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Equivalence between the mechanical model and energy-transfer theory
for the classical decay rates of molecules near a spherical particle
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In the classical modeling of decay rates for molecules interacting with a nontrivial environment, it
is well known that two alternate approaches exist which include: (1) a mechanical model treating
the system as a damped harmonic oscillator driven by the reflected fields from the environment;
and (2) a model based on the radiative and nonradiative energy transfers from the excited molecular
system to the environment. While the exact equivalence of the two methods is not trivial and has been
explicitly demonstrated only for planar geometry, it has been widely taken for granted and applied to
other geometries such as in the interaction of the molecule with a spherical particle. Here we provide
a rigorous proof of such equivalence for the molecule-sphere problem via a direct calculation of the
decay rates adopting each of the two different approaches. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4714498]

INTRODUCTION

Ever since the pioneering work of Purcell,1 it has been
known that the lifetimes of any excited system are not intrin-
sic properties of the system but are variables depending on
the interaction of the system with the environment. While the
spontaneous decay rates of an isolated system are still intrin-
sic, the presence of the environment will induce (stimulate)
the system to further decay at a rate different from that of the
intrinsic decay of the system. In a quantum mechanical de-
scription of such phenomenon, one would resort to the modi-
fication of the density of photonic mode and excited states of
the system, together with the application of time-dependent
perturbation theory with the system-environment interaction
treated as a perturbation to the system.2 Alternatively, classi-
cal modeling of this induced decay is also possible and the
results obtained for the reduced decay rates (i.e., normalized
to the intrinsic rates) are known to be equivalent to those de-
rived from a quantum mechanical approach.3, 4

Referring to the modified decay rates of a molecule in the
vicinity of a dielectric/metallic surface as a specific example,
one well-established simple classical approach is the driven-
damped harmonic oscillator for the motion of the molecule
with the induced decay being caused by the reflected field
from the surface acting on the molecule.3 This so-called “me-
chanical model” is thus governed by the following equation
of motion:

p̈ + γ0ṗ + ω2
0p = e2

m
ER, (1)

where p is the molecular dipole moment, e and m the elec-
tronic charge and mass, and ω0 and γ 0 the intrinsic frequency
and damping constant of the dipole, respectively. ER is the
field reflected from the surface acting back on the emitting
dipole. Under the assumption γ 0 � ω0 , the overall decay

rate in the presence of the surface can be obtained in the form
(normalized to the intrinsic rate):3, 5

γ

γ0
= 1 + 3

2k3
Im

(
ER

p

)
, (2)

where we have assumed that the molecule is located in vac-
uum and k is the wave number of the molecular emission.
Note that we have also assumed the ideal case with the intrin-
sic quantum yield being unity.

On the other hand, the decay process of the molecule can
also be accounted for by calculating the rate of energy trans-
ferred away from the excited molecule which can take place
via the following two channels:6, 7

(i) Radiative transfer with the energy radiated to infinity

γ R

γ0
= 3

ck4p2

∫
(r→∞)

d�r2 �S · n̂, (3)

and
(ii) Nonradiative transfer with energy dissipated into the sur-

rounding medium in the form of Joule heating

γ NR

γ0
= 3

2ck4p2

∫
V

dτσ

∣∣∣ �E
∣∣∣2

. (4)

In Eqs. (3) and (4), �S = (c/8π )Re( �E × �H ∗) is the time-
averaged Poynting vector, c the speed of light in vacuum, V

the volume of the medium and σ = (ck/4) Im ε is the conduc-
tivity of the medium which is proportional to the imaginary
part of the dielectric function of the medium.

REVIEW OF LITERATURE ON THE EQUIVALENCE OF
THE TWO METHODS

While from the viewpoint of conservation of energy, one
would naturally expect the mechanical and energy-transfer
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models to give the same results, i.e.,

γ = γ R + γ NR, (5)

the proof of the equivalence of the two approaches has been
demonstrated explicitly in the literature only for the case of
simple planar geometry, via rather tedious calculations of the
integrals in (3) and (4).3, 6 For a surrounding medium of finite
extent such as a spherical particle, it has been a very common
practice in the literature to assume the validity of (5) and to
apply it for various simplifications in the calculation of these
induced decay rates. For example, while Ruppin7 has applied
the energy-transfer method to calculate both the radiative and
nonradiative rates for a dipole in the vicinity outside a sphere
in a fully electrodynamic formulation, Chew8 has shown the
equivalence between Ruppin’s results and those from the me-
chanical model in the special case of a transparent sphere for
which the nonradiative rates vanish identically, with extension
to treat also the case when the molecular dipole is located in-
side the sphere. On the other hand, it has also been checked
numerically for the general case of a metallic (absorptive)
sphere that Eq. (5) is valid when both transfer rates exist.9

Moreover, even without having a rigorous proof of Eq. (5) for
the general case established, it has been taken for granted and
applied to decay rate calculations for dipole-sphere system
in both the exact dynamic theory,10 and the long-wavelength
quasi-static theory.11–14 In the latter approximate theory, such
assumption (i.e., validity of Eq. (5)) has been applied even in
models with nonlocal dielectric response.15

Thus a rigorous proof of the validity of Eq. (5) for a
dipole-sphere system will clarify most of the previous appli-
cations in the literature which were without justifications, and
at the same time provide confidence for future study of decay
rates using such an assumption. In the following, we shall pro-
vide an explicit proof of (5) for a dipole-sphere system via a
direct calculation of the various rates as formulated using the
exact electrodynamic theory. Hence, in parallel with the pre-
vious analysis for an extended (planar) geometry,3, 6 our work
will provide the corresponding explicit proof of (5) for a lo-
calized geometry, which at the same time extends the previous
proof of Chew8 to the general case of a dissipative sphere.

PROOF OF EQUIVALENCE

Consider an oscillating dipole located at r in vacuum out-
side a homogeneous metallic sphere of radius a and dielectric
function ε, we shall present our calculation of the various de-
cay rates for each of the orthogonal dipole orientations rela-
tive to the sphere as follows (note that all the γ below denote
normalized rates):

For radial dipoles

For the dipole oscillating along the radial direction, the
overall decay rate obtained from the mechanical model (i.e.,
Eq. (2)) can be expressed as8–10

γ⊥ = 1 + 3

2
Re

∞∑
n=1

(2n + 1)n(n + 1)bn[hn(ρ)/ρ]2, (6)

where ρ = kr = ωr/c and hn(ρ) is the first kind spherical Han-
kel function. The Mie scattering coefficient bn is defined by

bn = [x1jn(x1)]′jn(x) − ε[xjn(x)]′jn(x1)

ε[xhn(x)]′jn(x1) − [x1jn(x1)]′hn(x)
, (7)

where x = ka, x1 = √
εka, and jn(x) is the spherical Bessel

function.
On the other hand, from the energy-transfer theory, the

radiative and nonradiative decay rates can be obtained in the
following forms (via Eqs. (3) and (4)):7

γ R
⊥ = 3

2

∞∑
n=1

(2n + 1)n(n + 1)
|jn(ρ) + bnhn(ρ)|2

ρ2
, (8)

γ NR
⊥ = 3

2
k Im ε

∞∑
n=1

n(n+1)
|βnhn(ρ)|2

r2

∫ R

0
[(n+1)|jn−1(k1r

′)|2

+ n|jn+1(k1r
′)|2]r2dr ′, (9)

respectively, where k1 = √
εk, and

βn = √
ε

[xhn(x)]′jn(x) − hn(x)[xjn(x)]′

ε[xhn(x)]′jn(x1) − hn(x)[x1jn(x1)]′
. (10)

Note that in Eq. (9), the integral has to be performed over the
whole sphere to account for the nonradiative transfer via Joule
heating of the sphere.

In order to verify the equivalence between the above two
approaches, i.e., show that γ⊥ = γ R

⊥ + γ NR
⊥ , we first note that

the integral for the nonradiative decay rate in Eq. (9) can be
simplified using the following result:16∫ a

0
|jn(k1r)|2 r2dr = a

k2Im ε
In, (11)

where In = Im[x∗
1j ∗

n−1(x1)jn (x1)]. This result can be obtained
from the following identity:17

∫ r2

r1

jn(pr)jn(qr)r2dr = r2

p2 − q2
[qjn−1(qr)jn(pr)

−pjn−1(pr)jn(qr)]|r2
r1

, (12)

and by setting p = k1, q = k∗
1 , r1 = 0, and r2 = a, respectively.

Applying Eq. (11) to Eq. (9) leads to a simpler result for the
nonradiative decay,

γ NR
⊥ = 3x

2ρ2

∞∑
n=1

n(n + 1)|βnhn(ρ)|2[(n + 1)In−1 + nIn+1],

(13)
where no more integration is involved.

Now from Eqs. (6) and (8) we have

γ⊥ − γ R
⊥ = 1 − 3

2ρ2

∞∑
n=1

n (n + 1) (2n + 1)

× [|hn(ρ)|2 (Rebn + |bn|2) − j 2
n (ρ)]. (14)

The first term of the RHS of Eq. (14) can be eliminated by
applying the following Bessel function identity17

∞∑
n=1

n(n + 1)(2n + 1)j 2
n (ρ) = 2ρ2/3 (15)
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to Eq. (14), and thus obtain

γ⊥ − γ R
⊥ = − 3

2ρ2

∞∑
n=1

n (n + 1) (2n + 1)

× |hn(ρ)|2 (Rebn + |bn|2). (16)

Note that the contributions of each multipole mode are sepa-
rated in Eq. (16), and hence the problem now reduces to ver-

ify the equivalence between Eqs. (13) and (16) for each single
multipole mode, i.e., to establish the following result:

x |βn|2 (Rebn + |bn|2)−1[(n + 1)In−1 + nIn+1] = − (2n + 1)
(17)

for each n. We first note that, after some algebra, the second
and third terms of the LHS of Eq. (17) can be simplified to the
following form using the definitions in Eqs. (7) and (10):

|βn|2
Rebn + |bn|2

= 2ix[jn(x)y ′
n(x) − j ′

n(x)yn(x)]

x∗
1j ∗

n (x1)j ′
n(x1) − x1jn(x1)[j ∗

n (x1)]′ + |jn(x1)|2 [(x∗
1 )2 − x2

1 ]/ |x1|2
. (18)

On the other hand, using the following identities:17

jn−1(x) + jn+1(x) = 2n + 1

x
jn(x), (19)

jn−1(x) = j ′
n(x) + n + 1

x
jn(x), (20)

and the definition of In given below Eq. (11), the last part of
the LHS of Eq. (17) can be expressed as

[(n + 1)In−1 + nIn+1] = i
2n + 1

2

[
x∗

1j ∗
n (x1)j ′

n(x1) − x1jn(x1)[j ∗
n (x1)]′ + (x∗

1 )2 − x2
1

|x1|2
|jn(x1)|2

]
. (21)

Substituting Eqs. (18) and (21) into Eq. (17), the LHS of
Eq. (17) is reduced to

− (2n + 1)x2[jn(x)y ′
n(x) − j ′

n(x)yn(x)]. (22)

Hence using the following Wronskian relation for the spheri-
cal Bessel functions:18

x2[jn(x)y ′
n(x) − j ′

n(x)yn(x)] = 1, (23)

the expression in (22) can be simplified and Eq. (17) (and
hence Eq. (5)) is verified.

For tangential dipoles

In the case with a dipole oscillating along the tangential
direction, the overall, radiative, and nonradiative decay rates
can be expressed by the formulas7, 8, 10

γ‖ = 1 + 3

4

∞∑
n=1

(2n + 1)

{
anh

2
n(ρ) + bn

(
[ρhn(ρ)]′

ρ

)2
}

,

(24)

γ R
‖ = 3

4

∞∑
n=1

(2n + 1)

{
|jn(ρ) + anhn(ρ)|2 + 1

ρ2
|[ρjn(ρ)]′

+bn[ρjn(ρ)]′|2
}

, (25)

γ NR
‖ = 3

4
x

∞∑
n=1

{
(2n + 1) |αnhn(ρ)|2 In

+
∣∣∣∣βn [ρhn(ρ)]′

ρ

∣∣∣∣
2

[(n + 1)In−1 + nIn+1]
}
,

(26)

respectively, where

an = [xjn(x)]′jn(x1) − [x1jn(x1)]′jn(x)

[x1jn(x1)]′hn(x) − [xhn(x)]′jn(x1)
, (27)

αn = [xjn(x)]′hn(x) − jn(x)[xhn(x)]′

[x1jn(x1)]′hn(x) − jn(x1)[xhn(x)]′
. (28)

As described in the previous case for radial dipoles,
the overall decay rate is obtained by the mechanical model
(Eq. (2)), while the radiative and nonradiative decay rates
are derived from the energy transfer theory (Eqs. (3) and (4)).
Note that the integrals for the nonradiative decay rate have
again been carried out using Eq. (11).
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Similarly, to establish Eq. (5) for this case, we first con-
sider the quantity,

γ‖−γ R
‖ =1− 3

4

∞∑
n=1

(2n+1)

{
j 2
n (ρ)+|hn(ρ)|2 (|an|2+Rean)

+
(

[ρjn(ρ)]′

ρ

)2

+
∣∣∣∣ [ρhn(ρ)]′

ρ

∣∣∣∣
2

(|bn|2 + Rebn)

}
.

(29)

Applying the following Bessel function identities:17

∞∑
n=1

(2n + 1)

{
[ρjn(ρ)]′

ρ

}2

= 1

3
+ j 2

0 (ρ) , (30)

∞∑
n=1

(2n + 1)j 2
n (ρ) = 1 − j 2

0 (ρ) , (31)

Eq. (29) can then be simplified to

γ‖ − γ R
‖ = −3

4

∞∑
n=1

(2n + 1)

{
|hn(ρ)|2 [|an|2 + Rean]

+
∣∣∣∣ [ρhn(ρ)]′

ρ

∣∣∣∣
2

[|bn|2 + Rebn]

}
. (32)

Again the contributions of each multipole mode are now
separated and the problem is reduced to verifying the follow-
ing relation:

x(2n+1) |αnhn(ρ)|2In+x

∣∣∣∣βn [ρhn(ρ)]′

ρ

∣∣∣∣
2

[(n+1)In−1+nIn+1]

=−(2n+1) |hn(ρ)|2 [|an|2+Rean] − (2n+1)

∣∣∣∣ [ρhn(ρ)]′

ρ

∣∣∣∣
2

× [|bn|2 + Rebn].
(33)

Using the result in Eq. (17), we see that the second term
in each of the two sides of Eq. (33) cancel with each other and
(33) reduces to

x |αn|2 In = −[|an|2 + Rean]. (34)

Substituting Eq. (27) into the RHS and Eq. (28) in the LHS of
Eq. (34), it is straightforward to verify that Eq. (34) is indeed
valid with each side equals to the following expression:

i

2x

x1[j ∗
n (x1)]′jn(x1) − x1j

∗
n (x1)j ′

n(x1)

|[x1jn(x1)]′hn(x) − [xhn(x)]′jn(x1)|2 . (35)

Hence, Eq. (5) is verified for the case of tangential dipoles.

DISCUSSION AND CONCLUSION

In the literature of classical modeling of “environment-
induced” molecular decay rates over the last four decades,
there have been two approaches: the mechanical oscillator
model and the energy-transfer analysis. To our knowledge,
the explicit demonstration of the equivalence of the two ap-
proaches has been established thus far only for the case of
extended planar geometry.3, 6 In our present work, we have
demonstrated via direct calculations such equivalence also

holds for the most typical localized geometry—the sphere,
which has been previously clarified only for a transparent
(non-absorptive) sphere.8 In fact, from some general consid-
erations as we discuss below, the general validity of Eq. (5) is
expected to hold for any geometry and any dielectric medium
as long as the response is linear, including possibly nonlocal
dielectric response.

We want to stress that the validity of (5) is more than
just conservation of energy as dictated by Poynting’s theo-
rem. While the RHS does exhaust all the possible channels
for transferring away the energy from the excited system (i.e.,
the molecule), the LHS obtained from a somewhat simplified
damped-harmonic oscillator model is not expected to yield an
exact result in general. In fact, the relative simple result in
Eq. (2) is obtained only as an approximate result under the
assumption that the linewidths are, in general, much smaller
than the transition frequencies in the mechanical model.3, 5

However, from a more fundamental formulation using the
general linear response theory based on the Fermi golden rule
and the fluctuation-dissipation theorem, the result in Eq. (2)
can indeed be shown to be exact and thus its validity is in-
dependent of the mechanical oscillator model.4, 19–21 Further-
more, it is shown in Ref. 21 that by decomposing the dipole
electric field into the transverse and longitudinal compo-
nents, the application of the Poynting theorem indeed leads to
Eq. (5) with each of the two components correspond to the ra-
diative and nonradiative energy transfer, respectively. Hence,
it is natural to expect, as a consequence, that Eq. (5) should
hold for all geometry and dielectric response of the “envi-
ronment” within the linear response approximation; and the
previous works by Chance et al.3, 6 together with our present
work constitute explicit demonstration of its validity for each
of an extended and a confined geometry of the environment.
Furthermore, in case of an environment with nonlinear optical
response, the equivalence between the two approaches as re-
vealed from Eq. (5) will break down and the energy-transfer
method will be the preferred approach without resorting to
nonperturbative quantum transition theory.
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