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A note on the green dyadic calculation of the decay rates for admolecules
at multiple planar interfaces

R. L. Hartman, S. M. Cohen, and P. T. Leung
Department of Physics, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751

~Received 4 September 1998; accepted 23 October 1998!

The Green dyadic formulation for calculating classical decay rates of admolecules at multiple planar
interfaces first published by Chance, Prock and Silbey is reexamined. It is pointed out that, for the
case of fluorescing molecules sandwiched between a system of super- and substrate interfaces, the
original formalism requires significant modifications in order to lead to results consistent with those
obtained from the Sommerfeld radiation theory. ©1999 American Institute of Physics.
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I. INTRODUCTION

The study of molecular fluorescence at solid interfa
has been active for the last 2 decades since the first ex
mental works of Kuhn1 and Drexhage2 done in the early
1970’s. Theoretically, it has been found that one of the m
simple and direct approaches is to follow a phenomenolo
cal model solving the electrodynamics of an emitting m
lecular dipole in the vicinity of the interfaces. This mod
can provide both frequency shifts and decay rates for
admolecules~normalized to the free molecular decay rat!,
for example, yielding results in agreement with experimen
results as well as quantum mechanical calculations. Am
other contributors, Chance, Prock and Silbey~CPS! have
cleverly applied the radiation antenna theory of Sommerfe3

to this problem and showed that classical electrodynam
alone can account for most of the experimental observati
A momentous review article4 was compiled by CPS in the
late 1970’s summarizing the complete status of the subje
that time. Over the last 20 years, this article has often b
quoted and used by people working in the field, experim
talists and theorists alike.5 Application of this theory has also
gone beyond fluorescence to other optical phenomena a
terfaces as in Ref. 6 and 7. It is also in this review article t
the Sommerfeld method3 was first generalized to the case
multiple planar interfaces using the dyadic Green’s funct
formulation. This generalization includes both cases~i!
where the layer of fluorescent dyes is deposited on the to
a stratified multilayer system and~ii ! where the layer is sand
wiched between two such multilayer systems.
2180021-9606/99/110(4)/2189/6/$15.00
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It is the purpose of this paper to point out that, in t
original CPS formulation for case~ii ! above, the choice of
the dyadic eigenfunctions was not appropriately made
significant modifications are necessary to obtain a consis
Green dyadic theory for this case. The correct result will
presented in two different but equivalent formulations a
will be shown to lead back to well-known results from th
Sommerfeld theory for the simple case with the dyes sa
wiched between only one superstrate and one substrate
dium.

II. THE CPS FORMULATION

To be clear and self-contained, let us first recapitul
the main results from the CPS article.4 For harmonic currents
and fields, the dyadic Green formulation of Ref. 4 has
standard Green’s function solution~in SI units!:

E~R!5 ivmE G~R,R8!•J~R8!dV~R8!, ~1!

wherem is the magnetic permeability. For simplicity, we wi
consider in this paper only the case with one superstrate
one substrate confining the source in the gap as depicte
Fig. 1. More details on the case with a large number of lay
and generalization to the case with gradient index media
be presented in a forthcoming paper.8

Let G0 denote the Green dyadic for the source field a
Gi ( i 51,2,3) denote those for the scattered fields in the th
media. Thus according to Ref. 4, one obtains9
G0~R,R8!5
21

k1
2 ẑẑd~R2R8!1

i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1 FM jnl~1h1!M jnl8 ~2h1!1Njnl~1h1!Njnl8 ~2h1!

M jnl~2h1!M jnl8 ~1h1!1Njnl~2h1!Njnl8 ~1h1!Gz>z8
z<z8

,

~2!

G1~R,R8!5
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1

$@c1M jnl~2h1!1c18M jnl~h1!#M jnl8 ~h1!

1@ f 1Njnl~2h1!1 f 18Njnl~h1!#Njnl8 ~h1!%, ~3!
9 © 1999 American Institute of Physics
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G2~R,R8!5
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l!

3(
j 50

1

@c2M jnl~h2!M jnl8 ~h1!

1 f 2Njnl~h2!Njnl8 ~h1!#, ~4!

G3~R,R8!5
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l!

3(
j 50

1

@c3M jnl~2h3!M jnl8 ~h1!

1 f 3Njnl~2h3!Njnl8 ~h1!#, ~5!

whereM andN are given in cylindrical coordinates by:

M jnl~h!5eihzFnJn~lr !

r
sinS j p

2
2nw D r̂ 2

]Jn~lr !

]r

3cosS j p

2
2nw D ŵ G , ~6!

Njnl~h!5
eihz

k F ih
]Jn~lr !

]r
cosS j p

2
2nw D r̂ 1 inh

Jn~lr !

r

3sinS j p

2
2nw D ŵ1l2Jn~lr !cosS j p

2
2nw D ẑG ,

~7!

with Jn the Bessel function of the first kind andhi(l)
5Aki

22l2, where the square root is taken to have posit
real part.

According to Ref. 4, requirement of continuity of tran
verse field components at interfacesz50 andz5z0 leads to
the following systems whereej[eih jz0:

FIG. 1. Geometry of the problem.
e

3
1 1 0 21

2h1 h1 0 h3

1

e1
e1 2e2 0

2
h1

e1
h1e1 2h2e2 0

4 F c1

c18

c2

c3

G5F 21
h1

2e1

2h1e1

G , ~8!

or in matrix formAc5r c , and

3
2h1 /k1 h1 /k1 0 h3 /k3

k1 k1 0 2k3

2h1

k1e1
h1e1 /k1 2h2e2 /k2 0

k1

e1
k1e1 2k2e2 0

4 F f 1

f 18

f 2

f 3

G
5F h1 /k1

2k1

2e1h1 /k1

2e1k1

G , ~9!

or Bf5r f . Solving Eqs.~8! and ~9! yields the following:

S c1

c18

f 1

f 18
D 5S e1

2R12
'

11R13
'

12e1
2R12

' R13
'

R13
'

11e1
2R12

'

12e1
2R12

' R13
'

2R12
i

e1
2~12R13

i
!

12e1
2R12

i R13
i

2R13
i

~12e1
2R12

i
!

12e1
2R12

i R13
i

D , ~10!

where

Ri j
i [

e ihj2e jhi

e ihj1e jhi

and

Ri j
'[

hi2hj

hi1hj
.

Note that sign errors in Eq.~3.34! of Ref. 4 are corrected in
Eq. ~10!.

We have confirmed that the above results are in error
performing a numerical calculation of special cases. For
ample, the scattered electric field was calculated at the sit
a vertical dipole located at the center of region 1, with valu
for the dielectric constantse1 , e2 , and e3 set arbitrarily.
Next the values ofe2 and e3 were interchanged. Results i
the two cases differed, indicating that the analytical result
Eq. ~10! are in error.

III. THE CORRECT SOLUTION

We shall present here two different approaches to
correct Green dyadic solution to the above problem.
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A. Solution by expanding the solution space

In reviewing the problem, we found that Eqs.~8! and~9!
do not satisfy the boundary conditions at the interfaces
that no solution could be found once the constraints of for
~3! ~4!, and ~5! were imposed. A necessary remedy is e
largement of the solution space to the point where the bou
a

d
s
-
d-

ary conditions can be satisfied. For instance, the expres
for G1 contains dyadic productsM jnl(2h1)M jnl8 (1h1) and
M jnl(1h1)M jnl8 (1h1) but notM jnl(2h1)M jnl8 (2h1) and
M jnl(1h1)M jnl8 (2h1) which are equally valid. It turns ou
that the correct solution from this approach has already b
worked out in the electrical engineering literature.10 The gen-
eral solutions for the scattering fields are given by
G1~R,R8![
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1

$@c1M jnl~2h1!1c18M jnl~h1!#M jnl8 ~h1!

1@a1M jnl~2h1!1a18M jnl~h1!#M jnl8 ~2h1!1@ f 1Njnl~2h1!1 f 18Njnl~h1!#Njnl8 ~h1!

1@b1Njnl~2h1!1b18Njnl~h1!#Njnl8 ~2h1!%, ~11!

G2~R,R8![
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1

@c2M jnl~h2!M jnl8 ~h1!1 f 2Njnl~h2!Njnl8 ~h1!1a2M jnl~h2!M jnl8 ~2h1!

1b2Njnl~h2!Njnl8 ~2h1!#, ~12!

G3~R,R8![
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1

@c3M jnl~2h3!M jnl8 ~h1!1 f 3Njnl~2h3!Njnl8 ~h1!

1a3M jnl~2h3!M jnl8 ~2h1!1b3Njnl~2h3!Njnl8 ~2h1!#. ~13!
c-
By imposing the appropriate boundary conditions, the exp
sion coefficients can finally be obtained as10

cs5
1

12e1
2R12

' R13
' F e1

2R12
' R13

'

R13
'

e1

e2
~11R12

' !R13
'

~11R13
' !

G ,

as5
1

12e1
2R12

' R13
' F e1

2R12
'

e1
2R12

' R13
'

e1

e2
~11R12

' !

e1
2R12

' ~11R13
' !

G ,

~14!

fs5
1

12e1
2R12

i R13
i F e1

2R12
i R13

i

2R13
i

2k1e1

k2e2
~12R12

i
!R13

i

k1

k3
~12R13

i
!

G ,

bs5
1

12e1
2R12

i R13
i F 2e1

2R12
i

e1
2R12

i R13
i

k1e1

k2e2
~12R12

i
!

2k1

k3
e1

2R12
i

~12R13
i

!

G ,

where
n-

cs5F c1

c18

c2

c3

G , as5F a1

a18

a2

a3

G , fs5F f 1

f 18

f 2

f 3

G ,

and

bs5F b1

b18

b2

b3

G .

Using the above solution, we can write out the Green’s fun
tions as

G1~R,R8![
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1 S 1

12e1
2R12

' R13
'

3@e1
2R12

' M2~R13
' M11M2!1R13

' M1~M1

1e1
2R12

' M2!#1
1

12e1
2R12

i R13
i

3@e1
2R12

i N2~R13
i N12N2!

1R13
i N1~e1

2R12
i N22N1!# D , ~15!
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G2~R,R8![
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1 F 1

12e1
2R12

' R13
' S e1

e2
~11R12

' !M ~h2!~M21R13
' M1! D

1
1

12e1
2R12

i R13
i S k1e1

k2e2
~12R12

i
!N~h2!~N22R13

i N1! D G , ~16!

G3~R,R8![
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (j 50

1 F 1

12e1
2R12

' R13
' @~11R13

' !M ~2h3!~M11e1
2R12

' M2!#

1
1

12e1
2R12

i R13
i S k1

k3
~12R13

i
!N~2h3!~N12e1

2R12
i N2! D G , ~17!

where M65M 8(6h1) and N65N8(6h1). We have checked that the solution given by Eqs.~15!–~17! does satisfy the
numerical test described above.

B. Solution by reassociation

An alternative approach, which might be called ‘‘reassociation’’, is to introduce explicitly the sourceJ into the dyadic
expansion. We replaced typical products such as~MM 8!J with the equivalent productM ~M 8–J! reducing the product on the
right to a complex scalar. An additional small step then leads to the realization thatc(MM 8)J can be replaced bycM , where
M 8–J scalar has been absorbed into thec. We will see at the end thatJ can be factored from both sides of the resulti
equations leading to expressions forGi independent of the source, as they must be. Following the logic given above, we

G1~R,R8!–J[
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (
j 50

1

@c1M jnl~2h1!1c18M jnl~h1!1 f 1Njnl~2h1!1 f 18Njnl~h1!#, ~18!

G2~R,R8!–J[
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (
j 50

1

@c2M jnl~h2!1 f 2Njnl~h2!#, ~19!

G3~R,R8!–J[
i

4p E
0

1`

dl (
n50

1`
22dn

lh1~l! (
j 50

1

@c3M jnl~2h3!1 f 3Njnl~2h3!#, ~20!

where thec andf coefficients are functions of current densityJ as well as position,j, n andl. This approach allows us to wor
directly with electric and magnetic field values in applying the boundary conditions at the interfaces. The resultin
equations decouple into two matrix systems:

Ac5$@2M 8~h1! h1M 8~h1! 2e1M 8~2h1! 2h1e1M 8~2h1!#•J% t, ~21!

Bf5F S h1

k1
N8~h1! 2k1N8~h1! 2

h1e1

k1
N8~2h1! 2k1e1N8~2h1! D •JG t

, ~22!
q
lt,

nt
e

n a

ch
be
whereA andB are the same matrices defined above in E
~8! and ~9!. The matrix solution of Eqs.~21! and ~22! leads
to:

F c1

c18

c2

c3

G5
1

12e1
2R12

' R13
' F e1

2R12
' ~R13

' M11M2!

R13
' ~M11e1

2R12
' M2!

e1

e2
~11R12

' !~M21R13
' M1!

~11R13
' !~M11e1

2R12
' M2!

G •J,

~23!

F f 1

f 18

f 2

f 3

G5
1

12e1
2R12

i R13
i F e1

2R12
i

~R13
i N12N2!

R13
i

~e1
2R12

i N22N1!

k1e1

k2e2
~12R12

i
!~N22R13

i N1!

k1

k3
~12R13

i
!~N12e1

2R12
i N2!

G •J.

~24!
s.We can now insert Eqs.~23! and ~24! into Eqs.~18!–~20!.
Since an arbitraryJ then appears on both sides of the resu
we can factor outJ, yielding results in complete agreeme
with Eqs. ~15!–~17!. More details on this approach and th
equivalence between the two methods will be provided i
forthcoming paper.8

IV. CALCULATION OF DECAY RATES

According to the classical phenomenological approa
of CPS, the normalized decay rate of the admolecule can
obtained in terms of the imaginary part~I! of the reflected
field at the dipole site as:

b̂[
b

b0
511

6pe0qn1
2

p0k1
3

I~E0!, ~25!
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whereq is the intrinsic quantum yield andk15n1v/c, with
n1 the real refractive index of the medium containing t
dipole. We show below that the dyadics given in Eqs.~15!–
~17! can indeed lead back to the correct results forb̂ for a
molecule confined as in the geometry of Fig. 1.

We first consider the problem of a vertically oriente
dipole with momentp0ẑe2 ivt at the source positiondẑ be-
tween two interfaces atz50 andz5s1d5z0 . The current
will be given by

J52 ivp0ẑe2 ivtd~R82dẑ!. ~26!

Inserting thisJ into Eqs.~1! and using Eq.~15! yields
Ez
'~dẑ!5$v2m0m1p0e2 ivt%ẑ•G1~dẑ,dẑ!ẑ

5$v2m0m1p0e2 ivt%
i

4p E
l50

1`

(
n50

1`
22dn

lh1~l!

3 (
j 50,1

ẑ•S 1

12e1
2R12

i R13
i @e1

2R12
i N2~R13

i N12N2!1R13
i N1~e1

2R12
i N22N1!# D ẑ dl

5$v2m0m1p0e2 ivt%
i

4p E
l50

1` 1

lh1~l! H 1

12e1
2R12

i R13
i Fe1

2R12
i l2

edk1
S R13

i edl2

k1
2

l2

edk1
D

1R13
i edl2

k1
S e1

2R12
i l2

edk1
2

edl2

k1
D G J dl

5
iv2m0m1p0e2 ivt

4pk1
2 E

l50

1` l3

h1~l!

~2e1
2R12

i R13
i

2es
2R12

i
2ed

2R13
i

!

~12e1
2R12

i R13
i

!
dl

5
p0e2 ivt

4pe0e1
E

l50

1` l3

@2 ih1~l!# S ~12R13
i ed

2!~12R12
i es

2!

~12e1
2R12

i R13
i

!
21D dl, ~27!
ed
whereed5eidh1(l) andes5eish1(l) with s1d5z0 . We have
also employed the identity:

2xy2x2y

12xy
5

~12x!~12y!

12xy
2 1.

Inserting Eq.~27! into Eq. ~25!, we obtain

b̂'511
6pe0qn1

2

p0k1
3 IF p0

4pe0e1
E

l50

1` l3

@2 ih1~l!#

3S ~12R13
i ed

2!~12R12
i es

2!

~12e1
2R12

i R13
i

!
21D dlG

512q1
3q

2k1
3

3IF i E
l50

1` l3

h1~l! S ~12R13
i ed

2!~12R12
i es

2!

~12e1
2R12

i R13
i

!
D dlG , ~28!

where we have used

E
l50

k l3 dl

Ak22l2
5

2

3
k3.

The result in Eq.~28! is equivalent to Eq.~2.47! of Ref. 4
using the transformation:u5l/k1 . In the case of a trivial
interface between regions 1 and 2, that is,e15e2 implying
R12

i
50, from Eq.~28! we have
b̂'512
3q

2k1
3 IS i E

l50

1`

R13
i ed

2 l3 dl

h1~l! D ,

which is identical to Eq.~2.17! of Ref. 4.
We next consider the problem of a horizontally orient

dipole with momentp0x̂e2 ivt at the source positiondẑ be-
tween the same interfaces. The current density is then

J52 ivp0x̂e2 ivtd~R82dẑ!. ~29!

Again, insertingJ into Eq. ~1! and integrating yields

Ex
i
~dẑ!5$v2m0m1p0e2 ivt%x̂•G1~dẑ,dẑ!x̂. ~30!

To proceed further, we note that

x̂•M6~dẑ!5H l

2
e6 ih1d if n51 and j 51

0 otherwise

,

and

x̂•N6~dẑ!5H 6 ilh1

2k1
e6 ih1d if n51 and j 50

0 otherwise

,

Insertion of the above dot products into Eq.~15! yields
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x̂•G1~dẑ,dẑ!• x̂5
i

8p E
l50

1` S 1

12e1
2R12

' R13
' ~2e1

2R12
' R13

' 1es
2R12

' 1ed
2R13

' !

1
h1

2~l!

k1
2~12e1

2R12
i R13

i
!

~2e1
2R12

i R13
i

1es
2R12

i
1ed

2R13
i

! D l dl

h1~l!

5
i

8pk1
2 E

l50

1` Fk1
2S ~es

2R12
' 11!~ed

2R13
' 11!

12e1
2R12

' R13
' 21D 1h1

2~l!S ~es
2R12

i
11!~ed

2R13
i

11!

12e1
2R12

i R13
i 21D G l dl

h1~l!
, ~31!

where we have again used the identity:

2xy1x1y

12xy
5

~x11!~y11!

12xy
21.

Using k1
25v2e0e1m0m1 , we finally have

Ex
i
~dẑ!5

p0ie2 ivt

8pe0e1
E

l50

1` Fk1
2S ~es

2R12
' 11!~ed

2R13
' 11!

12e1
2R12

' R13
' 21D 1h1

2~l!S ~es
2R12

i
11!~ed

2R13
i

11!

12e1
2R12

i R13
i 21D G l dl

h1~l!
. ~32!

Inserting Eq.~32! into Eq. ~25!, we obtain

b̂i511
6pe0qn1

2

p0k1
3 IH p0

8pe0e1
E

l50

1` Fk1
2S ~es

2R12
' 11!~ed

2R13
' 11!

12e1
2R12

' R13
' 21D 1h1

2~l!S ~es
2R12

i
11!~ed

2R13
i

11!

12e1
2R12

i R13
i 21D G l dl

@2 ih1~l!#J
512q1

3q

4k1
3 IH E

l50

1` Fk1
2S ~es

2R12
' 11!~ed

2R13
' 11!

12e1
2R12

' R13
' D 1h1

2~l!S ~es
2R12

i
11!~ed

2R13
i

11!

12e1
2R12

i R13
i D G l dl

@2 ih1~l!#J , ~33!
e-
th

ir-
o
di
fy
as
t
is

’s
n

eld
e-
er-

m-
nd
ll
ap
la-

of
m

where we have used

E
l50

k ~2k22l2!l dl

Ak22l2
5

4

3
k3.

The result in Eq.~33! is equivalent to Eq.~2.48! of Ref. 4
using the transformation:u5l/k1 . In the case of a trivial
interface between regions 1 and 2, that ise15e2 , implying
that R12

' 5R12
i

50, we have from Eq.~33!
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2R13
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2~l!R13
i

#
l dl

h1~l! D ,

which is identical to Eq.~2.29! of Ref. 4. Thus our Green
dyadics in Eqs.~15!–~17! indeed reproduce the correct r
sults for the decay rates obtained by the generalization of
Sommerfeld method.4

V. CONCLUSION

The dyadic Green’s function solution to the double m
ror problem in Ref. 4 was found to have a theoretical err
We have shown that the error can be corrected by exten
and symmetrizing the solution form in order to satis
boundary conditions as done in Ref. 10. Alternatively, re
sociation of the dyadic product with current density leads
the same solution as can be seen by virtue of an isomorph
between formulations.8 Finally, the corrected dyadic Green
function formulation can be used directly to calculate a
e

r.
ng

-
o
m

d

verify decay rates calculated in Ref. 4 from the Sommerf
theory for the case of an oscillating dipole positioned b
tween interfaces. With either of the two approaches, gen
alization is straightforward to the case with an arbitrary nu
ber of multiple interfaces for both the substrate a
superstrate.8,10 In addition, the green dydadic formalism wi
also allow one to calculate an arbitrary source within the g
beyond that of an electric point dipole. The present formu
tion should be useful in these aspects.
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