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The problem of optical reciprocity in the long wavelength limit is considered in terms of the
symmetry for the scalar Green’s function under the Neumann boundary conditions, for
materials with nonlocal and anisotropic dielectric responses. This extends the previous work in
the literature which were limited either to the Dirichlet conditions or to cases of perfect
conductor and local dielectric response. Application of this symmetry principle to the analysis
of surface-enhanced spectroscopy for a molecule near a metallic nanoparticle is demonstrated,
accounting for the nonlocal response of the particle.
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1. Introduction

In optics or in any phenomenon involving wave propagation,
the reciprocity symmetry refers to the equivalence of the signal
received by two separated parties when their roles as source
and observer are interchanged [1]. Since its first introduction
by Lorentz more than a century ago [2], this symmetry has
found interesting applications in many areas in optics ranging
from device design to the analysis of spectroscopy [1]. Hence
the understanding of the validity of the reciprocity symmetry
is of significance both for its fundamental importance and its
various potential applications.

As can be conceived, although such symmetry is quite
obvious in free space, it becomes highly nontrivial in the
presence of objects with arbitrary dielectric responses in
the environment. For example, in the study of optics
with metallic nanostructures, we expect the dominance of
nonlocal dielectric response due to the large surface-to-volume
ratio for these particles. Moreover, the optical interaction
dynamics here can well be described in the long wavelength
approximation where electrostatics can be applied. Hence
nonlocal electrostatics [3] is particularly relevant in this field
of nano-optics; and it is of interest to note that recent reports

have highlighted the uncertainty of the reciprocity principle in
the presence of nonlocal dielectric response [4]. Note that,
in spite of the apparent small magnitude of the wavevector
k in the long wavelength limit which seems to imply the
insignificance of the nonlocal effects, such effects are still
very important for nanoparticles of sub-wavelength sizes.
The reason is that the nonlocal response in this case arises
mainly from the rapid variation of the electric field across the
boundary (i.e. the surface) of the particle (rather than over a
wavelength) and hence the relative dominance of the surface
for these nanoparticles ensures the prominent significance
of such nonlocal effects. In addition, the long wavelength
approximation refers to the incident wavelength being much
greater than the size of the particle, leaving the possibility of
the wavelength inside the particle being not necessarily much
larger than the characteristic dimension over which nonlocal
response is significant in the medium of the particle. Hence it
is justified to consider a k-dependent dielectric function in the
electrostatic limit for these nanoparticles.

Mathematically, the Lorentz reciprocity principle can
most conveniently be expressed through the symmetry of the
Green’s function (or the corresponding symmetry in the Green
dyadic in electrodynamics) in the form G(⇀r, ⇀r ′) = G(⇀r ′, ⇀r),
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subjected to various boundary conditions. In a previous
work [5], we have established this reciprocity symmetry within
nonlocal electrostatics with specification to (only) the Dirichlet
boundary condition.

In the mathematical literature, it is well known that the
symmetry property for G(⇀r, ⇀r ′) in its arguments in the case of
Neumann boundary conditions is rather nontrivial due to the
constraint from Gauss’s law [6]. Unlike the case of Dirichlet
boundary conditions, where such symmetry can be established
as a direct consequence of the Green’s theorem [5–7], a special
symmetrization process must be followed in order to establish
the same in the case of the Neumann conditions [8]. However,
the previous treatments in the literature were all limited to
either perfectly conducting media [6, 8] or finitely conducting
media with local dielectric response ε(ω) [7].

It is the purpose of our present work to complete our
previous proof in [5] which was limited to the case of Dirichlet
boundary conditions, to establish the reciprocity symmetry
for the scalar Green’s function in nonlocal electrostatics
under the Neumann conditions, where we shall also allow
the dielectric response to be anisotropic. As recently
demonstrated, new metamaterials made from composites of
these metallic nanoparticles can have very strong anisotropic
optical responses [9]. We shall start with a brief review
of our previous work for the Dirichlet condition and then
follow the approach of Kim and Jackson [8] to extend the
results to the case with the Neumann condition, arriving at the
establishment of the Green function (reciprocity) symmetry in
this case for a situation with a much more realistic dielectric
response. Following this, we shall illustrate the usefulness of
our result by applying it to the analysis of surface-enhanced
Raman scattering (SERS) from a molecule adsorbed at a
metallic nanoparticle by calculating both the local field and the
radiation enhancement factors taking into account the nonlocal
response of the metal particle.

2. Mathematical formulation

As in our previous work [5], we consider the Green’s function
satisfying the following Poisson equation in a medium with a
linear, anisotropic and nonlocal dielectric response:
∫

d3⇀r1
⇀∇ · [↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,

⇀r ′)] = −4πδ(⇀r − ⇀r ′). (1)

We want to establish the conditions under which G will be
symmetric in its arguments when the potentials are subjected to
the Neumann condition. In the case of the Dirichlet boundary
condition, we considered in [5] another similar equation:
∫

d3⇀r1
⇀∇ · [↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,

⇀r ′′)] = −4πδ(⇀r−⇀r ′′), (2)

and obtain the following result by manipulating equations (1)
and (2) and imposing the condition εi j(

⇀r, ⇀r1) = ε j i(
⇀r1,

⇀r):

− 4πG(⇀r ′′, ⇀r ′) + 4πG(⇀r ′, ⇀r ′′)

=
∫

S
da

∫
d3⇀r1 {n̂ · [G(⇀r, ⇀r ′)↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,

⇀r ′′)

− G(⇀r, ⇀r ′′)↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,
⇀r ′)]}. (3)

While the surface integral on the RHS of (3) can be made
vanishing by applying the Dirichlet condition G = 0 at the
boundary (thus leading to the symmetry of G), similar steps
cannot be taken in the case of the Neumann condition because
of the well-known fact that it is incompatible with Gauss’s law
by setting

⇀∇G = 0 on the boundary [6, 8]. We thus follow the
approach of Kim and Jackson [8] to establish the symmetry of
G in its arguments by redefining a new scalar Green function.
For clarity, we shall present our derivations in two steps.
Case (i). Medium with anisotropic local response.

Let us first consider only the anisotropic response starting
with the following Poisson equations:

⇀∇ · [ ↔
ε(⇀r) · ⇀∇G(⇀r, ⇀r ′) ] = −4πδ(⇀r − ⇀r ′)

⇀∇ · [ ↔
ε(⇀r) · ⇀∇G(⇀r, ⇀r ′′) ] = −4πδ(⇀r − ⇀r ′′).

(4)

Using the following identity which is a slight generaliza-
tion of the one found in [7] with λi j = λ j i [5]:

�
⇀∇·(↔λ·⇀∇	)−	

⇀∇·(↔λ·⇀∇�) = ⇀∇·(�↔
λ·⇀∇	−	

↔
λ·⇀∇�), (5)

we obtain the following result similar to (3) for the local case
(with εi j = ε j i ):

− 4πG(⇀r ′′, ⇀r ′) + 4πG(⇀r ′, ⇀r ′′) =
∫

S
n̂ · [G(⇀r, ⇀r ′)↔ε(⇀r)

·⇀∇G(⇀r, ⇀r ′′) − G(⇀r, ⇀r ′′)↔ε(⇀r) · ⇀∇G(⇀r, ⇀r ′)] da. (6)

Now let us generalize the results in Kim and Jackson [8]
to introduce the following Neumann boundary conditions for
an anisotropic local dielectric medium:

n̂ · [ ↔
ε(⇀r) · ⇀∇G(⇀r, ⇀r ′) ]|⇀

r ∈S
= −4π

A

n̂ · [ ↔
ε(⇀r) · ⇀∇G(⇀r, ⇀r ′′) ]|⇀

r ∈S
= −4π

A

(7)

where A is the area of the closed boundary S. Equation (6)
then becomes

− 4πG(⇀r ′′, ⇀r ′) + 4πG(⇀r ′, ⇀r ′′) = −4π

A

∮
S

G(⇀r, ⇀r ′′) da

+ 4π

A

∮
S

G(⇀r, ⇀r ′) da. (8)

We can then follow [8] to define the following sym-
metrized Green function satisfying the Neumann conditions:

GS(⇀r ′′, ⇀r ′) = G(⇀r ′′, ⇀r ′) − 1

A

∮
S

G(⇀r, ⇀r ′) da, (9)

which can be shown explicitly to lead to the same solution for
the potential with no contributions from the additional surface
term (see the appendix).
Case (ii). Medium with anisotropic nonlocal response

To extend the above proof to the case with nonlocal
dielectric response, we generalize equation (4) as follows:

∫
d3⇀r1

⇀∇ · [ ↔
ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,

⇀r ′) ] = −4πδ(⇀r − ⇀r ′)
∫

d3⇀r1
⇀∇ · [↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,

⇀r ′′)] = −4πδ(⇀r − ⇀r ′′).

(10)
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Using the following generalized result of the identity in
equation (5):∫

d3⇀r
∫

d3⇀r1{�(⇀r)
⇀∇ · [↔λ(⇀r, ⇀r1) · ⇀∇1	(⇀r1)]

− 	(⇀r)
⇀∇ · [↔λ(⇀r, ⇀r1) · ⇀∇1�(⇀r1)]}

=
∫

S
da

∫
d3⇀r1 {n̂ · [�(⇀r)

↔
λ(⇀r, ⇀r1) · ⇀∇1	(⇀r1)

− 	(⇀r)
↔
λ(⇀r, ⇀r1) · ⇀∇1�(⇀r1)]}. (11)

under the condition λi j (
⇀r, ⇀r ′) = λ j i (

⇀r ′, ⇀r), we derive the
following from equation (10):

− 4πG(⇀r ′′, ⇀r ′) + 4πG(⇀r ′, ⇀r ′′) =
∫

S
da

∫
d3⇀r1

× {n̂ · [G(⇀r, ⇀r ′)↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,
⇀r ′′)

− G(⇀r, ⇀r ′′)↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,
⇀r ′)]}. (12)

Again, introducing the following generalized Neumann
conditions:

n̂ ·
∫

d3⇀r1 [↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,
⇀r ′)]|⇀

r∈S
= −4π

A

n̂ ·
∫

d3⇀r1 [↔ε(⇀r, ⇀r1) · ⇀∇1G(⇀r1,
⇀r ′′)]|⇀

r∈S
= −4π

A
,

(13)

the Green function can be symmetrized in the form as in
equation (9) under the following symmetric condition for the
dielectric tensor: εi j(

⇀r, ⇀r ′) = ε j i(
⇀r ′, ⇀r). Note further that,

just like the local case, this symmetrized Green function can
be shown to lead to the same solution for the potential (see the
appendix).

3. An example

Here we give an example to illustrate the above symmetrization
process for a metal sphere (radius a) with an isotropic (for
simplicity) but nonlocal dielectric response ε(k, ω). For
the case of the Dirichlet condition, we have previously [5]
applied the model of the nonlocal polarizability by Fuchs and
Claro [10] to obtain the following symmetric Green function:

G(⇀r, ⇀r ′) = 4π
∑

,m

(
1

2
 + 1

)[
r 

<

r 
+1
>

− αNL



(rr ′)
+1

]

× Y ∗

m(θ, φ)Y
m(θ, φ), (14)

where (r<, r>) denote the smaller or greater of (r, r ′) and [10]

αNL

 = ξ
 − 1

ξ
 + (
 + 1)/

a2
+1, (15)

with the ‘effective dielectric function’ given by

ξ
(ω) =
[

2

π
(2
 + 1)a

∫ ∞

0

j 2

 (ka)

ε(k, ω)
dk

]−1

. (16)

For the same problem under the Neumann condition,
we first obtain the following asymmetric Green function by
solving the corresponding boundary value problem:

G(⇀r, ⇀r ′) = 1

r>

− 1

r
+ 4π

∞∑

=1


∑
m=−


(
1

2
 + 1

)

×
[

r 

<

r 
+1
>

+ 



 + 1

αNL



(rr ′)
+1

]
Y ∗


m(θ ′, φ′)Y
m(θ, φ). (17)

To symmetrize equation (17), we apply equation (9) to
calculate the surface term using only the first two terms in (17)
and obtain the following:

1

A

∮
S

G(⇀r, ⇀r ′) da = 1

r ′ − 1

a
. (18)

We thus obtain the final symmetrized Neumann Green’s
function for the region outside a nonlocal metal sphere in the
following form:

GS(⇀r, ⇀r ′) =
[

1

r>

−
(

1

r
+ 1

r ′

)
+ 1

a

]

+ 4π

∞∑

=1


∑
m=−


(
1

2
 + 1

)[
r 

<

r 
+1
>

+ 



 + 1

αNL



(rr ′)
+1

]

× Y ∗

m(θ ′, φ′)Y
m(θ, φ). (19)

4. Physical application

To illustrate the usefulness of the results we have established,
we demonstrate in this section the application of the reciprocity
symmetry in the form of the Lorentz lemma [2] for two dipolar
sources (in obvious notations):

⇀p1 · ⇀
E2 = ⇀p2 · ⇀

E1, (20)

to the calculation of the various surface-enhanced Raman
scattering (SERS) enhancement factors from a molecule
adsorbed on a metallic nanoparticle following the recent work
of Le Ru and Etchegoin [11]. Note that the symmetry in
the Green function and the Lorentz lemma are two equivalent
statements of the reciprocity symmetry for both the Dirichlet
and Neumann boundary conditions [12]. Hence our above
result together with our previous work [5] have established the
general validity of equation (20) for nonlocal optics in the long
wavelength limit.

As pointed out by Le Ru and Etchegoin, in any SERS
analysis, one must distinguish carefully between the local field
and the radiation enhancement since ‘. . . the induced molecular
Raman dipole is not necessarily aligned parallel to the electric
field of the pump beam . . .’ [11]. Based on this distinction, it
was proposed in [11] that the more correct SERS enhancement
ratio should be a product of these two enhancement factors:
MSERS ∼ MLoc · MRad with the latter enhancement calculable
from an application of equation (20). This formulation has
then corrected a conventional misconception in the literature
of SERS theory with models exclusively based on the fourth
power dependence of the local field.

In figure 1, we have essentially reproduced the key
features in the corresponding figure 1 of [11], but for a much
smaller metal sphere (radius = 5 nm) so that nonlocal effects
are more pronounced. Note that in this figure, equation (15)
has been used to calculate the various quantities represented
by solid lines and we note that, with the nonlocal response
of the metal particle, the sharp differences between MLoc and
MRad remain for the tangentially oriented dipoles, as was
first observed in [11]. The radially oriented dipole, however,
gives very similar results for both the enhancement factors in
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Figure 1. Spectrum of the local field and radiation enhancement
factors, with the latter plotted for both radial and tangential
molecular dipoles, according to both the local (dashed lines) and
nonlocal (solid lines) SERS models. The molecular dipole is located
at a distance of 1 nm from a silver nanosphere of 5 nm radius.

both our nonlocal calculation and the local one as reported
in [11]. Note that the nonlocal effects are most significant in
the vicinity of the plasmon resonance frequency, with the peaks
slightly blueshifted due mainly to the semiclassical infinite
barrier (SCIB) approximation adopted in this model [10].

5. Conclusion

In this work, we have demonstrated that the symmetrization
process for the Neumann Green’s function first introduced by
Kim and Jackson [8] can indeed be generalized to the more
general case of electrostatics with nonlocal and anisotropic
response. This, together with our previous work [5], completes
the proof of the reciprocity principle for nonlocal optics in the
long wavelength limit. We have also given an example with
reference to an isotropic nonlocal metal sphere to see how
the construction of the symmetrized Green’s function can be
achieved. The result thus established should be of relevance
to the study of the nano-optics involving metamaterials which
are often highly anisotropic and nonlocal in their optical
response. As an illustration, we have shown how the previous
SERS analysis based on the reciprocity principle (Lorentz
lemma) [11] can be performed within the context of nonlocal
optics in the long wavelength limit.

In closing, it is of interest to note that the sharp distinction
in the degree of complication between the formulations for
reciprocity symmetry involving the two boundary conditions
(Dirichlet versus Neumann) occurs only in electrostatics but
not in electrodynamics. In the latter, the two boundary value
problems can be treated more or less on an equal footing since
the boundary conditions apply directly to the fields which the
Green dyadics represent [12, 13].
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Appendix

Here we demonstrate explicitly that the newly constructed
symmetrized Green functions in equation (9) yield the same
solution for the potential with no contribution from the
additional surface term. We shall only give details for the more
complicated case with anisotropic nonlocal response.

To achieve this, we start with equation (11) and set � =
�(⇀r), 	(⇀r) = GS(⇀r, ⇀r ′) and

↔
λ(⇀r, ⇀r1) = ↔

ε(⇀r, ⇀r1) to obtain∮
S

da
∫

d3⇀r1 {n̂ · [�(⇀r)
↔
ε(⇀r, ⇀r1) · ⇀∇1GS(⇀r1,

⇀r ′)

− GS(⇀r, ⇀r ′)↔ε(⇀r, ⇀r1) · ⇀∇1�(⇀r1)]}
=

∫
d3⇀r

∫
d3⇀r1 {�(⇀r)

⇀∇ · [↔ε(⇀r, ⇀r1) · ⇀∇1GS(⇀r1,
⇀r ′)]

− GS(⇀r, ⇀r ′)⇀∇ · [↔ε(⇀r, ⇀r1) · ⇀∇1�(⇀r1)]}. (A.1)

With (9) into the GS on the RHS of (A.1) and using
equation (10) together with the Poisson equation for �, we
obtain the following result:

�(⇀r ′) = 1

A

∮
S
�(⇀r) da

+ 1

4π

∮
S

da
∫

d3⇀r1G(⇀r, ⇀r ′)n̂ · [↔ε(⇀r, ⇀r1) · ⇀∇1�(⇀r1)]

+
∫

ρ(⇀r)G(⇀r, ⇀r ′) d3⇀r + F(⇀r ′)
{∫

ρ(⇀r)d3⇀r

+ 1

4π

∮
S

da
∫

d3⇀r1n̂ · [↔ε(⇀r, ⇀r1) · ⇀∇1�(⇀r1)]
}

= 1

A

∮
S
�(⇀r)da + 1

4π

∮
S

da
∫

d3⇀r1G(⇀r, ⇀r ′)n̂

· [↔ε(⇀r, ⇀r1) · ⇀∇1�(⇀r1)] +
∫

ρ(⇀r)G(⇀r, ⇀r ′) d3⇀r (A.2)

where the surface term F(⇀r ′) = − 1
A

∮
S G(	r , 	r ′) da has no

contribution since the term {· · ·} in (A.2) vanishes based on
the nonlocal version of the Gauss law for � (cf equation (10)).
Thus the symmetrized GS leads to the same potential as the
one obtained from using G.
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