previous numerical computation@3#. Here we illustrate the
effect of this corrected formula Eq.~7! with both terms in-
cluded. New numerical results~together with a comparison
with other corrections! are obtained as shown in Tables I an
II, where we have assumed the incident particle to be a p
ton with energy equal toKp . From these results one ca
draw the following conclusions:~i! the present correction is
important for large-Z target elements and can become co
parable to the Barkas and Bloch terms for these eleme
and ~ii ! for the same target element, the present correc

TABLE II. DR as a function of incident proton energy.
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becomes more significant for incident particles of higher
ergy. To access more accurately the effect observed in~ii !,
one has to generalize the present treatment to the case
relativistic incident particle—thus anticipating corrections
the relativistic Bethe formula@1#. This turns out to be a
s
,

uc
-

f a

very challenging problem and we hope future endeavors
help to settle this issue.

We thank S. M. Cohen for a useful contribution to th
sum-rule work, and the Faculty Development Grant of Po
land State University for partial support of this work.
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