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Clarifications on the optical reciprocity theorem are provided by explicitly proving
the equivalence between the Lorentz lemma and the symmetry of the Green dyadic
for the electromagnetic wave equation. This is achieved by explicitly including the
surface term in the former so that different boundary conditions can be considered
as required in the formulation of the latter. In addition, we shall also extend the
theorem to include anisotropic magnetic materials with a nonlocal response, lead-
ing to a result which will be useful for the study of materials possessing such
properties such as certain types of metamaterials. © 2009 American Institute of
Physics. [DOIL: 10.1063/1.3162201]

I. INTRODUCTION

Reciprocity in wave propagation is an important concept in many fields of physics such as
classical electrodynamics, optics, and quantum mechanics.? In general, this refers to the symme-
try of the propagation under the interchange of the source and the observer. Interesting applica-
tions of this symmetry have been found in the theoretical analysis of many problems in optics and
spectros<:0py.1’3’4

Though the reciprocity symmetry in optics or electrodynamics can be formulated mathemati-
cally in several different ways,1 two most common approaches will be in terms of the Lorentz
lemma’ (in obvious notation):

le E,d’x= f J,*E,d’x, (1)
and the symmetry for the (electric) Green dyadic associated with the vector wave equation:(’

[G.(r,r)]" =G, (x"r). (2)

While the equivalence between (1) and (2) is obvious in the case when infinite free space is
considered through the relation between the field and the source (in Gaussian units):

E(r)= %wf G,(r,r') s J(rd’x', (3)

it is not as obvious when boundaries of finite extent and real materials are involved where the
validity of (2) depends crucially on the types of boundary conditions and the types of
materials,"” ' whereas such dependences (the boundary conditions, in particular) are not as
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clearly revealed in (1). To our knowledge, this equivalence in the situation with the most general
boundary conditions has not been studied previously in the literature.

It is the purpose of this work to provide an explicit proof of the equivalence of the above two
versions for the reciprocity principle, with an account for the specific boundary conditions (e.g.,
Dirichlet and Neumann conditions) involved. In addition, we shall also generalize our previous
work on the conditions for the validity of reciprocity in the presence of nonlocal anisotropic
medium to include magnetic materials.

In the literature, the validity of (1) and (2) has been established for various optical media
including both electric and magnetic materials characterized by linear, local, and both isotropic
and anisotropic responses.”’12 However, there has been some controversy on its validity in the
presence of nonlocal dielectric responses.l’7 Recently we have clarified this by considering the
following general form of linear response:

D(r):Js(r,r’)-E(r’)d3x’, (4)

and have shown that reciprocity will break down unless the dielectric tensor satisfies the following
symmetry property:8

e(r.r’) =g;(r'.r). (5)

In the present work, we are motivated to generalize these results to include the case with a
nonlocal anisotropic magnetic permeability into the theory on account of the recent explosion in
the research with metamaterials. The so-called double negative left-handed material (with both
permittivity and permeability negative) does not have to be anisotropic necessarily; a broader class
of artificial (hence “meta-"") materials contains in general both electric and magnetic properties and
often fabricated with a structure which is highly anisotropic and inhomogeneous, and hence
nonlocal effects are signiﬁcamt.13 Thus besides Eq. (4), we should also consider the following
constitutive relation:

H(r) = f w i) o B(r")dx’, (6)

for our study of the validity of (2). In the literature, we have been able to locate only two previous
works published recently which studied the reciprocity of chiral’ and left-handed'? media incor-
porating the magnetic permeability, but these have considered only local response of the media.
Here we shall establish in the following the additional condition

mij(r,r’) = pi(r',r) (7)

for reciprocity symmetry to hold in a linear anisotropic nonlocal metamaterial of this kind using
only classical electrodynamics, in contrast to the quantum mechanical approach adopted in Ref.
12. Although the result in (7) is somewhat expected, we shall see that the mathematical procedures
involved are highly nontrivial, and new mathematical identities involving dyadics have to be
established along the way.

Il. EQUIVALENCE BETWEEN LORENTZ LEMMA AND GREEN DYADIC SYMMETRY

To demonstrate the equivalence between Lorentz lemma and the symmetry properties of the
Green dyadic, let us start with a slightly more general form of Eq. (1) by retaining the surface

5
terms:
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4
gJ(J]'Ez—Jz'E])d%C:%ﬂ'(EIXHz—EZXHI)da. (8)
S

Note that Eq. (8) is a direct consequence from Maxwell’s equations, and the surface terms are kept
to allow for the explicit discussion of various types of boundary conditions in the presence of finite
boundaries and nontrivial dielectric materials. Although these surface terms are often
discarded,l’zl’s’7 they have also been considered in some studies in the literature,lzl’]5 and here we
must keep them to demonstrate the exact equivalence between the two versions of reciprocity
symmetry.

To demonstrate the equivalence between (2) and (8), let us consider two point current sources
due to electric dipole (with moment p) as follows:

Ji=—iwpdr-1")e, J,=—iopdr-r)e;, 9)

and the electric fields at each of their locations are then given in terms of the column component
of the dyadic as follows:

2 2

E = ﬂ(;ei(r’r”)’ E2=ﬂGej(r’r,)~ (10)
c c

Substituting (9) and (10) into (8) leads to the following result:

4miwp

o L6 G, ) — €2 G, (r'.x")] = sg n+[G,(r,r") X Hy(r) - G,(r,r’") X H,(r)]da.
s

(11

Hence using Maxwell’s equation and the vector triple product, we obtain

4miowp

{G.(r".x")]; - [G.(r".x") ]}

c
= fﬁ {Hy(r) * [n X G,;(r,x")] - H(r) * [n X G,(r,r") ]}da
s
= gjg {(™"+ VX Ey(r) ¢ [0 X Gi(r,x")] = (7"« V X E|(r)) * [0 X G(x,x")T}da
tJs

= %§ {(M_l VX Gej(r’r,)) ° [n X Gei(r5r”)] - (M_l *V X Gei(rvr”)) ° [l'l X Gej(r’r,)]}da'
N

(12)

Hence we have

4
{{[Ge(r",rn]ijei —[G(x' ¥ ] e}

= % {[n X Ge(l‘,l'")]T' (M_l ° V X Gej(r’r,)) - [I“_l ° V X Ge(r7r”)]T. [n X Gej(r’r,)]}daa
S

(13)

and we therefore obtain in component form:
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477 4 ! ! 1"
7{[Ge(r ,I )]ijeiej_ [G.(r',r )]jieiej}

_ gﬁ I X G (' ¥ X Gulror) = [+ ¥ X Gulrot") T+ [n X G(r.x") .
S

(14)

Equation (14) in dyadic form will yield the following result:
4ar
G ) - [G,x 1]

_ gﬁ I X Gur) T s (' ¥ X Gulrsr)) [+ ¥ X Golrr") ]+ [n X G (r.x")}da.
S

(15)
By imposing on S either the dyadic Dirichlet condition:°®
n X G,(r,r')=0, (16)
or the dyadic Neumann condition:*'®
nX[p eV XG,rr)]=0, (17)

the surface integral in Eq. (15) can be made to vanish by applying the dyadic triple product in the
Neumann case.” Hence under either one of these boundary conditions, Eq. (15) will lead to the
symmetry property of the Green dyadic in (2).

lll. EXTENSION TO ANISOTROPIC METAMATERIALS

Having established the necessary equivalence, we shall next focus on the dyadic symmetry
equation (2) and examine its validity in the presence of an anisotropic metamaterial with nonlocal
electric and magnetic properties. We shall present our results in two steps to establish the condi-
tions leading to the symmetry of the Green dyadic of the problem. As explained above, we shall
limit to linear anisotropic and nonlocal responsesl7 of the materials and to the case with either
Dirichlet or Neumann boundary conditions.

A. Anisotropic local response

First we consider only local response which is simpler and sets the framework for the treat-
ment of the more complicated nonlocal case. Thus we assume the following constitutive relations:
D(r)=e(r)*E(r) and B(r)=u(r)*H(r). For fields with harmonic time dependence (~e~'®'), we
have

w2

VX ul(r)eV XE(r) - ?s(r) *E(r)= iwt—;TJ(r), (18)

which implies the following differential equation for the electric dyadic of the problem:

(1)2

VX ul(r)eVXG,(rr')- ?e(r) *G,(rr')= 477715(r -r'), (19)

where I and &(r—r’) denote the unit dyadic and Dirac delta function, respectively.
Using the following dyadic-dyadic formula which is valid under the condition A;;=\; (see the
Appendix):
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J{[V XNeVXB]TeA-BTeV XAV X A}d’x
=3€{[an]T-(A-VxA)—[x-VxB]T-nxA}da, (20)
s
we obtain the following by setting A=G,(r,r’), B=G,(r,r") and A=u":
J{[V X eV XG,(rx")] G, (r,r') - [G,(r,r")] « VX u' eV X G,(r,r')}dx

= % X G,(r,x")] s (u'eVXG,(rr") [V XG,(rr")] *nXG,(rr')lda.
s

21

Hence from either the dyadic Dirichlet condition Eq. (16) or the dyadic Neumann condition Eq.
(17), Eq. (21) leads to

f VX u ! eVXG,(rr")] G, (r,x")-[G,(r,x")] e VX u eV XG,r,r)}dx=0.

(22)
Substituting (19) into (22), we have
wz m1T 4m " " 3
?[s(r) G, (r,x")]" + TIé(r— r'") (G, (r,v")d’x
m1T wz ' 477 ! 3
— | [G.(xr,x")]" ¢y —e(r) *G,(r,x") + —I8r—1') (d’x=0, (23)
c c
which implies the symmetry of the Green dyadic:
[G.(r'.1")] =G, (x",1"), (24)

provided that the dielectric tensor is symmetric: €;;=€ ;. We remark that the validity of Eq. (20)
has already required pm;;=p;; as explained above. It is worth to note that these symmetry condi-
tions so derived are in general not satisfied in the presence of dissipation in the materials. For a
dissipative anisotropic medium, the dielectric and permeability tensors are Hermitian and complex
which therefore are in general asymmetric. In such case, the symmetry of the Green dyadics are
not guaranteed.18

B. Anisotropic nonlocal response

We now consider both electric and magnetic nonlocal responses as follows:

D(r)=fe(r,r’)°E(r’)d3x', (25)

H(r) = f pwlir,r) o B(r')dx', (26)

and then generalize the dyadic differential equation in (19) to
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2
4

V X f pl(rr) oV, X G,(r,r')d’x; - w_zf e(r,r)) *G,(r;,r')d’x; = —7TI§(1'— r').
c c

(27)

Using the corresponding generalization of (20) also under the condition A;(r,r")=N;(r",r)
(see the Appendix):

Jd3xJ Ex [V X Nr,r)) eV, XB(r))] *A(r) - [B(r)]"*V X A(r,r;) * V, X A(r))}

= jg daf dx{[n X B(r)]"«[N(r,r))  V; X A(r)] - [A(r,r) « V; X B(r)] e n X A(r)},
s

(28)
we obtain by setting
A(l‘) = Ge(r’r’) B(r) — Ge(r,r”) e
{A(r1)=Ge(r1,r’) {B(H)IGE(I‘I,I‘”) and A=p (29)
the following:
fd%cj d3x1{[v X Ilv_l(l‘,l'l) *V, X Ge(l‘l,l‘")]T' G,(r,r")}
- f d3xf d3xl{[Ge(r,r”)]T-V X [.L_l(r,rl) . Vl X Ge(rl’r,)}
=§ daJ d3XI{[n X Ge(r’r")]T. [M_l(r’rl) VX Ge(l'l,l")]}
S
_§ daf d3xl{[ﬂ—l(r,r1) ° Vl X Ge(rl’rrr)]T.n X Ge(r,r’)}. (30)
S

Again, with either the dyadic Dirichlet or the dyadic Neumann condition,l7 we obtain from (30):

Jd%J Ex{[V X ' (6r) « Vi X G, (r,0)] G (r,r")}

- J d3xf Ex{[G,(x,x")] eV X u(r,r))*V, X G,(r;,r')} =0. (31)

Substituting (27) into (31), we have

2 4 T
f {%J s(r’rl).Ge(rl»rH)aBXI +_7TI5(1'—1'”)} °Ge(r,r’)d3x

c

2
=f[Ge(r,r”)]T-{w—2f s(r,rl)-Ge(rl,r’)d3x1+477718(r—r’)}d3x, (32)

c

which again implies the symmetry of the Green dyadic:

[G.(r".r")] =G, (x".x"), (33)

. . 8
in a way similar to the above case for local response.
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IV. CONCLUSION

In this work, we have proven explicitly the equivalence between two popular statements for
the optical reciprocity principle, namely, the Lorentz lemma and the symmetry property of the
Green dyadic for the vector wave equation. We have further generalized this principle to include
both anisotropic nonlocal electric and magnetic responses with arbitrary finite boundaries. We
found explicitly that the dielectric tensors must satisfy the following symmetry properties:

sij(r’r’) = sji(r’,r)s

Mij(r’r’) :I“ji(r,ar)’ (34)

in order for reciprocity to hold. These results reduce to the well-known conditions in the case of
local responses. Note that while the symmetry in r and r’ will be valid for most materials on a
macroscopic scale," that in the tensorial indices will not be valid in general for complex materials
such as bianisotropic or chiral materials.'®*’ Hence it will be of interest to design some optical
experiments to observe the breakdown of reciprocity symmetry with these systems in the study of
anisotropic metamaterials. One possible way is to observe transmission asymmetry in the light
propagating through these materials. As is well known, interesting applications can be developed
based on both the validity and the breakdown of the reciprocity pn'nciple.l Our results established
in this paper will thus provide some guidelines for the application of this principle to the exciting
field in the optical studies of anisotropic metamaterials.
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APPENDIX: PROOF OF TWO NEW DYADIC INTEGRAL FORMULA
Here we provide a rigorous derivation of both Egs. (20) and (28). For the case with aniso-
tropic local response [Eq. (20)], let us first establish the following simpler vector identity:
Ve[BXANeVXA-AXANVXB]|=AeVXANeVXB-BeVXANVXA, (Al
under the condition A;;=N;;. In explicit Einstein summation convention, we have for the left-hand
side of (A1):
Ve[BXANeVXA-AXANeV XB]
= &€ 1n(Bj0iN Iy — A0 N0, B,) + €3Nl (9:8))(d,A,) — (3:A))(9,B,)],  (A2)
and the right-hand side of (Al):

A VXANeVXB-BeVXAeVXA= sijkslmn(A[é’j)\k,(?mBn—B,-é’j)\klamA,,). (A3)

Thus (A2) and (A3) are equal under the condition A;;=\;; and thus (A1) is established. From here
and by following the method in Ref. 21, it is straightforward to show that (A1) with the applica-
tion of the divergence theorem will lead to the result given in Eq. (20) with the ranks of A and B
raised by 1 to assume dyadic forms.

Next for the case with anisotropic nonlocal response, the proof is similar with the establish-
ment of the following slightly more complicated identity:
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fd%cf d*x;V +[B(r) X N(r,r;) * V,; X A(r;) —A(r) X A(r,r;) ¢V, X B(r))]

= f d3xf &x,[A(r) eV X N(r,r;) *V; X B(r;) =B(r) e V X A(r,r|) * V, X A(r))],

(Ad)

under the condition A;;(r,r")=N;(r’,r). Again we express the left side as
fd%cf d*x; V «[B(r) X A(r,r;) ¢V, X A(r;) - A(r) X A(r,r;) * V; X B(r))]
= Sijkslmnj d3xf d3x1{[3j(1')3p\k1(1',rl)afy}An(l’l) —Aj(l')af)\kl(r,ﬁ)a;}Bn(rl)]}

+ Sijkslmnf dSXf d3x1)\kz(r’1'1){[(91?31'(1')][(7;}14;1(1'1)] - [a?Aj(r)][aquBn(rl)]}a (AS)

and the right side as
f d3xf &x [A(r) eV X N(r,r)) eV, X B(r;) —=B(r) e VX A(r,r|) * V, X A(r))]

= Sijkslmnf d3xf d3x1[Ai(l‘)l7Jr-)\k1(l"1‘1)(7;113,,(1‘1) = B{r)di Ny (r,11)d) A, (r))]. (A6)

Hence (A5) is equal to (A6) by imposing A;;(r,r")=N;(r’,r) and the result in Eq. (28) can again
be obtained by the same method as in the local case by following Ref. 21.
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AP G )]y~ (G )] = “’—”#3 da J &y (0,1 V) X Gy(ry,r) « [0 X G(r,r)]
N

c

- —w.pf;; daf @xi (' (ery) « Vi X Girr) « [n X Gyr,x")],
1
S

and the Neumann condition in Eq. (17) in the nonlocal case has also to be generalized to the following form:
InX [ (r,e) eV X G, (r,r)]d %, =0.
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dielectric and permeability tensors.
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